1. Technical Field
The invention concerns the continuous in-line refining of molten aluminium and aluminium alloys.
2. Description of the Prior Art
Molten metals such as aluminium and aluminium alloys which include both small amounts of dissolved, particulate and gaseous impurities are treated “in-line” in equipment that is placed in a metal carrying launder or trough prior to casting, continuous casting and other usages.
The aluminium metal flows into the trough at the inlet, through the trough and exits at the outlet, and this occurs in a substantially continuous manner. The trough is installed typically between a heated vessel (such as a casting furnace) and a casting machine. The treatment is intended to remove: i) dissolved hydrogen, ii) solid non-metallic particulates, for example alumina and magnesia, and iii) dissolved impurities, for example Na, Li and Ca. This refining treatment has traditionally been accomplished using chlorine gas or mixtures of chlorine gas with an inert gas such as argon. This refining process is commonly referred to as “metal degassing” although it will be appreciated that it may be used for more than just degassing of the metal, since it also removes other contaminants such as ii) and iii) discussed previously.
There is environmental pressure to eliminate chlorine in such applications and although use of argon alone can accomplish some of the treatment, it is inadequate for other uses and in particular for treating magnesium-containing aluminium alloys.
The use of chloride salts has been used in some furnace based or batch rather than continuous metal treatments. In particular magnesium chloride (MgCl2), and mixtures of MgCl2 with potassium chloride (KCl) have been considered as a possible substitute for chlorine gas. However, magnesium chloride is particularly hygroscopic, and therefore inevitably contains moisture and persistently absorbs moisture from ambient air. During treatment, this moisture reacts with molten aluminium to generate hydrogen that dissolves in the molten metal, and may lead to poor quality metal.
In furnace and crucible treatments the presence of moisture in the magnesium chloride can be accepted as these are generally for non-critical applications. However, use in in-line treatments where the metal is cast immediately cast after treatment, and for critical products where hydrogen porosity is unacceptable, magnesium chloride has not been usable.
Magnesium chloride (MgCl2) has been used as a “cover flux” for in-line degassing treatment but this use compliments the use of in-line chlorine gas injection, and MgCl2 is clearly not meant as a substitute for in-line chlorine gas of injection of the molten metal.
U.S. Pat. No. 3,767,382 discloses a continuous in-line metal treatment system comprising a dispersing and separation chamber separated by baffles that allow the separation of impurities. A rotary disperser in the dispersing chamber is used to break-up the molten metal and disperse a treatment gas comprising chlorine gas and an inert gas into the metal. The cover flux disclosed includes 80% MgCl2 and moisture less than 0.1% by weight.
U.S. Pat. No. 4,138,245 discloses a means by which to remove sodium by introducing a chlorinating agent, which may be a mixture a chlorine gas and argon gas, introduced into a body of molten aluminium. Metal passes through a combination of filter-degasser bed coated with salt containing 85% MgCl2. The salt is confined to the bed and reacts to reduce sodium levels in the metal.
U.S. Pat. No. 5,772,725 discloses a method for in-line treatment of molten metal that is said to be useable with salts as well as with gaseous fluxes, without any particulars as to how this is achieved. The invention discloses a disperser/agitator adapted to disperse gases into a metal bath where the agitator rotation is inverted regularly.
U.S. Pat. No. 6,602,318 discloses a treatment vessel, such as a ladle, that uses a mixture of KCl/MgCl2 in a given weight ratio of 0.036 to remove calcium and particulates from the metal contained in the vessel. While KCl/MgCl2 is fed by way of an injection tube below the level of the molten metal near a rotating high shear dispersing impeller, thus achieving quick dispersion of the KCl/MgCl2.
EP-A-395 138 discloses a crucible treatment using various salts including salts containing up to 80% alkali metal and alkaline earth metal chlorides and including a disperser apparatus for handling such salts, which includes a co-injection of solids with an inert gas through a hollow shaft of the disperser below the level of the metal and at the level of the impeller.
EP-A-1 462 530 discloses an apparatus and method of treating molten metal in a crucible. The apparatus adds salt through a hollow shaft of a disperser. A pressurized inert gas transports the salt intermittently through the hollow shaft and into the metal in the crucible to the level of the impeller. The system may be used with a range of salt fluxes.
Therefore, all prior art either uses chlorine gas for refining the aluminium metal or is in a static crucible or in-line vessel which allows long residence times for the removal of impurities. Therefore there remains the problem of efficient in-line continuous refining of molten aluminium and aluminium alloys in troughs, without the use of chlorine gas.
The present invention discloses an apparatus and a refining process for in-line continuous refining of molten aluminium and aluminium alloys, with the use of a metal halide salt and an inert gas alone.
Therefore in one aspect of the present invention there is provided an in-line process for refining a molten aluminium or aluminium alloy, the process comprising: adding an inert gas and at least one metal halide salt into the molten aluminium or aluminium alloy flowing through a trough from an inlet to an outlet; and dispersing the inert gas and the at least one metal halide salt into the flowing molten aluminium or aluminium alloy in the trough.
In another aspect of the present invention there is provided an apparatus for refining molten aluminium or aluminium alloy in-line comprising; at least one disperser comprising a rotatable shaft having a mounted end operatively connected to a drive means and a distal end opposite the mounted end, and an impeller fixed to the distal end, wherein the distal end and the impeller being adapted for immersion into the molten aluminium or aluminium alloy; a trough comprising, an upstream inlet and a downstream outlet, the trough allowing the molten aluminium or aluminium alloy to flow from the inlet to the outlet; a gas supply system for injecting an inert gas into the trough proximal the impeller; and a salt feeding system for feeding at least one metal halide salt into the trough proximal the impeller, wherein the at least one disperser is operatively mounted in the trough.
Further features and advantages of the present invention will become apparent from the following detailed description, taken in combination with the appended drawings, in which:
The trough 950, which can also be described as a metal transfer launder, includes an upstream inlet 954 and a downstream outlet 956, and the trough is adapted to allow molten aluminium and aluminium alloys to flow from the inlet 954 to the outlet 956. The trough 950 illustrated has a depth 957 upstream of trough inlet 954 and the downstream of the trough outlet 956. The central portion 955 of the trough 950 directly below the dispersers has a depth 958 and in this embodiment has a greater depth than the trough upstream of inlet 954 and downstream of the outlet 956. Although not illustrated the central portion 955 of the trough may also have a greater width than the width of the inlet 954 and the outlet 956.
The apparatus 910 further includes a series of six dispersers 960, two of which are identified by reference numbers 961 and 967. The series of dispersers are in a preferred embodiment installed in a straight line along the central line of the trough 971, each disperser roughly equidistant from an adjacent disperser along the central portion 955 of the trough and with their impellers adapted to rotate in the molten aluminium in the bottom of the trough 950. The dispersers are enclosed in the trough 950 by an enclosure 922. Above the series of dispersers is a drive means, preferably an electrical motor, compressed air motor or a series of belts or gears operatively connected to an electric motor. Three separate enclosures 923a, b and c, rise above enclosure 922, with each separate enclosure containing a drive means for two dispersers, i.e. in the case of enclosure 923a, the drive means for dispersers 961 and 967 is located therein.
Each disperser has a connection to a supply of gas. In
The illustrated enclosure 922. further includes a baffle 972 upstream of the first disperser and a baffle 976 downstream of the last disperser, and in the illustrated embodiment, an additional baffle 974 between the first three and last three dispersers. Additional baffles (not shown) between dispersers may also be used in some embodiments. The baffles allow metal to flow under and around while the baffles 972 and 976 in particular confine floating waste by-products (often referred to as dross) to the portion of trough between these baffles. This dross can be periodically removed, and the baffles prevent the dross from passing downstream and contaminating any filter, if used, or the ingot itself. The baffles 972 and 976 along with the enclosure 922 reduce the ingress of air into the area of trough containing the disperser and thereby reduce oxidation.
The disperser system 960 represented in
The disperser system 960 of
The refining apparatus 10 includes: a trough 50; a salt feeding system 20, a dispersing system 60 with at least one disperser 61, (
In-line refining is conducted, in a preferred embodiment, in a portion of a metallurgical trough 50 (which may be called a metal transfer launder) which is located between a casting (or metal holding) furnace and a casting machine. Such a metallurgical trough may have a slight slope from the casting furnace to the casting machine, and is adapted to cause molten metal to flow from the casting furnace to the casting machine. A portion 50 of such a metallurgical trough of the present invention is illustrated in
Residence times of the molten metal between the inlet 54 and outlet 56 during in-line refining of the present invention vary and depend on the metal mass throughput, but are typically measured in tens of seconds. The portion 50 of the trough in which dispersers are located has little or no dead volume at the bottom of the trough, thus does not require a design including a specialized drain hole or a means of tipping the trough. The metallurgical trough including the portion 50 of the trough may be constructed in a refractory lined steel, or other suitable material of construction which would be well known to the skilled practitioner.
The central trough portion 55 is located at the dispersers and may have a depth 58 that is up to 50% greater than the depth 57 upstream on the inlet 54 and outlet 56. In a preferred embodiment, not illustrated in
The trough of the present invention has in a preferred embodiment the following process and dimensional parameters:
The salt feeding system 20, in a preferred embodiment is disposed above the dispersing system 60. The salt feeding system includes a salt hopper 24 into which a metal halide salt 18 is fed. In a preferred embodiment, the metal halide salt comprises MgCl2 or a mixture of MgCl2 and KCl and is sometimes called a flux. In a particularly preferred embodiment the salt is comprised of at least 20% by weight and even more preferably at least 50% by weight of MgCl2 and 0.01% to 2.0% by weight of water. In some embodiment MgCl2 may be replaced by AlCl3.
The salt hopper 24 may be placed within a vessel 22, prior to transport by a feeder 25. The vessel 22 is slightly pressurized with an inert gas 12, from the gas supply system 16. In a preferred embodiment the inert gas is argon. The inert gas 12 enters the vessel 22 and may equally blanket the MgCl2, or MgCl2 and KCl mixture in the salt hopper 24, thus minimizing the absorption of additional humidity by the salt during storage, that would occur in ambient air.
The skilled practitioner would understand that the salt hopper 24 may be designed such that it replaces the pressurized vessel 22 and would therefore, be pressurized with inert gas and hermetically linked to the transport pipe 28 and the trough 50. The hopper 24 may also optionally include a vibrator or other mechanical means (not shown) to reduce or eliminate the bridging of the metal halide salt within the hopper 24.
The salt 18 from the salt hopper 24 enters the salt feeder 25, at an upstream entrance 30 of the feeder. The metal halide salt is typically a relative finely ground crystalline powder, which is typically free flowing and can be transported by mechanical and/or pneumatic means. The salt feeder 25, may be any one of a number of suitable feeders including but not limited to a double helical screw feeder, as illustrated in
The metal halide salt 18, from the transport pipe 28 may be added via hollow salt feeding tube (not illustrated) connected to the salt transport pipe 28 that is located adjacent the disperser 61. This salt feeding tube, allows the metal halide salt to be fed very close to and preferably directly underneath the disperser impeller 64 into the molten aluminium or aluminium alloy in the bottom of the trough 50. As previously mentioned in a preferred embodiment the salt and inert gas may both be fed through the transport pipe 28 and salt feeding tube of the salt feeding system 20. The inert gas assists the passage of the metal halide salt, and both are expelled in a simultaneous or substantially simultaneous manner at a point near the impeller 64, and preferably underneath the impeller, into the molten aluminium or aluminium alloy.
In a particularly preferred embodiment illustrated in
The disperser system 60, in the embodiment illustrated in
In yet another alternative embodiment, where there are a plurality of dispersers, inert gas and salt is added at least at the most upstream of the dispersers, and inert gas alone is added at least at the most downstream of the dispersers. In this embodiment, the salt is highly effective at particle and alkali metal removal so that it is required only in the upstream dispersers and the extra hydrogen that may be generated by the moisture in such amounts of salt are removed by the inert gas in the downstream dispersers.
In another alternative embodiment, more than one disperser may be fed the halide salt and the delivery rates of the salt may be made to vary from one disperser to the next. In a preferred embodiment the disperser furthest upstream would have the largest feed rate of salt, while the dispersers downstream would have sequentially lower feed rates.
The dispersing system 60 may also have a plurality of dispersers 61 through which or near which the inert gas and metal halide salt is injected into the molten liquid. As many as 6, 8 or more dispersers may be installed, with a preferred embodiment having from 4 to 6 dispersers.
The gas supply system 16 (not illustrated) comprises: a source of inert gas from a cylinder of compressed gas or a gas in liquid phase; a system to regulate the pressure of the inert gas; a manifold distributing the inert gas into small tube connections which can then be routed to where they are needed, such as illustrated in
Aluminium alloy type AA1100 was prepared and delivered to an apparatus similar to that illustrated in
The results indicate a high level of particulate removal. It is believed that the invention works by ensuring that by excellent dispersion of the halide salt in the trough particulate removal can be achieved with low halide salt levels. Furthermore, this may mean that hydrogen generation from entrained moisture is less than previously believed and removal of any extra generated hydrogen appears plausible. Furthermore the salt need only be added through or near the disperser furthest upstream while subsequent dispersers downstream thereof may in fact remove entrained hydrogen.
An aluminium alloy type AA6063 was prepared and delivered to an apparatus similar to that illustrated in
In this example the salt was added at a stoichiometric ratio of 1 to 4 times stoichiometric indicating that alkali removal is effective at a relatively small stoichiometric excess. The effect of salt addition on particulate removal compared to argon is clearly shown.
An aluminium alloy type AA5005 was prepared and delivered to an apparatus similar to that illustrated in
The salt addition in this example was at a rate corresponding to only 0.1 to 0.5% times stoichiometric requirements for alkali metal removal and the removal was correspondingly low. However the particulate removal was still high, indicating that particulate removal is efficient even at low salt feed rates.
Aluminium alloy type AA1200 was prepared and delivered to an apparatus similar to that illustrated in
The salt addition in this example was at a rate corresponding to only 2 to 6% the stoichiometric requirements for alkali metal removal indicating that alkali removal is effective at a relatively small stoichiometric excess.
The embodiment(s) of the invention described above is(are) intended to be exemplary only. The scope of the invention is therefore intended to be limited solely by the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
PCT/CA06/01754 | Oct 2006 | CA | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CA2006/001754 | 10/25/2006 | WO | 00 | 8/6/2008 |