The present invention relates to methods and devices for use in spinal surgery, and in particular to rod reduction devices and methods for using the same.
Spinal fixation devices are used in orthopedic surgery to align and/or fix a desired relationship between adjacent vertebral bodies. Such devices typically include a spinal connector, such as a relatively rigid fixation rod, that is coupled to adjacent vertebrae by attaching the element to various anchoring devices, such as hooks, bolts, wires, or screws. The fixation rods can have a predetermined contour that has been designed according to the properties of the target implantation site, and once installed, the instrument holds the vertebrae in a desired spatial relationship, either until desired healing or spinal fusion has taken place, or for some longer period of time.
Spinal fixation devices can be anchored to specific portions of the vertebra. Since each vertebra varies in shape and size, a variety of anchoring devices have been developed to facilitate engagement of a particular portion of the bone. Pedicle screw assemblies, for example, have a shape and size that is configured to engage pedicle bone. Such screws typically include a threaded shank that is adapted to be threaded into a vertebra, and a head portion having a rod-receiving element, usually in the form of a U-shaped slot formed in the head. A set-screw, plug, or similar type of fastening mechanism, is used to lock the fixation rod into the rod-receiving head of the pedicle screw. In use, the shank portion of each screw is threaded into a vertebra, and once properly positioned, a fixation rod is seated through the rod-receiving member of each screw and the rod is locked in place by tightening a cap or other fastener mechanism to securely interconnect each screw and the fixation rod.
While current spinal fixation systems have proven effective, one challenge associated with such systems is mounting the fixation rods into the rod-receiving member of various fixation devices. In particular, it can be difficult to align and seat the rod into the rod receiving portion of adjacent fixation devices due to the positioning and rigidity of the vertebra into which the fixation device is mounted. Thus, the use of a spinal rod reduction device, also sometimes referred to as a spinal rod approximator, is often required in order to grasp the head of the fixation device and reduce the rod into the rod-receiving head of the fixation device.
While several rod reduction devices are known in the art, some tend to be bulky and cumbersome to use. Accordingly, there is a need for improved rod reduction devices and methods for seating a spinal rod in a rod-receiving member of one or more spinal anchors.
The present invention provides methods and devices for placing a spinal fixation rod into a rod receiving opening in a spinal anchor and installing a fastener to secure the rod to the spinal anchor. In one embodiment, the system can include a cap having a bore extending therethrough, an elongate drive rod that is adapted to extend through the bore, and a fastener that is disposed on a distal portion of the drive rod. The cap can include a mating element that is disposed on a distal end thereof and adapted to removably mate the cap to a spinal anchor or extension member that extends therefrom. In one embodiment, the mating element can be adapted to removably mate the cap to a screw extension that extends proximally from a spinal anchor and provides access to the rod receiving opening in the anchor. The cap can also include a driving element that is adapted to cooperate with a complementary driving element disposed on the rod to form a driving mechanism. Actuation of the driver mechanism can be effective to advance the drive rod through the cap to thereby reduce a spinal rod into a rod receiving opening of the spinal anchor and install the fastener to secure the rod to the spinal anchor.
In one embodiment, the driving element on the cap can include threads formed in at least a portion of the bore. For example, the driving element of the cap can be a threaded member that has at least a partial thread formed in at least a portion of the bore that extends through the cap. The threaded member can be selectively engageable in (1) a drive rod configuration in which the partial thread is engaged with the drive rod to permit longitudinal translation of the rod upon rotation of the rod and (2) a translation configuration in which the threaded member is disengaged from the threads on the rod to permit longitudinal translation of the rod upon translation of the rod without rotation of the rod. In an exemplary embodiment, the threaded member can be pivotably disposed in the cap such that it can pivot between engaged and disengaged positions. The driver mechanism can also include a locking mechanism that is adapted to secure the driver mechanism in the drive rod configuration.
As indicated above, the drive rod of the system can also include a driving element. In one embodiment, the driving element on the drive rod can include threads that are formed on a proximal portion thereof and are adapted to engage the threads formed in the bore of the cap. The threads on the drive rod can be timed with threads formed on the fastener to prevent misalignment or cross threading of the fastener. The drive rod can also include a clutch mechanism that is disposed on a proximal portion thereof. In one embodiment, the clutch can be adapted disengage the driving element of the drive rod to allow the fastener to align with the rod-receiving opening of the spinal implant once the threads of the fastener have engaged or are about to engage the opening. In another embodiment, the clutch can be adapted to disengage a handle portion of the rod from a driver portion of the rod to prevent over-rotation and over-tightening of the fastener.
The drive rod can also include a fastener-retaining member and a reduction tip. The fastener-retaining member can be formed on a distal portion thereof, and, in one embodiment, can be a spring tip having a square or round cross-section. Other exemplary embodiments of the fastener-retaining member include, for example, a split tip and a cam tip. The reduction tip can be disposed distal to a fastener that is retained by the fastener-retaining member and can be adapted to reduce a rod into a rod-receiving opening of a spinal anchor. In one embodiment, the reduction tip can be spring loaded such that it can retract to allow the fastener retained by the fastener-retaining member to fully seat into a rod-receiving opening of a spinal anchor. The reduction tip can also be pivotably coupled to the drive rod and be adapted to remain stationary while the drive rod is rotated with respect to the cap.
Methods for reducing a rod into a rod-receiving opening of a spinal anchor are also provided. In one embodiment, the method can include mating an extension member to a spinal anchor, advancing a spinal rod through the extension member to position the spinal rod in relation to the spinal anchor, mating a cap of a rod reduction system to a proximal end of the extension member, and engaging the cap with a drive rod of the reduction system to thereby reduce and fasten the spinal rod into a rod-receiving opening of the spinal anchor. In an exemplary embodiment, engaging the cap can include inserting the drive rod through a bore that extends through the cap and rotating the drive rod with respect to the cap to advance the drive rod through the cap and extension member to thereby reduce and fasten a spinal rod into a rod-receiving opening of the spinal anchor. A fastener can be secured to the drive rod once the rod is through the bore in the cap or the drive rod can include a pre-loaded fastener. Engaging the cap can also include establishing a threaded connection between a portion of the drive rod and a portion of the cap to enable longitudinal translation of the drive rod upon rotation of the drive rod and rotating the drive rod with respect to the cap to advance the drive rod through the cap and extension member. In yet another embodiment, the method can also include engaging a spinal anchor with a reduction tip that is disposed on the drive rod at a position that is distal to a fastener-retaining member of the drive rod.
The invention will be more fully understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
Certain exemplary embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the devices and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those of ordinary skill in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments and that the scope of the present invention is defined solely by the claims. The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the present invention.
The present invention provides methods and devices for placing a spinal fixation rod into a rod receiving opening in a spinal anchor and installing a fastener to secure the rod to the spinal anchor. In general, a rod reduction system is provided that can removably mate to a spinal anchor and be effective to reduce and fasten a rod disposed within or adjacent to a rod receiving opening of the anchor. While the reduction system is described herein as being mated to a spinal anchor, one skilled in the art will appreciate that the reduction system can be removably mated to a spinal anchor, an extension member that is mated to or integrally formed with a spinal anchor, or any other spinal anchor and extension configuration. One skilled in the art will also appreciate that although the system is described primarily in connection with spinal applications, the system may be used to engage any type of bone anchor or other implant and/or to position any type of fixation element relative to a bone anchor.
The cap 12, which is shown in more detail in
Various configurations are available for the driving element 30 of the cap 12. In an exemplary embodiment, shown in
As shown in
In another embodiment (not shown), the half nut can be biased to a separated position in which the threads in the groove are unable to mate with the threads on the drive rod allowing translation of the drive rod without rotation of the rod. In this embodiment, an engagement mechanism is adapted to urge the threads in the groove into mating contact with the threads on the drive rod enabling translation of the rod only upon rotation of the rod. Similar to the release mechanism, the engagement mechanism can be disposed on the cap and can include a button, switch or other mechanism to trigger the engagement of the threads of the half nut with the threads on the drive rod. Although the driving element is shown and described as a threaded member, one skilled in the art will appreciate that a variety of configurations are available for the driving element including, for example, ratchet and gear mechanisms.
The driving element 30 can also include a locking mechanism that is adapted to secure the half nut 32 in an engaged or disengaged configuration. In one exemplary embodiment, shown in
Another exemplary embodiment of a locking mechanism is shown in
Another exemplary embodiment of the driving element of the cap 12 is shown in FIGS. 11 and 12. Similar to the embodiment described above, the driving element 110 includes a threaded member 112 that is disposed in the bore 18 of the cap 12. The threaded member 112 can have threads 112a formed on at least a portion thereof that are complementary to and adapted to mate with the threads 40a on the drive rod 14. As shown in
As indicated above, the rod reduction system 10 also includes an elongate drive rod 14 that is adapted to extend through the bore 18 in the cap 12 and includes a driving element 40 that cooperates with the driving element 30 of the cap 12 to form a driving mechanism. The drive rod 14, which is shown in more detail in
A variety of configurations are available for the driving element 40 of the drive rod 14. For example, as shown in
The driving element 40 can also be associated with a clutch 46 that is disposed on a proximal portion 14a of the drive rod 14. In general, the clutch 46 can be adapted to disengage the driving element of the drive rod 14 from the rod 14 to allow the fastener 16 to align with the rod-receiving opening of the spinal anchor. For example, in an exemplary embodiment, shown in
As indicated above, the rod reduction system 10 can also include a fastener 16 that is retained by a fastener-retaining member 42 disposed on a distal portion 14b of the drive rod 14 as shown, for example, in
The fastener-retaining member 42 can take a variety of forms, the exact configuration of which will depend on the type of fastener 16 being applied. In an exemplary embodiment, shown in
Other configurations for the fastener-retaining member 42 include spring and cam tips that can also be adapted to retain a fastener 16 by interference fit. For example, in one exemplary embodiment, shown in
The drive rod 14 can also include a reduction tip 44 that is disposed distal to the fastener 16 disposed on the drive rod 14 and is adapted to reduce a rod into a rod-receiving opening of a spinal anchor. A variety of configurations are available for the reduction tip 44. For example, in an exemplary embodiment, shown in
In another exemplary embodiment (not shown), the reduction tip 44 can be movable or non-rigid. For example, in one embodiment, the reduction tip 44 can be spring loaded such that it can retract to allow a fastener 16 retained by the fastener-retaining member 42 to fully seat into a rod-receiving opening of a spinal anchor. The drive rod 14 can also include spiral cuts to allow flexing and/or axial compression of the rod when the fastener 16 contacts the rod-receiving opening of the spinal anchor to allow the fastener 16 to align itself with the threads formed in the rod-receiving opening. In yet another embodiment, the reduction tip 44 can be pivotably coupled to the drive rod 14 and adapted to remain stationary while the drive rod 14 is rotated with respect to the cap 12.
A procedure can begin by forming a minimally invasive percutaneous incision through tissue located adjacent to a desired implant site. Once the incision is made, a spinal anchor 82 and access device, such as an extension member 84, can be delivered to the anchor site. In one embodiment, the anchor 82 can be inserted through the incision with the extension member 84 attached thereto and extending through the skin incision and outside of the patient's body. In another embodiment, the extension member 84 can be attached to the anchor 82 once the anchor 82 is secured in the bone. The anchor 82 can be driven into bone using a tool, such as a driver. When the spinal anchor 82 is fully implanted, the rod-receiving opening 82a of the anchor 82 will be located adjacent to the bone such that it is either in contact with the bone or relatively close to the bone. The extension member 84 will extend from the rod-receiving opening 82a and through the skin incision, thereby providing a pathway that spans through the skin incision to the anchor 82. Additional spinal anchor 82 and access devices can be implanted in adjacent vertebrae using the same technique, or using other techniques known in the art.
Once the anchor 82 is implanted, the extension member 84 can be used to deliver various spinal connectors, fasteners, and other tools and devices to the implant site. For example, a spinal connector, such as a spinal rod 100 (shown in
As shown in
The fastener is also applied to the spinal anchor to lock the spinal rod within the rod-receiving opening of the spinal anchor. Rotation of the drive rod with respect to the cap can be effective to thread the fastener within the rod-receiving opening of the anchor. As explained above, a clutch mechanism that is associated with the drive rod can be provided to disengage the driving element of the drive rod from the rod to allow the fastener to be properly aligned with the rod-receiving opening of the anchor and/or to disengage a handle portion of the drive rod from a driver portion of the drive rod to prevent over-rotation and over-tightening.
One skilled in the art will appreciate further features and advantages of the invention based on the above-described embodiments. Accordingly, the invention is not to be limited by what has been particularly shown and described, except as indicated by the appended claims. All publications and references cited herein are expressly incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
410780 | Cahn | Sep 1889 | A |
1470313 | Woolen | Oct 1923 | A |
1628144 | Herrmann | May 1927 | A |
1709766 | Bolton | Apr 1929 | A |
1889330 | Humes et al. | Nov 1932 | A |
1925385 | Humes et al. | Sep 1933 | A |
2113246 | Wappler | May 1937 | A |
2248054 | Becker | Jul 1941 | A |
2248057 | Bond | Jul 1941 | A |
2291413 | Siebrandt | Jul 1942 | A |
2370407 | McCartney | Feb 1945 | A |
2800820 | Retterath | Jul 1957 | A |
3960147 | Murray | Jun 1976 | A |
4237875 | Termanini | Dec 1980 | A |
4271836 | Bacal et al. | Jun 1981 | A |
4411259 | Drummond | Oct 1983 | A |
4445513 | Ulrich et al. | May 1984 | A |
4655223 | Kim | Apr 1987 | A |
4809695 | Gwathmey et al. | Mar 1989 | A |
4896661 | Bogert et al. | Jan 1990 | A |
5014407 | Boughten et al. | May 1991 | A |
5020519 | Hayes et al. | Jun 1991 | A |
D346217 | Sparker | Apr 1994 | S |
5306248 | Barrington | Apr 1994 | A |
5364397 | Hayes et al. | Nov 1994 | A |
5391170 | McGuire et al. | Feb 1995 | A |
5429641 | Gotfried | Jul 1995 | A |
5484440 | Allard | Jan 1996 | A |
5545165 | Biedermann et al. | Aug 1996 | A |
5551320 | Horobec et al. | Sep 1996 | A |
5616143 | Schlapfer et al. | Apr 1997 | A |
5649931 | Bryant et al. | Jul 1997 | A |
5672175 | Martin | Sep 1997 | A |
5683399 | Jones et al. | Nov 1997 | A |
5697933 | Gundlapalli et al. | Dec 1997 | A |
5707371 | Metz-Stavenhagen | Jan 1998 | A |
5720751 | Jackson | Feb 1998 | A |
5725532 | Shoemaker | Mar 1998 | A |
5746757 | McGuire | May 1998 | A |
5782831 | Sherman et al. | Jul 1998 | A |
5810878 | Burel et al. | Sep 1998 | A |
5910141 | Morrison et al. | Jun 1999 | A |
5941885 | Jackson | Aug 1999 | A |
5951564 | Schroder et al. | Sep 1999 | A |
5951579 | Dykes | Sep 1999 | A |
6010509 | Delgado et al. | Jan 2000 | A |
6036692 | Burel et al. | Mar 2000 | A |
6099528 | Saurat et al. | Aug 2000 | A |
6123707 | Wagner | Sep 2000 | A |
6139549 | Keller | Oct 2000 | A |
6183472 | Lutz et al. | Feb 2001 | B1 |
6210330 | Tepper et al. | Apr 2001 | B1 |
6251112 | Jackson | Jun 2001 | B1 |
6258090 | Jackson | Jul 2001 | B1 |
6371973 | Tepper et al. | Apr 2002 | B1 |
6440133 | Beale et al. | Aug 2002 | B1 |
6440142 | Ralph et al. | Aug 2002 | B1 |
6440144 | Bacher | Aug 2002 | B1 |
6511484 | Torode et al. | Jan 2003 | B2 |
6530929 | Justis et al. | Mar 2003 | B1 |
6589249 | Sater et al. | Jul 2003 | B2 |
6648888 | Shluzas | Nov 2003 | B1 |
6660006 | Markworth et al. | Dec 2003 | B2 |
6726692 | Bette et al. | Apr 2004 | B2 |
6743231 | Gray et al. | Jun 2004 | B1 |
6746449 | Jones et al. | Jun 2004 | B2 |
6752832 | Neumann | Jun 2004 | B2 |
6755829 | Bono et al. | Jun 2004 | B1 |
6790208 | Oribe et al. | Sep 2004 | B2 |
6790209 | Beale et al. | Sep 2004 | B2 |
6827722 | Schoenefeld | Dec 2004 | B1 |
7083621 | Shaolian et al. | Aug 2006 | B2 |
7156849 | Dunbar et al. | Jan 2007 | B2 |
7179254 | Pendekanti et al. | Feb 2007 | B2 |
7179261 | Sicvol et al. | Feb 2007 | B2 |
7278995 | Nichols et al. | Oct 2007 | B2 |
7320689 | Keller | Jan 2008 | B2 |
7371239 | Dec et al. | May 2008 | B2 |
7462182 | Lim | Dec 2008 | B2 |
7485120 | Ray | Feb 2009 | B2 |
7491207 | Keyer et al. | Feb 2009 | B2 |
7527638 | Anderson et al. | May 2009 | B2 |
7572281 | Runco et al. | Aug 2009 | B2 |
7621918 | Jackson | Nov 2009 | B2 |
7651502 | Jackson | Jan 2010 | B2 |
7666188 | Anderson et al. | Feb 2010 | B2 |
7708763 | Selover et al. | May 2010 | B2 |
20010029376 | Sater et al. | Oct 2001 | A1 |
20020095153 | Jones et al. | Jul 2002 | A1 |
20030009168 | Beale et al. | Jan 2003 | A1 |
20030028195 | Bette | Feb 2003 | A1 |
20030083747 | Winterbottom et al. | May 2003 | A1 |
20030125750 | Zwirnmann et al. | Jul 2003 | A1 |
20030149438 | Nichols et al. | Aug 2003 | A1 |
20030191370 | Phillips | Oct 2003 | A1 |
20030199872 | Markworth et al. | Oct 2003 | A1 |
20030225408 | Nichols et al. | Dec 2003 | A1 |
20040049191 | Markworth et al. | Mar 2004 | A1 |
20040147936 | Rosenberg et al. | Jul 2004 | A1 |
20040147937 | Dunbar et al. | Jul 2004 | A1 |
20040172057 | Guillebon et al. | Sep 2004 | A1 |
20040176779 | Casutt et al. | Sep 2004 | A1 |
20040220567 | Eisermann et al. | Nov 2004 | A1 |
20040254576 | Dunbar et al. | Dec 2004 | A1 |
20040267275 | Cournoyer et al. | Dec 2004 | A1 |
20050015095 | Keller | Jan 2005 | A1 |
20050033299 | Shluzas | Feb 2005 | A1 |
20050055031 | Lim | Mar 2005 | A1 |
20050059969 | McKinley | Mar 2005 | A1 |
20050079909 | Singhaseni | Apr 2005 | A1 |
20050090824 | Shluzas et al. | Apr 2005 | A1 |
20050131408 | Sicvol et al. | Jun 2005 | A1 |
20050131420 | Techiera et al. | Jun 2005 | A1 |
20050131421 | Anderson et al. | Jun 2005 | A1 |
20050131422 | Anderson et al. | Jun 2005 | A1 |
20050143749 | Zalenski et al. | Jun 2005 | A1 |
20050149036 | Varieur et al. | Jul 2005 | A1 |
20050149048 | Leport et al. | Jul 2005 | A1 |
20050149053 | Varieur et al. | Jul 2005 | A1 |
20050192570 | Jackson | Sep 2005 | A1 |
20050192579 | Jackson | Sep 2005 | A1 |
20050228392 | Keyer et al. | Oct 2005 | A1 |
20050261702 | Oribe et al. | Nov 2005 | A1 |
20060009775 | Dec et al. | Jan 2006 | A1 |
20060025768 | Iott et al. | Feb 2006 | A1 |
20060036254 | Lim | Feb 2006 | A1 |
20060036260 | Runco et al. | Feb 2006 | A1 |
20060069391 | Jackson | Mar 2006 | A1 |
20060074418 | Jackson | Apr 2006 | A1 |
20060079909 | Runco et al. | Apr 2006 | A1 |
20060089651 | Trudeau et al. | Apr 2006 | A1 |
20060095035 | Jones et al. | May 2006 | A1 |
20060111712 | Jackson | May 2006 | A1 |
20060111730 | Hay | May 2006 | A1 |
20060111713 | Jackson | Jun 2006 | A1 |
20060166534 | Brumfield et al. | Jul 2006 | A1 |
20060166535 | Brumfield et al. | Jul 2006 | A1 |
20060293692 | Whipple et al. | Dec 2006 | A1 |
20070093849 | Jones et al. | Apr 2007 | A1 |
20070129731 | Sicvol et al. | Jun 2007 | A1 |
20070161998 | Whipple | Jul 2007 | A1 |
20070167954 | Sicvol et al. | Jul 2007 | A1 |
20070173831 | Abdou | Jul 2007 | A1 |
20070185375 | Stad et al. | Aug 2007 | A1 |
20070213722 | Jones et al. | Sep 2007 | A1 |
20070233097 | Anderson et al. | Oct 2007 | A1 |
20070260261 | Runco et al. | Nov 2007 | A1 |
20070270880 | Lindemann et al. | Nov 2007 | A1 |
20080077134 | Dziedzic et al. | Mar 2008 | A1 |
20080077135 | Stad et al. | Mar 2008 | A1 |
20080243190 | Dziedzic et al. | Oct 2008 | A1 |
20080255574 | Dye | Oct 2008 | A1 |
20090030419 | Runco et al. | Jan 2009 | A1 |
20090030420 | Runco et al. | Jan 2009 | A1 |
20090054902 | Mickiewicz et al. | Feb 2009 | A1 |
20090082811 | Stad et al. | Mar 2009 | A1 |
20090088764 | Stad et al. | Apr 2009 | A1 |
20090138056 | Anderson et al. | May 2009 | A1 |
20090143828 | Stad et al. | Jun 2009 | A1 |
20100137915 | Anderson et al. | Jun 2010 | A1 |
20110144695 | Rosenberg | Jun 2011 | A1 |
Number | Date | Country |
---|---|---|
4238339 | May 1994 | DE |
29806563 | Jun 1998 | DE |
948939 | Oct 1999 | EP |
1574175 | Sep 2005 | EP |
1648320 | Apr 2006 | EP |
1796564 | Jun 2007 | EP |
2680314 | Feb 1993 | FR |
2677242 | Jul 1996 | FR |
2729291 | Jul 1996 | FR |
9621396 | Jul 1996 | WO |
2005006948 | Jan 2005 | WO |
2006020443 | Feb 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20080243190 A1 | Oct 2008 | US |