Not applicable.
The present invention relates generally to an in-line centrifugal fan, and in particular, relates to a mixed flow fan having a high operating efficiency and reduced sound output, and that is easy to manufacture and service.
In-line fans are generally classified according to the direction of airflow through the impeller. In particular, axial flow fans are characterized by flow through the impeller in a direction generally parallel to the shaft axis. In-line centrifugal fans receive airflow into the impeller axially, and redirect the airflow radially outward. Mixed flow fans are characterized in that the air enters the impeller axially and is deflected at an obtuse angle by the impeller blades such that the air flowing out of the impeller has both axial and radial flow components.
The performance and desirability of a fan is measured generally by the fan's efficiency and sound levels produced during operation. The optimization of these two components will reduce the energy needed to operate the fan, thus conserving cost, and will further reduce the noise pollution associated with operation as frequent exposure to high levels of noise pollution has been linked to various health problems in humans and is generally annoying. One leading mixed flow fan in the industry was commercially introduced in 1997 as the leading fan in the industry in terms of high efficiency and low sound levels. This fan was tested in accordance with standards adopted by the Air Movement and Control Association to determine the fan's efficiency and sound power output under various operating conditions, such as fan static pressure (water gauge) and flow rate, measured in cubic feet per minute (CFM). The sound pressure level was reported in dBA, and fan static efficiency was determined as 100%*(CFM×static pressure)/(6,356×BHP). The brake horsepower (BHP) was measured once the fan had reached steady state operation. As illustrated in Table 1, the smallest prior art fan tested circulates air at 4100 cubic feet per minute, operates at an efficiency of 36%, and produces a sound pressure level of 82 dBA in applications requiring one inch water gauge of fan static pressure. The relatively low efficiency and high sound level of this fan leaves significant room for improvement in the industry.
It is further desirable for in-line centrifugal fans to be easy to install and service. For example, fans are typically installed within ductwork to circulate air throughout a building, and should be easily attachable and detachable to allow the fan to be easily serviced. Currently, additional parts are needed to install the fans, including separate angle rings and flexible duct connectors that are used to eliminate the transmission of vibration from the fan. Furthermore, servicing conventional fans' internal drive components has typically been limited and cumbersome due to the limited accessibility to their internal drive components, which requires the removal, and disassembly, of other internal components. Subsequently, the non-modular moveable parts need to be reinstalled within the fan, which is difficult given the small internal confines of the fan.
What is therefore needed is an improved mixed flow fan that produces lower sound levels during operation, and that is more efficient to operate. It is further desirable to provide such a fan that is relatively easy and efficient to install and service.
In accordance with one aspect of the invention, the fan includes an axially extending conduit having an intake end and an outlet end. An inlet cone is disposed at the intake end and receives air from the ambient environment. An impeller is disposed downstream of the inlet cone and includes A) a centrally disposed wheel-back configured for rotation by an electric motor, B) a plurality of fan blades extending radially outwardly from the wheel-back that force air in the direction from the intake end to the outlet end; and C) a wheel cone fixedly attached to, and circumscribing the wheel blades. A drive chamber disposed downstream of the impeller includes a plurality of radially extending straightening vanes operable to receive the forced air from the impeller and direct the air substantially axially downstream to the outlet end.
In accordance with another aspect of the invention, the inlet cone has a discharge diameter of approximately between 0.68 and 0.83 times the diameter defined by radial outermost edges of opposing fan blades. The geometric configuration of the inlet cone contributes to the fan's enhanced aerodynamic and acoustic performance, thereby resulting in reduced sound levels and increased efficiency during operation when compared to conventional inline centrifugal fans.
In accordance with another aspect of the invention, the inlet cone has a discharge angle of between 30° and 40°, and matches the conical angle of the wheel cone.
In accordance with another aspect of the invention, the straightening vanes have a camber radius substantially between 0.50 and 0.61 times the diameter defined by radial outermost edges of opposing fan blades.
In accordance with another aspect of the invention, each straightening vane has a leading edge angle substantially between 30° and 40°.
In accordance with another aspect of the invention, the fan includes a modular bearing assembly that extends within the conduit. The bearing assembly includes a shaft that is driven by the electric motor. The shaft, in turn, drives the impeller and first and second bearing plates mounted within the drive chamber. The bearing assembly is removable from the conduit as a unitary assembly, which allows the fan to be easily serviced when access to the fan's internal drive components has been quite limited and cumbersome in conventional inline centrifugal fans.
In accordance with another aspect of the invention, a duct connector is disposed proximal the intake end and is unitary with the conduit. The duct connector is configured to provide a slip-fit connection with ductwork in a building, thereby allowing the fan to be installed in a building, for example, with greater ease than inline centrifugal fans currently available.
In accordance with another aspect of the invention, a plurality of fan blades extends radially outwardly from the wheel-back. The blades are configured to force air in the direction from the intake end to the outlet end. Each of the blades has a leading edge disposed upstream of a trailing edge, wherein each blade is trapezoidal and has a uniform thickness. Each of the blade surfaces has a radius of curvature substantially between 0.7 and 0.86 times the diameter defined by radial outermost edges of opposing fan blades.
In accordance with another aspect of the invention, the wheel-back, which rotates under forces provided by the electric motor, includes a substantially spherical portion having a radius of substantially between 0.37 and 0.45 times the diameter defined by radial outermost edges of opposing fan blades.
In accordance with another aspect of the invention, each of the straightening vanes includes at least one integral tab extending radially inwardly that is received in a corresponding elongated slot extending through the drive chamber to properly orientate the straightening vanes with respect to the drive chamber.
In accordance with another aspect of the invention, the inlet cone has a throat diameter of substantially 0.61 and 0.75 times the diameter defined by the radial outermost edges of opposing fan blades.
In accordance with another aspect of the invention, the fan blades have a leading edge and a trailing edge, extend radially outwardly from the wheel-back at a wheel-back edge, and are connected to the wheel cone at a wheel cone edge. A blade angle between 22° and 32° is formed between the wheel-back edge proximal the leading edge and a line extending tangentially with respect to wheel-back at the interface between the wheel-back and leading edge in the direction of wheel-back rotation.
In accordance with another aspect of the invention, a blade angle between 35 and 45° is formed between the wheel-back edge proximal the trailing edge and a line extending tangentially with respect to wheel-back at the interface between the wheel-back and the trailing edge in the direction of wheel-back rotation.
In accordance with another aspect of the invention, a blade angle between 22° and 32° is formed between the wheel cone edge proximal the leading edge and a line extending tangentially with respect to wheel cone at the interface between the wheel cone and the leading edge in the direction of wheel cone rotation.
In accordance with another aspect of the invention, a blade angle between 27° and 37° is formed between the wheel cone edge proximal the trailing edge and a line extending tangentially with respect to wheel cone at the interface between the wheel cone and the trailing edge in the direction of wheel cone rotation.
Each of these aspects independently and/or in combination produce a fan that is more efficient and less noisy than conventional fans, and further allow the fan to be more easily installed and serviced when compared to conventional fans.
For example, the present invention produces a fan that is capable of producing sound levels less than 70 decibels when operating with an airflow of substantially 4100 cubic feet per minute and one inch water gauge of fan static pressure. The present invention further produces a fan that is capable of achieving an efficiency of greater than 40% when operating with an airflow at a rate between 4100 and 6100 cubic feet per minute at substantially one inch water gauge of fan static pressure. The present invention further produces a fan that is capable of producing sound levels less than 70 decibels when operating with an airflow at a rate between 4100 and 6100 cubic feet per minute at substantially one inch water gauge of fan static pressure. The present invention further produces a fan that is capable of achieving an efficiency greater than 60% when producing an airflow at a rate between 4100 and 6100 cubic feet per minute at 2 inches water gauge of static pressure. The present invention further produces a fan that is capable of achieving sound levels less than 78 dBA when producing an airflow at a rate between 4100 and 20000 cubic feet per minute at 3 inches of water gauge static pressure. Accordingly, the fan greatly reduces noise pollution with respect to inline centrifugal fans currently available. Furthermore, the increased efficiencies reduce the cost associated with operating the fan compared to inline centrifugal fans currently available.
It should be appreciated that the foregoing and other advantages of the invention will appear from the following description. In the description, reference is made to the accompanying drawings which form a part thereof, and in which there is shown by way of illustration, and not limitation, preferred embodiments of the invention. Such embodiments do not necessarily represent the fall scope of the invention. Accordingly, reference must therefore be made to the claims herein for interpreting the full scope of the invention.
Reference is hereby made to the following figures in which like reference numerals correspond to like elements throughout, and in which:
a is a sectional side elevation view illustrating the wheel-back and blades of
b is a side elevation view illustrating the radius of curvature of one of the blades illustrated in
c is a cutaway view of the wheel-back and blade showing the angular dimensions of one the blades illustrated in
a is a perspective view of the straightening vanes being assembled into the drive chamber in the fan illustrated in
b is an enlarged cutaway view of the straightening vanes illustrated in
a is a sectional side elevation view showing various dimensions of the wheel-back and fan blades illustrated in
b is a side elevation view of a flat blank used to fabricate the blades illustrated in
c is a side elevation view of a blade formed from the blank illustrated in
a is a sectional side elevation view showing dimensions of the drive chamber and other internal components of the fan illustrated in
b is a sectional rear elevation view of the drive chamber illustrated in
Referring initially to
Referring still to
Referring still to
Referring now also to
Referring now also to
Each straightening vane 50 includes a pair of tabs 52 that extend radially inwardly and are received by a corresponding pair of slots 54 in the drive chamber 48 to lock the straightening vane 50 in place. The straightening vanes 50 are then welded in place such that the slots 54 accurately locate the radial spacing of the straightening vanes 50 and control the angle of the leading and trailing edges of the straightening vanes 50 to ensure proper air flow through the straightening vanes 50. It should be appreciated that if the straightening vanes 50 are not accurately positioned, the air will become disturbed while passing through the drive chamber 48, thereby increasing noise production and reducing efficiency. The straightening vanes 50 are more easily and reliably assembled in the fan 20 compared to conventional fans, which typically employ either a mounting fixture or jig that are more expensive to manufacture, and more cumbersome to install. The present “slot and tab” relationship allow the straightening vanes 50 to be more easily and accurately manufactured with respect to the prior art.
Referring now to
The mounting plates 66 and 68 rotatably support a driven shaft 70, as will now be described. In particular, a shaft 70 extends axially and concentrically within conduit 22 and through centrally disposed apertures 72 of mounting plates 66 and 68. A first and second bearing 74 is mounted onto the axially upstream face of mounting plate 66, and the axially downstream face of plate 68, respectively at the aperture 72. The bearings 74 thus rotatably support the shaft 70 that extends therethrough and interlock the shaft 70 and mounting plates 66 and 68 with respect to axial movement and facilitate relative rotation between the shaft 70 and each of the mounting plates 66 and 68. A driven pulley 76 is disposed at the downstream end of shaft 70 and, when installed, is axially aligned with drive pulley 45. An aperture 47 (See
As illustrated in
Having now described the components of fan 20, additional features of the fan that further enable enhanced performance over conventional inline centrifugal fans will now be described.
The following describes various dimensions and ranges for various parts of the fan that both independently, and in combination, achieve certain advantages over the prior art. It should be appreciated that the dimensions and ranges are approximate to reflect changes due to tolerances in manufacturing as is easily appreciated by one having ordinary skill in the art. In particular, the sound levels produced by fan 20 are magnitudes less than prior art fans, and the efficiency of fan 20 is greatly increased with respect to conventional fans. As will become more apparent from the description below, a preferred value is disclosed for a given dimension that has been designed to optimize the advantages associated with fan 20. However, preferred ranges are also disclosed for the dimension, it being appreciated that deviating from the preferred value but staying within the disclosed range may slightly decrease the efficiency and increase noise production compared to the optimized value, but nonetheless present an appreciable advantage over the prior art. Accordingly, the present invention is intended to encompass any fan achieving a greater efficiency and/or reduced noise production than the prior art, as defined by the appended claims. Furthermore, as described above, fan 20 is easier to assemble, manufacture, and install than the prior art.
As described herein, the dimensions and ranges of the fan's internal parts are described relative to a reference dimension. In particular, referring to
Significant advantages are achieved by the present invention, as apparent when comparing Tables 1, corresponding to the prior art, and Table 2, corresponding to the present invention. For example, a fan constructed in accordance with the present invention achieves a reduced brake horsepower needed to achieve the same airflow compared to the prior art, thereby resulting in a significantly greater efficiency. Additionally, the present invention achieves a dramatic reduction in sound levels during operation at any given fan static pressure. For example, when operating at 4100 CFM with a one inch water gauge of fan static pressure, the present invention is 13 percentage points more efficient than the prior art, thereby conserving an appreciable amount of energy and operating expense. Furthermore, at this state of operation, the present invention operates at 15 decibels lower than the prior art. Accordingly, the sound pressure emanating from a fan constructed in accordance with the present invention is significantly less than the sound pressure emanated from the prior art, thereby reducing noise pollution and the hazardous health effects known to result therefrom. Again, these measurements were taken in accordance with standards adopted by the Air Movement and Control Association, as is understood by those having ordinary skill in the art.
The improved aerodynamic and acoustic performance of fan 20 is achieved in-part by the design of inlet cone 28 and impeller 30. In particular, referring again to
The inlet cone 28 forms a discharge angle a with respect to the axial direction of approximately 35°, but could be anywhere between 30° and 40°. This angle has been designed to match the angle of the wheel cone 36 conical angle β to maintain a high operating efficiency. It should be appreciated that angles α and β are a function of the diameter and length of the wheel cone 36. Angles α and β, both alone and in combination with the design of the other internal fan components, prevent the air from separating from the wheel cone 36 while flowing through the blades 34. This reduces air resistance, thus increasing operating efficiency and reducing sound levels.
The dimensions of impeller 30 will now be described in accordance with the preferred embodiment. In particular, as illustrated in
As illustrated in
Referring in particular to
The wheel-back 32 includes an outer spherical portion that surrounds a substantially flat radially extending central hub. The spherical portion is formed from a radius R of approximately 0.39*D, and is thus configured to provide uniform acceleration of the air throughout the wheel and direct the air over the drive chamber 48. It should be appreciated, however, that R could be between 0.37*D and 0.45* D in accordance with the present invention, and is 0.43*D in accordance with the alternate embodiment. It has been found that smaller radii will result in more airflow at a lower static pressure, and larger radii will result in less airflow at a higher static pressure. Referring now to
Referring initially to
Referring now to
When comparing the present invention in Table 2 to the prior art fan noted in Table 1, it is evident that the present variations of the present invention may reduce its efficiency significantly while still maintaining a substantial advantage over the prior art in terms of efficiency. For example, while some variations to the relative dimensions or angles may reduce the efficiency of fan 20 to 40%, this would still be a significant improvement over the prior art when producing an airflow between 4100 and 6100 CFM at 1 inch water gauge of static pressure. Accordingly, the present invention is intended to cover any fans that are capable of achieving efficiencies greater than 40%, and preferably between 49% and 53%, under these operating conditions.
When producing an airflow between 4100 and 6100 CFM at 2 inches water gauge of static pressure, the fan 20 constructed in accordance with the present invention has an efficiency greater than 60%, which is a significant improvement over the prior art. Accordingly, the present invention is intended to cover any fans that are capable of achieving efficiencies greater than 60%, and preferably between 61% and 69%, under these operating conditions.
Furthermore, when fan 20 produces an airflow between 4100 and 6100 CFM at 1 inch water gauge of static pressure, the fan 20 constructed in accordance with the preferred embodiment is capable of operating with a sound pressure level less than 70 dBA. The prior art, as indicated in Table 1, operates at greater than 80 dBA under these operating conditions. Accordingly, the present invention is intended to cover any fan that is capable of operating at less than 70 dBA, and preferably between 67 and 70 dBA, when producing an airflow between 4100 and 6100 CFM at 1 inch water gauge of static pressure.
Furthermore, at 3 inches water gauge of static pressure, the fan 20 constructed in accordance with the present invention is capable of operating with a sound pressure level less than 78 dBA when producing an airflow at any rate between 4100 and 20000 CFM at 3 inches of water gauge static pressure. Upon examination of Table 1, the prior art primarily produces greater than 80 dBA, the exception being at 13200 CFM, where it produces 78 dBA. Accordingly; at any given flow rate, the fan 20 constructed in accordance with the present invention achieves reduced noise pollution when operating at 3 inches water gauge static pressure. The present invention covers fans capable of achieving sound pressure levels less than 78 dBA, and preferably between 70 and 76 dBA, under these operating conditions.
The invention further includes a method of operating a fan constructed in accordance with the present invention, including providing the fan, supplying electrical power to the fan, and actuating the electric motor to drive the impeller. The method thus produces airflow through the fan that achieves the above-mentioned advantages of the present invention.
The invention has been described in connection with what are presently considered to be the most practical and preferred embodiment. However, the present invention has been presented by way of illustration and is not intended to be limited to the disclosed embodiments. Accordingly, those skilled in the art will realize that the invention is intended to encompass all modifications and alternative arrangements included within the spirit and scope of the invention, as set forth by the appended claims.
This application claims the benefit provisional U.S. application 60/211,741, entitled “In-Line Centrifugal Fan” which was filed on Jun. 15, 2000, the disclosure of which is hereby incorporated by reference as if set forth in its entirety herein.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US01/19105 | 6/14/2001 | WO | 00 | 5/20/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO01/96745 | 12/20/2001 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2856118 | Smith | Oct 1958 | A |
3069071 | Carlson | Dec 1962 | A |
3102679 | Rudy | Sep 1963 | A |
3312386 | Hull et al. | Apr 1967 | A |
3584968 | Keith | Jun 1971 | A |
3650633 | Benoit | Mar 1972 | A |
4218190 | Nishikawa et al. | Aug 1980 | A |
4647271 | Nagai et al. | Mar 1987 | A |
4828456 | Bodzian | May 1989 | A |
5336050 | Guida et al. | Aug 1994 | A |
5810557 | Akinkuotu et al. | Sep 1998 | A |
6042335 | Amr | Mar 2000 | A |
Number | Date | Country |
---|---|---|
4023724 | Apr 1991 | DE |
1224941 | Jun 1960 | FR |
1030055 | May 1966 | GB |
Number | Date | Country | |
---|---|---|---|
20030206800 A1 | Nov 2003 | US |
Number | Date | Country | |
---|---|---|---|
60211741 | Jun 2000 | US |