Debris monitoring is used to detect the presence of wear particles in lubricating oils that may be transferred from the oil-wetted surfaces of gears and bearings under mechanical distress. Automatic debris monitoring is preferred by maintainers as it eliminates the need to do routine inspections and preempts the potential catastrophic failure should it advance faster than the inspection interval. Air separation in a lubricating system is used when the design of the oil tank and flow rate inhibits adequate de-aeration in the tank. Proper de-aeration is useful in a lubrication system to inhibit damage to supply pump and to ensure proper lubrication of oil wetted surfaces. When the system design allows, the combination of de-aeration and particle separation saves on weight and overall fuel efficiency of the engine.
A debris separator apparatus separates the debris particles from the oil or other liquid received at the inlet. In certain cases, the debris separator also may separate out air or other gases from the oil or other liquid. A pocket is provided adjacent the outlet of the separator to receive the debris particles that become separated from the mixture. A sensor may be provided at the pocket to detect the presence of the particle debris.
Aspects of the disclosure are directed to a flow separator and methods of use thereof. A flow of liquid is input into the flow separator at an inlet. For example, the flow separator may be disposed along a lubrication system of an engine so that oil is input into the flow separator. The flow of liquid may contain particles. For example, if an engine component upstream of the flow separator is damaged or worn, particles from the engine component may be carried by the liquid flow to the flow separator. Within the flow separator, any particles of a certain size or mass may be separated from the liquid. A sensor may be mounted to the flow separator to detect the presence of such particles, thereby indicating potential damage or wear to upstream engine components.
In certain implementations, the flow separator is an in-line separator that provides a small, simple envelope. The in-line separator may easily be installed along a conduit of a lubrication system without the need to redirect flow along a transverse direction or place the in-line separator at bends in the system. Accordingly, lubrication designers are able to place debris monitoring at optimal locations with minimal impact to interface design on other lube system components.
In certain implementations, the flow of liquid input into the flow separator may be aerated. In certain such implementations, the gas (e.g., air) may be separated from the liquid (e.g., oil).
In accordance with some aspects of the disclosure, the flow separator includes a flow diverter disposed along a flow path so that the flow diverter is in-line with an inlet and an outlet of the flow separator. A bladed arrangement causes swirling of the flow around the flow diverter. Centrifugal force pushes the particles (e.g., particles of a particular size or mass) to the inner wall of the flow separator while the liquid swirls radially inwardly from the inner walls. A particle collection space is disposed along the inner wall. A barrier wall demarcates the particle collection space from a remainder of the flow passage. The barrier wall is sized and positioned to trap particles of a desired size or mass within the particle collection space while allowing the liquid to flow through a passage defined by the barrier wall to the outlet of the flow separator.
In certain examples, the flow diverter is conically shaped or trumpet shaped.
In certain examples, the flow diverter has a hollow interior facing the outlet.
In certain examples, the bladed arrangement includes a plurality of blades overlapping along the flow path to define a helical flow passage.
In certain implementations, the flow diverter cooperates with a housing of the flow separator to form narrow gaps through which the fluid flows past the flow diverter and into a swirl region. In certain examples, the gaps extend between the flow diverter and the housing by a distance that is less than 25% of a transverse cross-dimension of the inlet of the flow separator. In certain examples, the gaps extend between the flow diverter and the housing by a distance that is less than 15% of a transverse cross-dimension of the inlet of the flow separator. In certain examples, the gaps extend between the flow diverter and the housing by a distance that is less than 10% of a transverse cross-dimension of the inlet of the flow separator.
A variety of additional inventive aspects will be set forth in the description that follows. The inventive aspects can relate to individual features and to combinations of features. It is to be understood that both the forgoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the broad inventive concepts upon which the embodiments disclosed herein are based.
The accompanying drawings, which are incorporated in and constitute a part of the description, illustrate several aspects of the present disclosure. A brief description of the drawings is as follows:
Reference will now be made in detail to exemplary aspects of the present disclosure that are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
A flow separator 100, 200, 300 includes a separator housing 102, 202, 302 defines a central axis C. The separator housing 102, 202, 302 has a length L that extends along the central axis C between a first end 104, 204, 304 and a second end 106, 206 of the separator housing 102, 202, 302. The first end 104, 204, 304 of the separator housing 102, 202, 302 defines an inlet 108, 208, 308 of the separator housing 102, 202, 302 at which an input flow F enters the separator housing 102, 202, 302. Debris particles P are separated out from a liquid L of the input flow F within the separator housing 102, 202, 302 and directed to a collection tank 160, 260, 360 or sensor conduit 370. The liquid L exits the separator housing 102, 202, 302 through an outlet 110, 210, 310 defined at the second end 106, 206, 306 of the separator housing 102, 202, 302. In the flow separators 100, 300 shown in
The separator housing 102, 202, 302 defines a flow passage 112, 212, 312 that extends through the separator housing 102, 202, 302 along the central axis C from the inlet 108, 208, 308 to the outlet 110, 210, 310. The flow separator housing 102, 202, 302 includes a sidewall 118, 218 extending circumferentially around the central axis C.
The sidewall 118, 218 extends between the inlet 108, 208, 308 and the outlet 110, 210, 310. The sidewall 118, 218 defines a main inner surface 116, 216 facing radially towards the central axis C to define the flow passage 112, 212, 312. In certain implementations, the inlet 108, 208, 308 and the outlet 110, 210, 310 define securement structure (e.g., threads, flanges, etc.) by which conduits or equipment may be mounted to the inlet 108, 208, 308 and/or the outlet 110, 210, 310.
An intermediate portion 114, 214 of the flow passage 112, 212, 312 is defined by a main inner surface 116, 216 of a sidewall 118, 218 of the separator housing 102, 202, 302 that surrounds the central axis C. The intermediate portion 114, 214 extends between the inlet 108, 208, 308 and the outlet 110, 210, 310. In some implementations, a transverse cross-dimension D2 of the intermediate portion 114, 214 is larger than a transverse cross-dimension D1 of the inlet 108, 208, 308. In other implementations, the transverse cross-dimension D2 of the intermediate portion 114, 214 is the same as the transverse cross-dimension D1 of the inlet 108, 208, 308. In some implementations, a transverse cross-dimension D2 of the intermediate portion 114, 214 is larger than a transverse cross-dimension D3 of the outlet 110, 210, 310. In other implementations, the transverse cross-dimension D2 of the intermediate portion 114, 214 is the same as the transverse cross-dimension D3 as the outlet 110, 210, 310. In certain examples, the separator housing 102, 202, 302 is formed by a straight pipe having a constant transverse cross-dimension. In certain examples, the transverse cross-dimensions D1, D3 of the inlet 108, 208, 308 and the outlet 110, 210, 310 are the same. In certain examples, the inlet 108, 208, 308 and the outlet 110, 210, 310 are co-axially aligned along the central axis C.
A flow diverter 120, 220, 320, 420, 520 is positioned along the flow passage 112, 212, 312. In some implementations, the separator housing 102, 202, 302 includes an expansion region 105, 205 (
The flow diverter 120, 220, 320, 420, 520 extends along the central axis C between a first end 121, 221, 321, 421, 521 and an opposite second end 129, 229, 329, 429, 529. In certain examples, the flow diverter 120, 220, 320, 420, 520 is co-axially aligned with the central axis C. In certain implementations, the flow diverter 120, 220, 320, 420, 520 includes an outer surface 122, 222, 422, 522 that faces at least partially toward the inlet 108, 208, 308. The outer surface 122, 222, 422, 522 defines an outer diameter D4 (see
In certain examples, the distance G is between 1% and 25% of the transverse cross-dimension D1 of the inlet 108, 208, 308. In certain examples, the distance G is between 1% and 20% of the transverse cross-dimension D1 of the inlet 108, 208, 308. In certain examples, the distance G is between 1% and 15% of the transverse cross-dimension D1 of the inlet 108, 208, 308. In certain examples, the distance G is between 1% and 10% of the transverse cross-dimension D1 of the inlet 108, 208, 308. In certain examples, the distance G is between 2% and 15% of the transverse cross-dimension D1 of the inlet 108, 208, 308. In certain examples, the distance G is between 5% and 30% of the transverse cross-dimension D1 of the inlet 108, 208, 308. In certain examples, the distance G is between 5% and 25% of the transverse cross-dimension D1 of the inlet 108, 208, 308. In certain examples, the distance G is between 10% and 20% of the transverse cross-dimension D1 of the inlet 108, 208, 308. In certain examples, the distance G is between 5% and 20% of the transverse cross-dimension D1 of the inlet 108, 208, 308. In certain examples, the distance G is between 10% and 30% of the transverse cross-dimension D1 of the inlet 108, 208, 308.
In certain implementations, the flow diverter 120, 220, 320, 420, 520 includes a circumferential wall that expands outwardly as the flow diverter 120, 220, 320, 420, 520 extends downstream within the flow passage 112, 212, 312. In certain examples, the circumferential wall of the flow diverter 120, 220, 320, 420, 520 tapers outwardly at a constant rate (i.e., defines a straight line extending between the first end 121, 221, 321, 421, 521 and the second end 129, 229, 329, 429, 529. For example, the flow diverter 120, 220, 320 may have a conical shape (e.g., a full cone, a frustro-conical shape, etc.). In other examples, the circumferential wall has a convex curvature or a concave curvature (see
In some implementations, the flow diverter 120, 220, 320 has a hollow interior defined by an inner surface 124, 224 that faces at least partially toward the outlet 110, 210, 310. The inner surface 124, 224 defines an inner diameter D5 of the flow diverter 120, 220, 320 that enlarges as the inner surface 124, 224 extends toward the outlet 110, 210, 310 of the separator housing 102, 202, 302. In certain examples, the flow diverter 120, 220, 320 has a conical shape so that the outer diameter D4 is an outer cone diameter and the inner diameter D5 is an inner cone diameter. In other examples, the flow diverter 120, 220, 320 may have other shapes (e.g., a bell shape, a trumpet shape, etc.). In certain examples, the shape of the inner surface 124, 224 does not match the shape of the outer surface 122, 222. In other implementations, the flow diverter 120, 220, 320 may be solid (i.e., not defining a hollow interior). In some examples, the second outer surface is flat. In other examples, the second outer surface includes a protrusion (e.g., a conical protrusion).
In certain implementations, the flow diverter 120, 220, 320 defines a second outer surface 125, 225, 325, 425, 525 facing towards the outlet 110, 210, 310. In certain examples, the second outer surface 125, 225, 325, 425, 525 tapers inwardly as the second outer surface 125, 225, 325, 425, 525 extends downstream towards the outlet 110, 210, 310. In certain examples, the second outer surface 125, 225, 325, 425, 525 extends away from a webbing or other attachment that holds the flow diverter 120, 220, 320, 420, 520 within the passage 112, 212, 312. In certain examples, the second outer surface 125, 225, 325, 425, 525 has a conical shape. In certain examples, the second outer surface 125, 225, 325 provides an entrance to the hollow interior of the flow diverter 120, 220, 320.
In certain implementations, a bladed arrangement 130, 230, 330, 430, 530 is disposed between the outer surface 122, 222, 422, 522 of the flow diverter 120, 220, 320, 420, 520 and the main inner surface 116, 216 of the sidewall 118, 218 of the separator housing 102, 202, 302 for causing flow moving through the flow passage 112, 212, 312 toward the outlet 110, 210, 310 to swirl about the central axis C. In certain implementations, the flow diverter 120, 220, 320, 420, 520 is mounted to the sidewall 118, 218 by the bladed arrangement 130, 230, 330, 430, 530 (e.g., see
In some implementations, the blades 132, 232, 332 of the bladed arrangement 130, 230, 330 have a constant pitch as the blades 132, 232, 332 extend along the flow diverter 120, 220, 320 (e.g., see
The swirl region 134, 234, 334 is disposed within the intermediate portion 114, 214 of the flow passage 112, 212, 312 axially between the flow diverter 120, 220, 320, 420, 520 and the outlet 110, 210, 310 of the separator housing 102, 202, 302. The bladed arrangement 130, 230, 330, 430, 530 is adapted to cause flow to swirl about the central axis C within the swirl region 134, 234, 334 such that particles P or other debris within the swirling flow F are centrifugally forced radially outwardly against the main inner surface 116, 216 of the sidewall 118, 218.
A particle collection space 140, 240, 340 is disposed downstream of the flow diverter 120, 220, 320, 420, 520. The particle collection space 140, 240, 340 has an annular shape disposed around the central axis C adjacent the main inner surface 116, 216 of the intermediate portion 114, 214 of the flow passage 112, 212, 312. In certain examples, the particle collection space 140, 240, 340 is demarcated by a barrier wall 142, 242, 342 disposed within the intermediate portion of the flow passage 112, 212, 312. The barrier wall 142, 242, 342 extends around and is radially spaced outwardly from the central axis C. An inner surface 144, 244 of the barrier wall 142, 242, 342 faces towards the central axis C. The outer surface 146, 246 of the barrier wall 142, 242, 342 faces towards the main inner surface 116, 216 of the intermediate portion 114, 214 of the flow passage 112, 212, 312.
An upstream end of the barrier wall 142, 242, 342 is spaced from the flow diverter 120, 220, 320, 420, 520 by a distance. In certain implementations, a correlation exists between the distance and the size or mass of the particles P caught in the particle collection space 140, 240, 340. For example, shortening the distance provides less time for components of the flow F to move radially outwardly towards the inner surface 116, 216 to be caught behind the barrier wall 142, 242, 342. Accordingly, the size or mass of the particles being caught can be restricted based on how far the barrier wall 142, 242, 342 extends towards the flow diverter 120, 220, 320, 420, 520. In certain implementations, a correlation also exists between the transverse cross-dimension of the barrier wall 142, 242, 342 and the size or mass of the particles P caught in the particle collection space 140, 240, 340. Increasing the transverse cross-dimension of the barrier wall 142, 242, 342 reduces the size of the particle collection space so that only particles having sufficient mass to reach the outermost portions of the flow passage 112, 212, 312 will be caught in the particle collection space 140, 240, 340.
In some implementations, the inner surface 144, 244 of the barrier wall 142, 242, 342 defines part of the outlet 110, 210, 310. In other implementations, the inner surface 144, 244 of the barrier wall 142, 242, 342 leads to the outlet 110, 210, 310. In some examples, the inner surface 144, 244 of the barrier wall 142, 242, 342 has a constant transverse cross-dimension along the central axis C. In other examples, the inner surface 144, 244 of the barrier wall 142, 242, 342 tapers radially inwardly as the barrier wall 142, 242, 342 extends along the central axis C towards the outlet 110, 210, 310.
In use, an input flow F including at least a liquid L, such as oil, enters the flow passage 112, 212 at the inlet 108, 208 (e.g., see
A path 148, 248, 348 leads from the particle collection space 140, 240, 340 towards a sensor S and/or a collection tank 160, 260, 360. Because the debris particles P are swirling when they enter the particle collection space 140, 240, 340, the debris particles P move from the particle collection space 140, 240, 340, along the path 148, 248, 348, and towards the interior 150, 250, 350 of the collection tank 160, 260, 360 or a sensor conduit 370. In some implementations, the path 148, 248, 348 leads to a collection tank 160, 260, 360 in which the particles P are trapped (e.g., see
In some examples, a sensor S may be located within the collection tank 160, 260, 360 to sense the trapped particles P. In other examples, the collection tank 160, 260, 360 is configured to facilitate manual inspection. For example, a plug (e.g., a removable magnetic probe and self-closing valve) may be installed at a port 152, 252 of the collection tank 160, 260, 360. In other implementations, the path 148, 248, 348 leads to a sensor conduit 370 along which the particles P may flow past a flow-through type sensor S and then rejoin the main flow F downstream of the sensor S and particle collection space 140, 240, 340 (e.g., see
The sensor S is configured to detect the presence of particle debris P. In certain implementations, the sensor S is calibrated to detect sensor debris meeting certain characteristics (size, quantity, shape, and/or material composition). In some implementations, the sensor S is a magnetic sensor configured to send a pulse along a data line DL when a debris particle P sufficiently interrupts a magnetic field generated by the sensor S. In certain examples, the sensor S is configured so attract ferrous particle debris P to stick to an end face of the sensor S. An example magnetic sensor suitable for use with the flow separators 100, 200, 300 is the Quantitative Debris Monitoring (QDM) sensor used in the QDM® system available from Eaton. Other suitable examples include pulsed electric chip detector sensors or other chip detector sensors offered by Eaton under the Tedeco® brand. In other implementations, the sensor S is an acoustic sensor capable of sensing ferrous, non-ferruous, and even non-metal debris. An example acoustic sensor suitable for use with the flow separator 100, 200, 300 is shown in U.S. Publication No. 2019/0128788, the disclosure of which is hereby incorporated by reference herein in its entirety. In other implementations, the sensor S is an optical sensor capable of sensing ferrous, non-ferruous, and even non-metal debris. An example optical sensor suitable for use with the flow separator 100, 200, 300 is shown in U.S. Publication No. 2021-0239508, the disclosure of which is hereby incorporated by reference herein in its entirety.
Referring to
Referring to
Referring to
As shown in
a separator housing defining a central axis, the separator housing including a length that extends along the central axis between first and second ends of the separator housing, the first end of the separator housing defining an inlet of the separator housing and the second end of the separator housing defining an outlet of the separator housing, the inlet and the outlet being co-axially aligned along the central axis, the separator housing defining a flow passage that extends through the separator housing along the central axis from the inlet to the outlet, an enlarged diameter portion of the flow passage being defined by a main inner surface of a sidewall of the separator housing that surrounds the central axis;
a flow diverter positioned within the flow passage, the flow diverter being co-axially aligned with the central axis and including an outer surface that faces at least partially toward the inlet, the outer surface defining an outer cone diameter of the flow diverter that enlarges as the outer surface extends toward the outlet of the separator housing;
helical flow-turning blades positioned between the outer surface of the flow diverter and the main inner surface of the sidewall of the separator housing for causing flow moving through the flow passage toward the outlet to swirl about the central axis;
a particle collection space defined by the separator housing around the central axis adjacent the main inner surface of the enlarged diameter portion of the flow passage of the separator housing, the particle collection space having an annular shape and being located downstream of the flow diverter; and
a swirl region within the enlarged diameter portion of the flow passage axially between the flow diverter and the outlet of the separator housing, wherein the particle collection space is located at a downstream end of the swirl region, wherein the helical flow-turning blades are adapted to cause flow to swirl about the central axis within the swirl region such that particles within the swirling flow are centrifugally forced radially outwardly against the main inner surface of the sidewall and are captured in the particle collection space.
a gas outlet mount coupled to the separator housing, the gas outlet mount defining a gas outlet port leading to an interior of the gas outlet mount; and
a conduit extending from an the interior of the gas outlet mount, into the flow passage, and upstream towards the flow diverter.
a separator housing extending along a central axis between an inlet and an outlet, the separator housing defining a flow passage that extends through the separator housing along the central axis from the inlet to the outlet, the flow passage having an intermediate portion having a larger transverse cross-dimension than the inlet;
a flow diverter disposed within the flow passage, the flow diverter having a first surface facing at least partially toward the inlet and a second surface facing at least partially towards the outlet,
a bladed arrangement disposed around the flow diverter so that at least a portion of the bladed arrangement is disposed radially between the flow diverter and the separator housing, the bladed arrangement being configured to direct flow in a swirl around the flow diverter;
a swirl region disposed along the flow passage and extending downstream of the flow diverter; and
a barrier wall disposed within the flow passage at an opposite end of the swirl region from the flow diverter, the barrier wall cooperating with the flow passage to define an annularly shaped particle collection space having a pathway leading outwardly away from the particle collection space.
a gas outlet mount coupled to the separator housing, the gas outlet mount defining a gas outlet port; and
a conduit having an upstream portion extending coaxial with the central axis and a downstream portion extending to the gas outlet mount.
a separator housing defining a central axis, the separator housing including a length that extends along the central axis between first and second ends of the separator housing, the first end of the separator housing defining an inlet of the separator housing and the second end of the separator housing defining an outlet of the separator housing, the inlet and the outlet being co-axially aligned along the central axis, the separator housing defining a flow passage that extends through the separator housing along the central axis from the inlet to the outlet, an enlarged diameter portion of the flow passage being defined by a main inner surface of a sidewall of the separator housing that surrounds the central axis;
a conical flow diverter positioned within the flow passage, the conical flow diverter being co-axially aligned with the central axis and including a conical outer surface that faces at least partially toward the inlet, the conical outer surface defining an outer cone diameter of the conical flow diverter that enlarges as the conical outer surface extends toward the outlet of the separator housing, the conical flow diverter having a hollow interior defined by a conical inner surface that faces at least partially toward the outlet, the conical inner surface defining an inner cone diameter of the conical flow diverter that enlarges as the conical inner surface extends toward the outlet of the separator housing;
helical flow-turning blades positioned between the conical outer surface of the conical flow diverter and the main inner surface of the sidewall of the separator housing for causing flow moving through the flow passage toward the outlet to swirl about the central axis;
a particle collection space defined by the separator housing around the central axis adjacent the main inner surface of the enlarged diameter portion of the flow passage of the separator housing, the particle collection space having an annular shape and being located downstream of the conical flow diverter; and
a swirl region within the enlarged diameter portion of the flow passage axially between the conical flow diverter and the outlet of the separator housing, wherein the particle collection space is located at a downstream end of the swirl region, wherein the helical flow-turning blades are adapted to cause flow to swirl about the central axis within the swirl region such that particles within the swirling flow are centrifugally forced radially outwardly against the main inner surface of the sidewall and are captured in the particle collection space.
Having described the preferred aspects and implementations of the present disclosure, modifications and equivalents of the disclosed concepts may readily occur to one skilled in the art. However, it is intended that such modifications and equivalents be included within the scope of the claims which are appended hereto.
This application claims the benefit of U.S. Provisional Patent Application No. 63/255,751, filed Oct. 14, 2021. The disclosure of the priority application in its entirety is hereby incorporated by reference into the presence application.
Number | Date | Country | |
---|---|---|---|
63255751 | Oct 2021 | US |