1. Field of the Invention
The present invention generally relates to the monitoring of pipe structures, and more particularly to a system and method for composition and volumetric analysis of vent gasses and detection of water flooding in an annular space of a flexible pipe structure.
2. Discussion of the Background
The monitoring of pipe structures is of great importance in many areas, in particular in the oil and gas industry, even more important in subsea environment where access to the structures is difficult. As an example, a pipeline running at the sea bed between an offshore production location to a transportation hub may need to be monitored to provide information regarding its integrity. Subsea production is growing in importance for many oil companies and is projected to increase significantly in the next 5-10 years. In addition, offshore fields are being exploited in deeper and deeper waters. However, producing from floating production platforms (FPSO) presents many challenges which increase as the water depth increases. Often, produced fluids are carried from the wellheads on the seabed to the FPSO through flexible risers or flow lines. Flexible risers bring many advantages allowing produced fluids to flow from the fixed seabed to that FPSO structure that will move with tidal and wave action. In addition, flexible risers can be manufactured in long continuous lengths, which allow for a simpler and more efficient installation. The use of flexible risers is well documented in many publications (see, e.g., Felix-Henry, A. “Prevention and Monitoring of Fatigue-corrosion of Flexible Risers' Steel Reinforcements” OMAE2007-29186, Proceeding of the 26th International Conference on Offshore Mechanics and Arctic Engineering, Jun. 10-15, 2007, San Diego, Calif., USA, incorporated by reference herein).
The monitoring of flexible pipes used in subsea applications, such as production risers, jumpers or flowlines, is necessary to avoid potentially catastrophic incidents like hydrocarbon spills, loss of well control, or escape of high amounts of gas that can affect the buoyancy of floating vessels, among others. The industry is currently using several techniques to identify damage in flexible pipes, and at least some such techniques are described in the document entitled “Guidance note on monitoring methods and integrity assurance for unbonded flexible pipe” prepared by UKOOA, Rev. 05, October 2002, and herein incorporated by reference. However, the methods disclosed in this document, as well as commonly used in the industry are time consuming and require production to be partially or totally stopped.
The present invention includes the recognition that the methods and techniques commonly used in the industry for monitoring flexible pipe structures are time consuming and require the production of hydrocarbons to be partially or totally stopped. Because of the time inherent in these operations, they are performed infrequently and at great expense to the operators. This is the main driver to find innovative ways to permanently monitor the integrity of pipe's structures that are less intrusive resulting in an increase of the frequency of inspection to ultimately reduce the number of incidents.
According to the above mentioned document prepared by UKOOA, the highest number of failure incidents seen to date in the UK and Norwegian sector are annulus flooding, damage to the external sheath and degradation of the internal pressure sheath. The repercussions of the above mentioned failure incidents could result in corrosion and/or corrosion-fatigue type failure of the pipe structure. One method described in the aforementioned document is laboratory analysis done on samples of gases taken from the vent port of the annulus of flexible pipes. However, as noted above, this is a time consuming process.
Therefore, there is a need for a method and apparatus (e.g., which also can be referred to herein as a “system”) that addresses the above and other problems. The above and other needs and problems are addressed by a first exemplary embodiment of the present invention, which provides a method and apparatus for monitoring of pipe structures, particularly flexible pipes, including a systematic permanent monitoring and analysis of such gases via one or more in-line sensors (e.g., in-line spectrometers) coupled with a software interface that records the level of produced gas and the type of the gas and alerts the user if such levels are above the normal or acceptable limit. This novel method can be used to actively monitor gases resulting from the chemical reactions when the metal of the armor wires (also referred to herein as “armor wire layer” or “armor wire layers”) or pressure vault layer or any other metal portion of a flexible pipe, e.g., flexible riser, or other structure corrodes. Changes of the flowrate of produced gas can be inferred as degradation of the pressure sheath that allows gas and fluid from the production fluid to fill the annulus, and presence of water vapor indicates an annulus flooded with sea water. An exemplary aspect of the embodiment includes one or more inline sensors connected to a vent port of a flexible pipe and coupled with a data recording unit using a software interface to monitor and record levels and types of produced gases. Advantageously, the level and the type of produced gases can be analyzed with the software to identify if the integrity of the pressure sheath has been compromised, whether there is sea water entry in the annulus, whether the armor wire layer or pressure vault layer is corroding, whether the outer sheath has been damaged, other failure drivers, and the like.
A second exemplary embodiment of the present invention that can be optionally combined with the first exemplary embodiment, includes novel techniques for determining the presence of water or liquids in the annulus of a flexible pipe, e.g., flexible riser or flowline in a subsea system using information on the annulus gas vent rate and pressure. The presence of such water/liquid in the annulus can result from, for example, condensation in the annulus, slow intrusion of liquid from the inside or outside of the flexible pipe through the protective layers or break-down of an outer sheath of the flexible pipe, resulting in flooding of the annulus. Advantageously, information on variations of temperature in the riser annulus also can be provided. In an exemplary aspect, a device, including a pressure transducer together with a volumetric or mass flow meter, is placed in-line with the annulus vent port of a flexible riser. The device can be used to collect pressure, temperature and flow information during the gas annular venting event. In a further aspect, the device is located inside the end-fitting or before the annulus venting check valve (which may also be referred to herein as “vent-check valve” or “vent gas valve”), enabling the recording and interpretation data not only during the venting, but also during the build-up of the annular pressure. As pressures builds inside the annulus, it eventually reaches the pressure by which the vent check-valve in the end-fitting opens, resulting in gas being vented out of the annulus. A state-of the art vent check-valve includes a mechanical spring with a face seal remaining open until the pressure decreases to a pre-determined value at which time the valve closes and the annular pressure starts building again due to the constant but slow process of diffusion through the flexible pipe, e.g., flexible riser pressure sheath. During the initial venting period, the vented gas flow rate is typically significantly larger than the diffusion rate and dominates the pressure drop in the annulus space. The interpretation of the pressure drop and flow rate enables the determination of the total gas volume present in the annular space. If the diffusion rate is such that the vent check-valve does not generate sufficient flow rate during the initial stages of the venting sequence, a piloted valve can be used to increase the flow port opening and resulting flow rate. The later part of the draw-down and the build-up can be used to determine the diffusion rate of the particular riser.
The ability to accurately measure the total volume without the need to use a positive displacement meter advantageously is provided. Due to various vent system implementations, there is a wide range of flow rates that a meter must accurately cover, leading to the current practice of a positive displacement measurement system. However, this incurs additional maintenance and reduced service life due to the dynamic seals in the pistons. Accordingly, in a further aspect a flow meter can be employed with non-moving parts (e.g., an intrusive acoustic flow meter) with an additional valve to shut-off the flow when the flow rates cross a threshold below which the accuracy of the meter would be degraded. A further aspect replaces the vent check-valve by an actuated valve, enabling better control of the flowing rates and pressures to maximize the accuracy of the interpretation results. The ability to control the venting operation also enables a more efficient sample collection, whenever it is deemed necessary. Advantageously, variations in the temperature of the annulus can also be detected. The exemplary embodiments also can be used with compressed air or any other gas, added to the annulus, in case the diffusion rate of gas through the inner sheath of the flexible riser is too low to make frequent measurements. The exemplary embodiments also include the use of only one system to monitor multiple flexible pipes or risers.
Accordingly, in exemplary aspect of the present invention there is provided a method and system for monitoring a flexible pipe, including an inline sensor system coupled to the annulus of the flexible pipe to detect corrosion of the flexible pipe. The method and system may further comprise a pressure and flow measurement system coupled to the annulus of the flexible pipe for detecting water flooding of the pipe annulus. The pressure and flow measurement system includes a flow controller for controlling a flow of fluid through the system in a regulated or non-regulated manner.
In a further exemplary aspect of the present invention there is provided a method and system for monitoring an amount of water being accumulated in an annulus of a flexible pipe, including locating a pressure measurement system proximate to the annulus of the flexible pipe for measuring pressure of gas inside the annulus; controlling a flow of vent gas with a vent gas valve; positioning a flow measurement system upstream or downstream of the vent gas valve for measuring the flow of the vent gas when the vent gas valve is opened; and collecting with a microprocessor pressure and flow measurement data from the pressure measurement system and the flow measurement system and for determining the amount of water accumulated in the annulus based on the collected pressure and flow measurement data.
The exemplary aspects of the present invention can be practiced alone or in combination, as will be appreciated by those skilled in the relevant arts.
Still other aspects, features, and advantages of the present invention are readily apparent from the entire description thereof, including the figures, which illustrate a number of exemplary embodiments and aspects and implementations. The present invention is also capable of other and different embodiments and aspects, and its several details can be modified in various respects, all without departing from the spirit and scope of the present invention. Accordingly, the drawings and descriptions are to be regarded as illustrative in nature, and not as restrictive.
The embodiments of the present invention are illustrated by way of examples, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:
Various embodiments and aspects of the invention will now be described in detail with reference to the accompanying figures. Still other aspects, features, and advantages of the present invention are readily apparent from the entire description thereof, including the figures, which illustrates a number of exemplary embodiments and aspects and implementations. The invention is also capable of other and different embodiments and aspects, and its several details can be modified in various respects, all without departing from the spirit and scope of the present invention. Accordingly, the drawings and descriptions are to be regarded as illustrative in nature, and not as restrictive. Furthermore, the terminology and phraseology used herein is solely used for descriptive purposes and should not be construed as limiting in scope. Language such as “including,” “comprising,” “having,” “containing,” or “involving,” and variations thereof, is intended to be broad and encompass the subject matter listed thereafter, equivalents, and additional subject matter not recited. Likewise, the term “comprising” is considered synonymous with the terms “including” or “containing” for applicable legal purposes.
In this disclosure, whenever a composition, an element or a group of elements is preceded with the transitional phrase “comprising”, it is understood that we also contemplate the same composition, element or group of elements with transitional phrases “consisting essentially of”, “consisting”, “selected from the group of consisting of”, or “is” preceding the recitation of the composition, element or group of elements and vice versa.
All numerical values in this disclosure are understood as being modified by “about”. All singular forms of elements, such as armor wires, or any other components described herein including (without limitations) components of the flexible pipe or riser are understood to include plural forms thereof and vice versa.
In all embodiments of this invention a flexible pipe can be used. The term flexible pipe is known in the art, and it includes any suitable flexible structure that can be used in the invention, including, without limitation, flexible riser and flowlines.
Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views, and more particularly to
The annulus of a flexible pipe 208, as shown in
As one or more of the armor wire layers and/or pressure vault layer made of iron corrodes, it frees hydrogen, as shown below. The following redox reaction occurs only in the presence of water and is crucial to the formation of rust:
2Fe2++0.5O2→2Fe3++O2−
Additionally, the following multistep acid-base reactions affect the course of rust formation:
Fe2++2H2OFe(OH)2+2H+
Fe3++3H2O2Fe(OH)3+3H+
It is such hydrogen that with suitable equipment can be measured and monitored. There are several options in the industry of gas analyzers that can accurately measure the type and volume of the gases needed to monitor the integrity of flexible pipes, for example, including analyzers based on gas chromatography, mass spectrometry, (IR) spectroscopy, electrochemical sensors, catalytic sensors, microfluidic analyzers, tunable laser diode absorption spectroscopy, and the like.
Some of the reasons why the above method is not widely used are that the volume of gas produced out of the vent port 206 could be as low as 0.1 l/day, which makes sampling difficult, and the fact that sampling and sending such samples to a laboratory for analysis is time consuming and costly. Alternatively, the industry has also opted to monitor the volume of the gases produced from the vent port 206, wherein a change of volume will point to a possible failure of the pressure sheath 104, as fluids from the well enter the annulus. This method is only useful if the changes of volume are drastic in a relatively short period of time and the breach of integrity of the pressure sheath 104 is continuous in time. However, a failure of the outer sheath 110, corrosion of one or more of the armor wire layers and/or the pressure vault layer, and migration of aggressive/corrosive gases into the annulus, will most likely not be identified by such a volume monitoring method.
The two methods mentioned above suggested by the industry for monitoring the gases and volume of such gases produced from the annulus of a flexible pipe have several limitations that account for the lack of wide implementation and which advantageously are addressed by this exemplary embodiment. Historically the problems seen with these two methods are the impracticality to take, ship, and analyze samples of the gases produced in the vent port 206, the small volume of gas produced, and the little information that a change of volume of the produced gas by itself can entail.
Accordingly, this disclosure addresses these limitations. In exemplary aspect, an inline analyzer 202 is coupled with a data recording and processing unit 210 (
By measuring individual gas levels and the volumes produced over time by the inline analyzer 202 permanently fitted to the vent port 206, advantageously, it is possible, with suitable software, to infer if the integrity of the pressure sheath 104 has been compromised, if one or more of the armor wire layers and/or the pressure vault layer are actively corroding, if the annulus is flooded with sea water, if there are other failure drivers, and the like.
In a further exemplary embodiment, an automated fluid sampler 316 is provided for providing samples to a fluid processing unit 318 coupled via conduit 320 to the one or more fluid sensors 308-312. The data recording and processing unit 210 (e.g., a personal computer, laptop computer, etc.) can control the automated fluid sampler 316, the fluid processing unit 318, and the one or more fluid sensors 308-312 to analyze the collected samples. The various sensors 308-312 can be associated with the active inline micro-sampler 316 that diverts part of the flowing gas 314 to the sensing system. The active inline sampler 316 is configured to automatically take samples, for example, according to a predefined periodic sequence (e.g., every second, minute, hour, day, week, month, year, etc.). This sequence can be a configurable function based on user need. The samples can then be processed through the processing unit 318 before being sent to the sensors 308-312. The processing performed by the processing unit 318 can include changing sample pressure, injecting a chemical into the sample, separating gases from the sample, or any other suitable processes employed to allow the sensors 308-312 to accurately measure sample properties. The processed fluid from the processing unit 318 is then directed via the conduit 320 to the sensing elements (i.e., sensors) 308-312.
The above exemplary configurations are very well suited for measurement techniques, such as near infrared (NIR) spectroscopy (e.g., based on absorption or reflection), and the like. They are also well suited for in-line chemical sensors, such as an H2S sensor, as described in U.S. Pat. No. 6,939,717, a CO2 sensor, as described in U.S. Pat. No. 6,995,360, a hydrocarbon analysis based sensor, as described in U.S. Pat. No. 4,994,671, all of which are incorporated by reference herein.
The rotating part 514 movement is managed through a controller 518 (e.g., a processor, micro-controller, etc.). The automated sampling session is initiated, as follows. The controller 518 sends a signal to the rotary valve 506 to start the sampling process. The rotary valve 506 is rotated to align the micro-cavity 516 with the inlet port 508. The micro-cavity 516 fills up with a gas sample. The volume of the sample for this type of analyzer is in the range of a few micro-liters. The rotary valve 506 rotates so that the micro-cavity 516 position is in front of the exit port 510. Then, the sample is injected into the processing chamber 522.
In the chamber 522, the gas pressure and temperature are adjusted. Usually, the gas chromatograph 502 operates at high temperature and requires a pre-heating of the sample to make sure that all the components of the sample are in the gas phase. The sample gas pressure can be reduced to atmospheric pressure, while the temperature can be increased to above 150° C., wherein the final temperature depends on the type of species of sample gas injected, and the type of the gas chromatograph column 502 employed. Then, the sample is mixed with a carrier gas (e.g., N2 etc.) via the carrier gas supply inlet 524 and injected in the sensor section 526.
As noted above, the sensor section 526 includes the gas chromatograph column 502 and the detector 528 located at the exit of the column 502. The different components of the injected gas travel at different speeds through the column 502. The detector 528 (e.g., a flame ionization detector, etc.) then detects the different components as they arrive at the top of the column 502. The detector 528 is used to estimate the time it takes for the different components to travel through the column 502. The time of travel through the column 502 is directly linked to the nature of the chemical compound. Advantageously, gas chromatography allows the detailed analysis of a complex chemical mixture, and is very well suited for the analysis of hydrocarbon compounds, CO2, H2, H2S, and the like.
In
In an exemplary aspect of this embodiment, the sampling is done through a sampling tube 504 connected to or as part of the main flow line 302 (not shown) and used in conjunction with a sampling pump 630. The pump 630 is controlled by an external controller 518 (e.g., a processor, micro-controller, etc.), which sets a predetermined periodic activation sequence. The sample proceeds through a phase separation membrane 622 in a microfluidic phase separator 620. This separator ensures that only gas will reach the microfluidic device (or sensor) 602. The microfluidic device 602 can include an integrated micro-gas chromatograph (not shown), which can perform the analysis of hydrocarbon compounds, CO2, H2, H2S, and the like. Microfluidic based gas chromatographs have the advantage of reduced carrier gas consumption as well as smaller size. As shown in
In
The present invention includes recognition that flexible pipes or risers have some drawbacks. Referring again to
In addition, it is often the case that the outer sheath 110 is damaged (e.g., possibly only lightly damaged) during installation, which can cause a very slow ingress of seawater over time. Sometimes the outer sheath 110 can be seriously breached resulting in flooding of the annulus. Very slow diffusion of water through the outer sheath 110 is also possible. In such cases, water enters the annulus causing corrosion of the steel wire structures 106 and 108 (i.e., the vault layer 106 and armor wire layers 108, respectively), which can result in premature failure of the flexible pipe 100.
Clearly the failure of a flexible riser 100 is very costly and can result in catastrophic damage to the environment. If, however, the failure is detected early and monitored, advantageously, repair or replacement can be scheduled in order to significantly reduce the risk of environmental damage and minimize production down-time.
Determination of possible water in the annulus, according to current approaches, includes periodically monitoring the vented gas from the annulus and comparing the monitoring data with complex theoretical diffusion values. However, such approach is not very accurate and small amounts of water intrusion are very difficult to detect. In addition, with such approach, it is not possible to discriminate between an increase in gas diffusion rate and a slow leak of seawater into the riser annulus. Another approach involves periodically pulling a vacuum at the surface on the vent lines that connect to the annulus. The degree to which a vacuum can be held is used to give an indication of a leak in the inner sheath 104 or the outer sheath 110. In practice, however, such a method is recognized as slow, expensive, difficult to control and not very reliable. Accordingly, it is not practical to perform frequently such a vacuum test.
In an exemplary aspect of this embodiment there is provided a system and method for monitoring the amount of water being accumulated in the annulus of a flexible pipe, the system including a pressure measurement system located proximate to the annulus for measuring the pressure of the gas inside said annulus, a vent gas valve for controlling the flow of the vent gas, a flow measurement system positioned upstream or downstream of the vent gas valve for measuring the flow of the vent gas when the vent gas valve is opened, a microprocessor for collecting the pressure and flow measurement data and providing the amount of water accumulated in the annulus. In operation, the vent gas valve is typically closed, in which case the pressure of the vent gas of the annulus will be increasing over time, as vent gas and/or water will be accumulating in the annulus. The pressure measurement system monitors the pressure of the vent gas and when the pressure reaches a certain value, then the vent gas valve can be opened and vent gas can flow through the flow measurement system. By monitoring the pressure change with time and the flow rate of the vent gas with time, such data can be used to calculate the volume of the gas in the annulus with increased accuracy, and from such calculation the amount of water that has been accumulated in the annulus can be determined. The process can be repeated at predetermined time intervals. In addition, the pressure buildup of the vent gas in the annulus that occurs when the vent gas valve is closed can provide useful data regarding the amount of water in the annulus.
The exemplary system and method, advantageously provide for continuous monitoring of the pressure of the vent gas in the annulus and the flow rate of the vent gas in the vent line. In an exemplary embodiment, a temperature sensor is positioned in the annulus for measuring the temperature of the vent gas in the annulus and allowing to take into account the effect of temperature changes in the estimation of the amount of water in the annulus.
Accordingly, the further exemplary aspects of this embodiment, to be described with respect to
Accordingly,
In the context of
The exemplary system 800 further includes a gas sensor 808 section (also referred to herein as “fluid sensor section”) for measuring the gas pressure of the annulus 704 in any of known manners. The gas sensor section 808 can be retrofitted with physical or chemical sensors for the detection of components that have critical importance to the riser 100 integrity, such as H2S and CO2, or to improve either the flow measurement or the interpretation, such as sensors for gas density, temperature, sound velocity, and the like. A sensor can also be added to detect by-products of corrosion processes in the armor wires 108 or the pressure vault 106.
The exemplary system 800 further can include an optional sample collection port 812 to enable collection of vented gas for lab analysis. Depending on location of the sample collection port 812 with respect to the flow controller 810, the flow controller 810 can enable the sample collection 812 at particular times, for example, as determined by a user or as automatically programmed into the system 800 either on a periodic basis or triggered by a condition of the annulus 704 changing as detected by the available sensors 808. In
Depending of the configuration, the system 800 can include the volumetric or mass flow meter 806. For example, the use of the flow meter 806 may be required when the flow is not regulated. The volumetric/mass flow meter 806 can measure the volume/mass flowrate of gas flowing through the system connected to the pipe 100 end fitting 710 gas outlet or the annulus 704 via connection 814. Several types of meter technologies can be used for the flow meter 806. For example, for volumetric metering, possible implementations include a positive displacement meter (e.g., a piston meter), a rotary meter, an ultrasonic meter, and the like. A mass flow meter implementation can be based on a thermal flow meter, a Coriolis meter, and the like. Further possible implementation can include the combination of a volumetric meter with a gas pressure or density sensor, and the like.
Advantageously, the exemplary aspects of the embodiment can by-pass a safety check valve 802 of the pipe 100. The check valves 802 are used on the end-fitting 710 and are spring loaded valves, although any other suitable valves can be used. The flow generated by the valve 802 during the release phase is not very well controlled. Accordingly, the exemplary measuring system can be connected directly to the annulus 704, as discussed above, or to the end fitting 710, while bypassing the valve 802.
Monitoring of the pressure during the pressure build-up is also advantageous, wherein the pressure change rate over time dp/dt is proportional to dMgas/dt, and the produced gas will mostly come from the diffusion from the production bore to the annulus 704 through the inner polymer sheath 104. Therefore, the monitoring of dp/dt can be used to monitor the evolution of the diffusion rate with time as well as possible damage of the inner sheath 104. As shown in
In an exemplary aspect of this embodiment, a measurement sequence can include accumulating the gas in the annulus 704. Then the solenoid valve is closed. As explained before, due to the diffusion process through the inner liner 104, gas accumulates in the pipe 100. The typical maximal acceptable pressure in the annulus 704 is about 3 bars. The safety check valve 802 can be set with an opening pressure around such a value. The pressure in the annulus 704 then is measured over time during the build-up with the sensor 908. Once the pressure reaches a preset value pMax below the check valve 802 opening value, a master controller (not shown) can be used to open the solenoid valve. Alternatively, compressed air or another gas can be introduced into the riser annulus 704 from the topside via the compressed gas inlet 804, as previously described. Fluctuations in the temperature of the annulus 704 will directly cause proportional changes in the pressure, wherein a continuous pressure measurement of high resolution will give information on the temperature fluctuations of the annulus 704. Next, a controlled release of the accumulated gas is performed, and the gas pressure is monitored over time to estimate the dry volume in the annulus 704.
Once the solenoid valve is open at time tstart, the gas starts flowing out of the annulus 704 and through the sonic nozzle. The sonic nozzle sets the volumetric flow rate Qset to a fixed value. The gas pressure pgas(t) and temperature Tgas(t) are recorded during the release.
The check valve 802 is closed once the pressure reaches a certain pre-set value pmin at time tend. It is then possible to estimate the total mass of gas Mgas that escaped from the annulus 702, as follows:
where pgas(t) and Tgas(t) are the gas pressure and temperature measured during the release, and ρgas (pgas(t), Tgas(t)) is the gas density estimated from pressure and temperature (T) measurements.
It can be noted that the expected gas in the annulus 704 is mostly methane (e.g., at more than 95%). Therefore, the gas density can be easily estimated from pressure and temperature measurements. If the composition were to change significantly over time, a direct measurement of the gas density can also be performed, as previously described.
From the mass of gas that escaped the annulus 704 and the corresponding pressure drop, one can use the law of perfect gas (e.g., a good approximation for methane at low pressure and moderate temperature) to compute the ratio of the volume of the annulus 704 to the absolute temperature. The dry volume then can be calculated, assuming the temperature of the annulus 704 is known. Any decrease in annulus temperature can also be estimated, assuming the dry volume cannot increase, wherein such a decrease can cause the formation of hydrates, or wax or asphaltene deposits, and reduce the flow capacity of the riser 100 and which can advantageously be detected by the exemplary system 900.
The measurement sequence is the same as described above with respect to
The dry volume or temperature variation in the annulus 704 can then be estimated from Mgas, as previously described. As previously described, the exemplary aspects include the ability to take a sample of the vent gas via the sample collection ports 812 or 804. Advantageously, gas sampling can be used for performing analysis of the composition of the vented gas, for example, to allow the estimation of the corrosive species concentration, such as H2S or CO2 concentrations and their evolution over time.
All or a portion of the devices and subsystems of the exemplary embodiments and all aspects thereof can be conveniently implemented by the preparation of application-specific integrated circuits or by interconnecting an appropriate network of conventional component circuits, as will be appreciated by those skilled in the electrical art(s). Thus, the exemplary embodiments, including their aspects, are not limited to any specific combination of hardware circuitry and/or software. In addition, one or more general purpose computer systems, microprocessors, digital signal processors, microcontrollers, and the like, can be employed and programmed according to the teachings of the exemplary embodiments (and aspects thereof) of the present inventions, as will be appreciated by those skilled in the computer and software arts. Appropriate software can be readily prepared by programmers of ordinary skill based on the teachings of the exemplary embodiments, as will be appreciated by those skilled in the software art(s).
All documents described or mentioned herein are incorporated by reference herein in their entirety, including any priority documents and/or testing procedures to the extent they are not inconsistent with this specification and for all jurisdictions in which such incorporation is permitted. As is apparent from the foregoing general description and the specific embodiments and aspects, while forms of the disclosure have been illustrated and described, various modifications can be made without departing from the spirit and scope thereof. Accordingly, it is not intended that the disclosure be limited thereby.
While the present inventions have been described in connection with a number of exemplary embodiments and aspects, and implementations, the present inventions are not so limited, but rather cover various modifications, and equivalent arrangements, which fall within the purview of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
61023738 | Jan 2008 | US | national |
61099585 | Sep 2008 | US | national |
The present invention claims benefit of priority to U.S. Provisional Patent Application Ser. No. 61/023,738 of MANGAL et al., entitled “IN LINE COMPOSITION AND VOLUMETRIC ANALYSIS OF VENT GASES OF THE ANNULAR SPACE OF FLEXIBLE PIPES,” filed on Jan. 25, 2008, and U.S. Provisional Patent Application Ser. No. 61/099,585 of VASQUES et al., entitled “REAL-TIME DETECTION OF WATER PRESENCE IN A FLEXIBLE RISER ANNULUS,” filed on Sep. 24, 2008, the entire contents of all of which are hereby incorporated by reference herein.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US09/31993 | 1/26/2009 | WO | 00 | 2/21/2011 |