Each of the above patents and applications is incorporated by reference herein in its entirety.
The present invention provides for an apparatus for digitally processing an audio signal. Specifically, some embodiments relate to digitally processing an input signal as part of a communications cable in order to deliver studio-quality sound across a variety of consumer electronic devices.
Historically, studio-quality sound, which can best be described as the full reproduction of the complete range of audio frequencies that are utilized during the studio recording process, has only been able to be achieved, appropriately, in audio recording studios. Studio-quality sound is characterized by the level of clarity and brightness which is attained only when the upper-mid frequency ranges are effectively manipulated and reproduced. While the technical underpinnings of studio-quality sound can be fully appreciated only by experienced record producers, the average listener can easily hear the difference that studio-quality sound makes.
While various attempts have been made to reproduce studio-quality sound outside of the recording studio, those attempts have come at tremendous expense (usually resulting from advanced speaker design, costly hardware, and increased power amplification) and have achieved only mixed results. Furthermore, the required hardware is inconvenient, and requires additional components and setup. Thus, there is a need for a device, such as an in-line signal processor, which provides both the required hardware and software to enable the enhancement of audio signals between and across various consumer devices.
The present invention meets the existing needs described above by providing systems, methods, and apparatuses for processing an audio signal in a manner such that studio-quality sound can be reproduced across the entire spectrum of audio devices. The present invention also provides for the ability to enhance audio in real-time and tailors the enhancement to the audio signal of a given audio device or delivery system and playback environment.
The present invention may provide for a computer chip that can digitally process an audio signal in such a manner, as well as provide for audio devices that comprise such a chip or equivalent circuit combination. The present invention may also provide for computer software readable and executable by a computer to digitally process an audio signal. In the software embodiments, the present invention may utilize existing hardware and software components on computers such as PCs, Mac, and mobile devices, comprising various operating systems such as Android, iOS, and Windows.
Accordingly, in initially broad terms, an audio input signal is first filtered with a high pass filter. The high pass filter, in at least one embodiment, is configured to remove ultra-low frequency content from the input audio signal resulting in the generation of a high pass signal.
The high pass signal from the high pass filter is then filtered through a first filter module to create a first filtered signal. The first filter module is configured to selectively boost and/or attenuate the gain of select frequency ranges in an audio signal, such as the high pass signal. In at least one embodiment, the first filter module boosts frequencies above a first frequency, and attenuates frequencies below a first frequency.
The first filtered signal from the first filter module is then modulated with a first compressor to create a modulated signal. The first compressor is configured for the dynamic range compression of a signal, such as the first filtered signal. Because the first filtered signal boosted higher frequencies and attenuated lower frequencies, the first compressor may, in at least one embodiment, be configured to trigger and adjust the higher frequency material, while remaining relatively insensitive to lower frequency material.
The modulated signal from the first compressor is then filtered through a second filter module to create a second filtered signal. The second filter module is configured to selectively boost and/or attenuate the gain of select frequency ranges in an audio signal, such as the modulated signal. In at least one embodiment, the second filter module is configured to be of least partially a inverse relation relative to the first filter module. For example, if the first filter module boosted content above a first frequency by +X dB and attenuated content below a first frequency by −Y dB, the second filter module may then attenuate the content above the first frequency by −X dB, and boost the content below the first frequency by +Y dB. In other words, the purpose of the second filter module in one embodiment may be to “undo” the gain adjustment that was applied by the first filter module.
The second filtered signal from the second filter module is then processed with a first processing module to create a processed signal. In at least one embodiment, the first processing module may comprise a peak/dip module. In other embodiments, the first processing module may comprise both a peak/dip module and a first gain element. The first gain element may be configured to adjust the gain of the signal, such as the second filtered signal. The peak/dip module may be configured to shape the signal, such as to increase or decrease overshoots or undershoots in the signal.
The processed signal from the first processing module is then split with a band splitter into a low band signal, a mid band signal and a high band signal. In at least one embodiment, each band may comprise the output of a fourth order section, which may be realized as the cascade of second order biquad filters.
The low band signal is modulated with a low band compressor to create a modulated low band signal, and the high band signal is modulated with a high band compressor to create a modulated high band signal. The low band compressor and high band compressor are each configured to dynamically adjust the gain of a signal. Each of the low band compressor and high band compressor may be computationally and/or configured identically as the first compressor.
The modulated low band signal, the mid band signal, and the modulated high band signal are then processed with a second processing module. The second processing module may comprise a summing module configured to combine the signals. The summing module in at least one embodiment may individually alter the gain of each of the modulated low band, mid band, and modulated high band signals. The second processing module may further comprise a second gain element. The second gain element may adjust the gain of the combined signal in order to create an output signal.
One further embodiment of the present invention is directed to an in-line processor attached to or embedded within a communications cable. Such a cable comprises an input connector, an audio enhancement module, and an output connector. Accordingly, the audio enhancement module may comprise a plurality of processing components structured and/or configured to process an input signal, such as the one or more processing components recited in this application, or the one or more processing components recited in one or more of the applications and/or patents cross-referenced and incorporated by reference above. In at least one embodiment, a profile module may allow a user to select between predetermined audio enhancement scheme and/or parameters thereof. The audio enhancement module will process the input signal in accordance to a predetermined audio enhancement scheme in order to create an output signal, which is then transmitted by the output connector.
These and other objects, features and advantages of the present invention will become clearer when the drawings as well as the detailed description are taken into consideration.
For a fuller understanding of the nature of the present invention, reference should be had to the following detailed description taken in connection with the accompanying drawings in which:
Like reference numerals refer to like parts throughout the several views of the drawings.
As illustrated by the accompanying drawings, the present invention is directed to systems, methods, and apparatuses for digitally processing an audio signal. Specifically, some embodiments relate to digitally processing an audio signal in order to deliver studio-quality sound in a variety of different consumer electronic devices.
As schematically represented,
The input device 101 is at least partially structured or configured to transmit an input audio signal 201 into the system 100 of the present invention, and in at least one embodiment into the high pass filter 111. The input audio signal 201 may comprise the full audible range, or portions of the audible range. The input audio signal 201 may comprise a stereo audio signal. The input device 101 may comprise at least portions of an audio device capable of audio playback. The input device 101 for instance, may comprise a stereo system, a portable music player, a mobile device, a computer, a sound or audio card, or any other device or combination of electronic circuits suitable for audio playback.
The high pass filter 111 is configured to pass through high frequencies of an audio signal, such as the input signal 201, while attenuating lower frequencies, based on a predetermined frequency. In other words, the frequencies above the predetermined frequency may be transmitted to the first filter module 301 in accordance with the present invention. In at least one embodiment, ultra-low frequency content is removed from the input audio signal, where the predetermined frequency may be selected from a range between 300 Hz and 3 kHz. The predetermined frequency however, may vary depending on the source signal, and vary in other embodiments to comprise any frequency selected from the full audible range of frequencies between 20 Hz to 20 kHz. The predetermined frequency may be tunable by a user, or alternatively be statically set. The high pass filter 111 may further comprise any circuits or combinations thereof structured to pass through high frequencies above a predetermined frequency, and attenuate or filter out the lower frequencies.
The first filter module 301 is configured to selectively boost or attenuate the gain of select frequency ranges within an audio signal, such as the high pass signal 211. For example, and in at least one embodiment, frequencies below a first frequency may be adjusted by ±X dB, while frequencies above a first frequency may be adjusted by ±Y dB. In other embodiments, a plurality of frequencies may be used to selectively adjust the gain of various frequency ranges within an audio signal. In at least one embodiment, the first filter module 301 may be implemented with a first low shelf filter 112 and a first high shelf filter 113, as illustrated in
The first compressor 114 is configured to modulate a signal, such as the first filtered signal 401. The first compressor 112 may comprise an automatic gain controller. The first compressor 112 may comprise standard dynamic range compression controls such as threshold, ratio, attack and release. Threshold allows the first compressor 112 to reduce the level of the filtered signal 211 if its amplitude exceeds a certain threshold. Ratio allows the first compressor 112 to reduce the gain as determined by a ratio. Attack and release determines how quickly the first compressor 112 acts. The attack phase is the period when the first compressor 112 is decreasing gain to reach the level that is determined by the threshold. The release phase is the period that the first compressor 112 is increasing gain to the level determined by the ratio. The first compressor 112 may also feature soft and hard knees to control the bend in the response curve of the output or modulated signal 212, and other dynamic range compression controls appropriate for the dynamic compression of an audio signal. The first compressor 112 may further comprise any device or combination of circuits that is structured and configured for dynamic range compression.
The second filter module 302 is configured to selectively boost or attenuate the gain of select frequency ranges within an audio signal, such as the modulated signal 214. In at least one embodiment, the second filter module 302 is of the same configuration as the first filter module 301. Specifically, the second filter module 302 may comprise a second low shelf filter 115 and a second high shelf filter 116. The second filter module 302 may be configured in at least a partially inverse configuration to the first filter module 301. For instance, the second filter module may use the same frequency, for instance the first frequency, as the first filter module. Further, the second filter module may adjust the gain inversely to the gain or attenuation of the first filter module, of content above the first frequency. Similarly second filter module may also adjust the gain inversely to the gain or attenuation of the of the first filter module, of content below the first frequency. In other words, the purpose of the second filter module in one embodiment may be to “undo” the gain adjustment that was applied by the first filter module.
The first processing module 303 is configured to process a signal, such as the second filtered signal 402. In at least one embodiment, the first processing module 303 may comprise a peak/dip module, such as 118 represented in
The band splitter 119 is configured to split a signal, such as the processed signal 403. In at least one embodiment, the signal is split into a low band signal 220, a mid band signal 221, and a high band signal 222. Each band may be the output of a fourth order section, which may be further realized as the cascade of second order biquad filters. In other embodiments, the band splitter may comprise any combination of circuits appropriate for splitting a signal into three frequency bands. The low, mid, and high bands may be predetermined ranges, or may be dynamically determined based on the frequency itself, i.e. a signal may be split into three even frequency bands, or by percentage. The different bands may further be defined or configured by a user and/or control mechanism.
A low band compressor 130 is configured to modulate the low band signal 220, and a high band compressor 131 is configured to modulate the high band signal 222. In at least one embodiment, each of the low band compressor 130 and high band compressor 131 may be the same as the first compressor 114. Accordingly, each of the low band compressor 130 and high band compressor 131 may each be configured to modulate a signal. Each of the low band and high band compressors, 130 and 131 respectively, may comprise an automatic gain controller, or any combination of circuits appropriate for the dynamic range compression of an audio signal.
A second processing module 304 is configured to process at least one signal, such as the modulated low band signal 230, the mid band signal 221, and the modulated high band signal 231. Accordingly, the second processing module 304 may comprise a summing module 132 configured to combine a plurality of signals. The summing module 132 may comprise a mixer structured to combine two or more signals into a composite signal. The summing module 132 may comprise any circuits or combination thereof structured or configured to combine two or more signals. In at least one embodiment, the summing module 132 comprises individual gain controls for each of the incoming signals, such as the modulated low band signal 230, the mid band signal 221, and the modulated high band signal 231. In at least one embodiment, the second processing module 304 may further comprise a second gain element 133. The second gain element 133, in at least one embodiment, may be the same as the first gain element 117. The second gain element 133 may thus comprise an amplifier or multiplier circuit to adjust the signal, such as the combined signal, by a predetermined amount.
The output device 102 may be structured to further process the output signal 404. The output device 102 may also be structured and/or configured for playback of the output signal 404.
As diagrammatically represented,
Accordingly, an input audio signal is first filtered, as in 501, with a high pass filter to create a high pass signal. The high pass filter is configured to pass through high frequencies of a signal, such as the input signal, while attenuating lower frequencies. In at least one embodiment, ultra-low frequency content is removed by the high-pass filter. In at least one embodiment, the high pass filter may comprise a fourth-order filter realized as the cascade of two second-order biquad sections. The reason for using a fourth order filter broken into two second order sections is that it allows the filter to retain numerical precision in the presence of finite word length effects, which can happen in both fixed and floating point implementations. An example implementation of such an embodiment may assume a form similar to the following:
The above computation comprising five multiplies and four adds is appropriate for a single channel of second-order biquad section. Accordingly, because the fourth-order high pass filter is realized as a cascade of two second-order biquad sections, a single channel of fourth order input high pass filter would require ten multiples, four memory locations, and eight adds.
The high pass signal from the high pass filter is then filtered, as in 502, with a first filter module to create a first filtered signal. The first filter module is configured to selectively boost or attenuate the gain of select frequency ranges within an audio signal, such as the high pass signal. Accordingly, the first filter module may comprise a second order low shelf filter and a second order high shelf filter in at least one embodiment. In at least one embodiment, the first filter module boosts the content above a first frequency by a certain amount, and attenuates the content below a first frequency by a certain amount, before presenting the signal to a compressor or dynamic range controller. This allows the dynamic range controller to trigger and adjust higher frequency material, whereas it is relatively insensitive to lower frequency material.
The first filtered signal from the first filter module is then modulated, as in 503, with a first compressor. The first compressor may comprise an automatic or dynamic gain controller, or any circuits appropriate for the dynamic compression of an audio signal. Accordingly, the compressor may comprise standard dynamic range compression controls such as threshold, ratio, attack and release. An example implementation of the first compressor may assume a form similar to the following:
The modulated signal from the first compressor is then filtered, as in 504, with a second filter module to create a second filtered signal. The second filter module is configured to selectively boost or attenuate the gain of select frequency ranges within an audio signal, such as the modulated signal. Accordingly, the second filter module may comprise a second order low shelf filter and a second order high shelf filter in at least one embodiment. In at least one embodiment, the second filter module boosts the content above a second frequency by a certain amount, and attenuates the content below a second frequency by a certain amount. In at least one embodiment, the second filter module adjusts the content below the first specified frequency by a fixed amount, inverse to the amount that was removed by the first filter module. By way of example, if the first filter module boosted content above a first frequency by +X dB and attenuated content below a first frequency by −Y dB, the second filter module may then attenuate the content above the first frequency by −X dB, and boost the content below the first frequency by +Y dB. In other words, the purpose of the second filter module in one embodiment may be to “undo” the filtering that was applied by the first filter module.
The second filtered signal from the second filter module is then processed, as in 505, with a first processing module to create a processed signal. The first processing module may comprise a gain element configured to adjust the level of the signal. This adjustment, for instance, may be necessary because the peak-to-average ratio was modified by the first compressor. The first processing module may comprise a peak/dip module. The peak/dip module may comprise ten cascaded second-order filters in at least one embodiment. The peak/dip module may be used to shape the desired output spectrum of the signal. In at least one embodiment, the first processing module comprises only the peak/dip module. In other embodiments, the first processing module comprises a gain element followed by a peak/dip module.
The processed signal from the first processing module is then split, as in 506, with a band splitter into a low band signal, a mid band signal, and a high band signal. The band splitter may comprise any circuit or combination of circuits appropriate for splitting a signal into a plurality of signals of different frequency ranges. In at least one embodiment, the band splitter comprises a fourth-order band-splitting bank. In this embodiment, each of the low band, mid band, and high band is yielded as the output of a fourth-order section, realized as the cascade of second-order biquad filters.
The low band signal is modulated, as in 507, with a low band compressor to create a modulated low band signal. The low band compressor may be configured and/or computationally identical to the first compressor in at least one embodiment. The high band signal is modulated, as in 508, with a high band compressor to create a modulated high band signal. The high band compressor may be configured and/or computationally identical to the first compressor in at least one embodiment.
The modulated low band signal, mid band signal, and modulated high band signal are then processed, as in 509, with a second processing module. The second processing module comprises at least a summing module. The summing module is configured to combine a plurality of signals into one composite signal. In at least one embodiment, the summing module may further comprise individual gain controls for each of the incoming signals, such as the modulated low band signal, the mid band signal, and the modulated high band signal. By way of example, an output of the summing module may be calculated by:
out=w0*low+w1*mid+w2*high
The coefficients w0, w1, and w2 represent different gain adjustments. The second processing module may further comprise a second gain element. The second gain element may be the same as the first gain element in at least one embodiment. The second gain element may provide a final gain adjustment. Finally, the second processed signal is transmitted as the output signal.
As diagrammatically represented,
Accordingly, an input audio signal is first filtered, as in 501, with a high pass filter. The high pass signal from the high pass filter is then filtered, as in 601, with a first low shelf filter. The signal from the first low shelf filter is then filtered with a first high shelf filter, as in 602. The first filtered signal from the first low shelf filter is then modulated with a first compressor, as in 503. The modulated signal from the first compressor is filtered with a second low shelf filter as in 611. The signal from the low shelf filter is then filtered with a second high shelf filter, as in 612. The second filtered signal from the second low shelf filter is then gain-adjusted with a first gain element, as in 621. The signal from the first gain element is further processed with a peak/dip module, as in 622. The processed signal from the peak/dip module is then split into a low band signal, a mid band signal, and a high band signal, as in 506. The low band signal is modulated with a low band compressor, as in 507. The high band signal is modulated with a high band compressor, as in 508. The modulated low band signal, mid band signal, and modulated high band signal are then combined with a summing module, as in 631. The combined signal is then gain adjusted with a second gain element in order to create the output signal, as in 632.
Any of the above methods may be completed in sequential order in at least one embodiment, though they may be completed in any other order. In at least one embodiment, the above methods may be exclusively performed, but in other embodiments, one or more steps of the methods as described may be skipped.
One further embodiment of the present invention is directed to an in-line processor 500 attached to or embedded within a communications cable 510 as illustrated in
The input and output connectors 501, 502 may be non-standard, or standard, e.g. RCA, component, composite, optical, USB, HDMI, Firewire, headphone connector, or any other connector(s) appropriate for connection with an electronic device in order to transmit a signal. Accordingly, the input connector 501 is structured and/or configured to receive an input signal comprising at least an audio component of a signal, or an audio input signal. The input signal is then processed by the audio enhancement module in order to create an output signal. The output connector 502 is structured and/or configured to transmit the output signal to another electronic device. The in-line processor 500 functions as a communications cable, and for example, may transmit a signal from a DVD player to a television display or from a portable music player to speakers. However, the audio signal that is transmitted through the communications cable is enhanced or processed during transmission by the audio enhancement module 530.
As such, the audio enhancement module 530 may comprise at least one processing component in hardware and/or software structured and/or configured to process an input signal according to a predetermined processing scheme or predetermined audio enhancement scheme, such as the one or more steps and/or components recited above in this application, or the one or more steps and/or components recited in one or more of the applications and patents cross-referenced and incorporated by reference above. For example, in one embodiment, the audio enhancement module 530 may be in the form of a system on a chip or a microcontroller. In another embodiment, the audio enhancement module 530 may be in the form of individual hardware components including filters, compressors, equalizers, and other appropriate signal processing components or electronic circuits.
As such, one embodiment of the present invention may comprise an audio enhancement module comprising a first low shelf filter, a first high shelf filter, a first compressor, a second low shelf filter, a second high shelf filter, a graphic equalizer, and a second compressor. These components and accompanying steps are described in detail in U.S. application Ser. No. 11/947,301 filed on Nov. 29, 2007, which matured into U.S. Pat. No. 8,160,274 on Apr. 17, 2012, incorporated herein by reference in its entirety.
Another embodiment of the present invention may comprise an audio enhancement module comprising a high pass filter, a first low shelf filter, a first high shelf filter, a first compressor, a second low shelf filter, a second high shelf filter, a first processing module, a band splitter, a low band compressor, a high band compressor, and a second processing module. These components and accompanying steps are described in detail above in this patent.
As illustrated in
In at least one embodiment of the present invention, a profile module 604 may be used to select from one or more predetermined audio enhancement scheme(s) and/or adjust the parameters thereof. These parameters may include but are not limited to frequency cutoffs, gain adjustments, filter adjustments, adjusting the equalizing coefficients of a graphic equalizer, other adjustments as disclosed in the earlier applications and patents incorporated herein by reference, and/or any other adjustments known to those skilled in the art and is/are appropriate for the enhancement of an audio signal.
In at least one embodiment, preset profiles or processing profiles may be directed to particular hardware and/or audio environments. A user may be able to select processing profiles, audio enhancement scheme(s) and/or adjust any parameters via a user interface 603. The user interface 603 may comprise a touchscreen or button interface on the audio enhancement module 530′. Alternatively, the user interface 603 may comprise a wired or wireless connection to another device in communication with the audio enhancement module 530′. For example, a user may utilize near-field communication such as Bluetooth, infrared, or WiFi to access the profile module 604 and select a profile or otherwise alter or customize any parameters of the audio enhancement module 530′.
Since many modifications, variations and changes in detail can be made to the described preferred embodiment of the invention, it is intended that all matters in the foregoing description and shown in the accompanying drawings be interpreted as illustrative and not in a limiting sense. Thus, the scope of the invention should be determined by the appended claims and their legal equivalents.
Now that the invention has been described,
This application claims priority to U.S. Provisional Application No. 61/908,402 filed on Nov. 25, 2013. This application is also a continuation-in-part of U.S. application Ser. No. 14/059,948 filed on Oct. 22, 2013 and which is a continuation-in-part of U.S. application Ser. No. 12/648,007 filed on Dec. 28, 2009 and which matured into U.S. Pat. No. 8,565,449 on Oct. 22, 2013, which is a continuation-in-part of U.S. application Ser. No. 11/947,301 filed on Nov. 29, 2007 and which matured into U.S. Pat. No. 8,160,274 on Apr. 17, 2012, which claims priority to U.S. Provisional Application No. 60/861,711 filed Nov. 30, 2006, and is a continuation-in-part of U.S. application Ser. No. 11/703,216, filed Feb. 7, 2007, which claims priority to U.S. Provisional Application No. 60/765,722, filed Feb. 7, 2006.
Number | Name | Date | Kind |
---|---|---|---|
4162462 | Endoh et al. | Jul 1979 | A |
4184047 | Langford | Jan 1980 | A |
4218950 | Uetrecht | Aug 1980 | A |
4353035 | Schroder | Oct 1982 | A |
4356558 | Owen et al. | Oct 1982 | A |
4363007 | Haramoto et al. | Dec 1982 | A |
4412100 | Orban | Oct 1983 | A |
4517415 | Laurence | May 1985 | A |
4538297 | Waller | Aug 1985 | A |
4584700 | Scholz | Apr 1986 | A |
4602381 | Cugnini et al. | Jul 1986 | A |
4612665 | Inami et al. | Sep 1986 | A |
4641361 | Rosback | Feb 1987 | A |
4677645 | Kaniwa et al. | Jun 1987 | A |
4696044 | Waller, Jr. | Sep 1987 | A |
4701953 | White | Oct 1987 | A |
4704726 | Gibson | Nov 1987 | A |
4739514 | Short et al. | Apr 1988 | A |
4815142 | Imreh | Mar 1989 | A |
4856068 | Quatieri et al. | Aug 1989 | A |
4887299 | Cummins et al. | Dec 1989 | A |
5133015 | Scholz | Jul 1992 | A |
5210806 | Kihara et al. | May 1993 | A |
5239997 | Guarino et al. | Aug 1993 | A |
5361381 | Short | Nov 1994 | A |
5463695 | Werrbach | Oct 1995 | A |
5465421 | McCormick et al. | Nov 1995 | A |
5467775 | Callahan et al. | Nov 1995 | A |
5541866 | Sato et al. | Jul 1996 | A |
5572443 | Emoto et al. | Nov 1996 | A |
5617480 | Ballard et al. | Apr 1997 | A |
5640685 | Komoda | Jun 1997 | A |
5671287 | Gerzon | Sep 1997 | A |
5699438 | Smith et al. | Dec 1997 | A |
5727074 | Hildebrand | Mar 1998 | A |
5737432 | Werrbach | Apr 1998 | A |
5832097 | Armstrong et al. | Nov 1998 | A |
5848164 | Levine | Dec 1998 | A |
5872852 | Dougherty | Feb 1999 | A |
5990955 | Koz | Nov 1999 | A |
6078670 | Beyer | Jun 2000 | A |
6108431 | Bachler | Aug 2000 | A |
6201873 | Dal Farra | Mar 2001 | B1 |
6263354 | Gandhi | Jul 2001 | B1 |
6285767 | Klayman | Sep 2001 | B1 |
6292511 | Goldston et al. | Sep 2001 | B1 |
6317117 | Goff | Nov 2001 | B1 |
6318797 | Bohm et al. | Nov 2001 | B1 |
6518852 | Derrick | Feb 2003 | B1 |
6535846 | Shashoua | Mar 2003 | B1 |
6661900 | Allred | Dec 2003 | B1 |
6772114 | Sluijter et al. | Aug 2004 | B1 |
6871525 | Withnall et al. | Mar 2005 | B2 |
6907391 | Bellora et al. | Jun 2005 | B2 |
6999826 | Zhou et al. | Feb 2006 | B1 |
7006653 | Guenther | Feb 2006 | B2 |
7016746 | Wiser | Mar 2006 | B2 |
7058463 | Ruha et al. | Jun 2006 | B1 |
7123728 | King et al. | Oct 2006 | B2 |
7254243 | Bongiovi | Aug 2007 | B2 |
7266205 | Miller | Sep 2007 | B2 |
7274795 | Bongiovi | Sep 2007 | B2 |
7519189 | Bongiovi | Apr 2009 | B2 |
7577263 | Tourwe | Aug 2009 | B2 |
7613314 | Camp, Jr. | Nov 2009 | B2 |
7676048 | Tsutsui | Mar 2010 | B2 |
1264800 | Bongiovi | Jul 2010 | A1 |
7778718 | Janke et al. | Aug 2010 | B2 |
7916876 | Helsloot | Mar 2011 | B1 |
1272765 | Hicks et al. | Sep 2011 | A1 |
8068621 | Okabayashi et al. | Nov 2011 | B2 |
8160274 | Bongiovi | Apr 2012 | B2 |
8175287 | Ueno et al. | May 2012 | B2 |
8229136 | Bongiovi | Jul 2012 | B2 |
8284955 | Bongiovi et al. | Oct 2012 | B2 |
8462963 | Bongiovi | Jun 2013 | B2 |
8472642 | Bongiovi | Jun 2013 | B2 |
8565449 | Bongiovi | Oct 2013 | B2 |
8705765 | Bongiovi | Apr 2014 | B2 |
20010008535 | Lanigan | Jul 2001 | A1 |
20010043704 | Schwartz | Nov 2001 | A1 |
20020057808 | Goldstein | May 2002 | A1 |
20030023429 | Claesson | Jan 2003 | A1 |
20030035555 | King | Feb 2003 | A1 |
20030112088 | Bizjak | Jun 2003 | A1 |
20030138117 | Goff | Jul 2003 | A1 |
20030179891 | Rabinowitz et al. | Sep 2003 | A1 |
20030216907 | Thomas | Nov 2003 | A1 |
20040022400 | Magrath | Feb 2004 | A1 |
20040044804 | Mac Farlane | Mar 2004 | A1 |
20040086144 | Kallen | May 2004 | A1 |
20040138769 | Akiho | Jul 2004 | A1 |
20040146170 | Zint | Jul 2004 | A1 |
20050090295 | Ali et al. | Apr 2005 | A1 |
20050129248 | Kraemer et al. | Jun 2005 | A1 |
20050175185 | Korner | Aug 2005 | A1 |
20050201572 | Lindahl et al. | Sep 2005 | A1 |
20050249272 | Kirkeby et al. | Nov 2005 | A1 |
20050254564 | Tsutsui | Nov 2005 | A1 |
20060034467 | Sleboda et al. | Feb 2006 | A1 |
20060064301 | Aguilar et al. | Mar 2006 | A1 |
20060098827 | Paddock et al. | May 2006 | A1 |
20060126851 | Yuen et al. | Jun 2006 | A1 |
20060126865 | Blamey et al. | Jun 2006 | A1 |
20060140319 | Eldredge et al. | Jun 2006 | A1 |
20060291670 | King et al. | Dec 2006 | A1 |
20070010132 | Nelson | Jan 2007 | A1 |
20070177459 | Behn | Aug 2007 | A1 |
20070206643 | Egan | Sep 2007 | A1 |
20070223713 | Gunness | Sep 2007 | A1 |
20070223717 | Boersma | Sep 2007 | A1 |
20070253577 | Yen et al. | Nov 2007 | A1 |
20080031462 | Walsh et al. | Feb 2008 | A1 |
20080040116 | Cronin | Feb 2008 | A1 |
20080069385 | Revit | Mar 2008 | A1 |
20080112576 | Bongiovi | May 2008 | A1 |
20080123870 | Stark | May 2008 | A1 |
20080123873 | Bjorn-Josefsen et al. | May 2008 | A1 |
20080137881 | Bongiovi | Jun 2008 | A1 |
20080165989 | Seil et al. | Jul 2008 | A1 |
20080181424 | Schulein et al. | Jul 2008 | A1 |
20080219459 | Bongiovi et al. | Sep 2008 | A1 |
20090022328 | Neugebauer et al. | Jan 2009 | A1 |
20090054109 | Hunt | Feb 2009 | A1 |
20090062946 | Bongiovi et al. | Mar 2009 | A1 |
20090086996 | Bongiovi et al. | Apr 2009 | A1 |
20090290725 | Huang | Nov 2009 | A1 |
20090296959 | Bongiovi | Dec 2009 | A1 |
20100303278 | Sahyoun | Dec 2010 | A1 |
20110087346 | Larsen et al. | Apr 2011 | A1 |
20110194712 | Potard | Aug 2011 | A1 |
20120014553 | Bonanno | Jan 2012 | A1 |
20120099741 | Gotoh et al. | Apr 2012 | A1 |
20120170759 | Yuen et al. | Jul 2012 | A1 |
20120213375 | Mahabub et al. | Aug 2012 | A1 |
20120302920 | Bridger et al. | Nov 2012 | A1 |
20130121507 | Bongiovi et al. | May 2013 | A1 |
20130162908 | Son et al. | Jun 2013 | A1 |
20130227631 | Sharma et al. | Aug 2013 | A1 |
20130242191 | Leyendecker | Sep 2013 | A1 |
20140100682 | Bongiovi | Apr 2014 | A1 |
20140185829 | Bongiovi | Jul 2014 | A1 |
20140379355 | Hosokawsa | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
2005274099 | Oct 2010 | AU |
20070325096 | Apr 2012 | AU |
2012202127 | Jul 2014 | AU |
2533221 | Jun 1995 | CA |
2576829 | Jul 2014 | CA |
0780050323X | May 2013 | CN |
203057339 | Jul 2013 | CN |
0206746 | Aug 1992 | EP |
2003707 | Mar 1979 | GB |
P0031074 | Jun 2012 | ID |
260362 | Apr 2014 | IN |
198914 | Jul 2014 | IS |
3150910 | Jun 1991 | JP |
7106876 | Apr 1995 | JP |
1020040022442 | Mar 2004 | JP |
2005500768 | Jan 2005 | JP |
1020090101209 | Sep 2009 | JP |
4787255 | Jul 2011 | JP |
5048782 | Jul 2012 | JP |
201543561 | Mar 2015 | JP |
1020040022442 | Mar 2004 | KR |
1020090101209 | Sep 2009 | KR |
101503541 | Mar 2015 | KR |
J001182 | Oct 2013 | MO |
274143 | Aug 2005 | MX |
301172 | Nov 2006 | MX |
315197 | Nov 2013 | MX |
553744 | Jan 2009 | NZ |
574141 | Apr 2010 | NZ |
557201 | May 2012 | NZ |
12009501073 | Nov 2014 | PH |
2407142 | Dec 2010 | RU |
2483363 | May 2013 | RU |
152762 | Dec 2011 | SG |
155213 | Feb 2013 | SG |
1319288 | Jun 1987 | SU |
WO 9311637 | Jun 1993 | WO |
WO 9535628 | Dec 1995 | WO |
WO 9938155 | Jul 1999 | WO |
WO 0015003 | Mar 2000 | WO |
WO 2006020427 | Feb 2006 | WO |
WO 2007092420 | Aug 2007 | WO |
WO 2008067454 | Jun 2008 | WO |
WO 2009070797 | Jun 2009 | WO |
WO 2009114746 | Sep 2009 | WO |
WO 2009155057 | Dec 2009 | WO |
WO 2010027705 | Mar 2010 | WO |
WO 2010051354 | May 2010 | WO |
WO 2011081965 | Jul 2011 | WO |
WO 2013076223 | May 2013 | WO |
WO 2015061393 | Apr 2015 | WO |
WO 2015077681 | May 2015 | WO |
Entry |
---|
NovaSound Int., http://www.novasoundint.com/new—page—t.htm, 2004. |
Number | Date | Country | |
---|---|---|---|
20140185829 A1 | Jul 2014 | US |
Number | Date | Country | |
---|---|---|---|
61908402 | Nov 2013 | US | |
60861711 | Nov 2006 | US | |
60765722 | Feb 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14059948 | Oct 2013 | US |
Child | 14153433 | US | |
Parent | 12648007 | Dec 2009 | US |
Child | 14059948 | US | |
Parent | 11947301 | Nov 2007 | US |
Child | 12648007 | US | |
Parent | 11703216 | Feb 2007 | US |
Child | 11947301 | US |