1. Field of the Invention
The present invention relates to orthopedic implants. More particularly, the present invention relates to woven implants for cartilage replacement and to a method for making the same.
2. Description of the Related Art
Some implants for cartilage replacement are constructed of rigid materials, such as cobalt chromium. Although these implants may be strong enough for implantation into a load-bearing joint, such materials may cause opposing surfaces of the joint to wear.
Other implants for cartilage replacement are constructed of flexible materials, such as hydrogels. Although these implants provide smooth articular bearing surfaces, such materials may not withstand the loads of some joints, especially in the aqueous environment of the human body.
The present invention provides a woven implant for cartilage replacement having layered functionality. An exemplary woven implant may include a bottom layer, a top layer, and an intermediate layer. The bottom layer includes a plurality of interwoven fibers that are surface-treated to promote anchoring to bone. The top layer includes a plurality of interwoven fibers that are surface-treated to promote lubrication. The intermediate layer is located between the bottom layer and the top layer and includes a plurality of interwoven fibers that are surface-treated to promote soft tissue attachment. This exemplary woven implant may be strong enough for implantation into a load-bearing joint, while also having a smooth articular bearing surface.
According to an embodiment of the present invention, a method is provided for forming an orthopedic implant for cartilage replacement from a first plurality of fibers and a second plurality of fibers, each of the first and second plurality of fibers having a surface. The method includes the steps of: treating the surfaces of the first plurality of fibers to make the first plurality of fibers more hydrophilic than the second plurality of fibers; and after the treating step, weaving together the first plurality of fibers to form a top layer of the orthopedic implant and weaving together the second plurality of fibers to form a bottom layer of the orthopedic implant that is coupled to the top layer of the orthopedic implant, the top layer defining an articulating surface of the orthopedic implant and the bottom layer defining a bone-contacting surface of the orthopedic implant.
According to another embodiment of the present invention, a method is provided for forming an orthopedic implant for implantation into a cartilage defect site of a patient's body, the cartilage defect site being surrounded by remaining bone and remaining cartilage. The method includes the steps of: providing a first plurality of fibers and a second plurality of fibers, each of the first and second plurality of fibers having a surface; treating the surfaces of the first plurality of fibers to increase the hydrophilicity of the first plurality of fibers; after the treating step, weaving together the first plurality of fibers to form a top layer of the orthopedic implant and weaving together the second plurality of fibers to form a bottom layer of the orthopedic implant that is coupled to the top layer of the orthopedic implant, the orthopedic implant sized for implantation into the cartilage defect site with the bottom layer of the orthopedic implant positioned adjacent to the remaining bone and the top layer of the orthopedic implant positioned adjacent to the remaining cartilage.
According to yet another embodiment of the present invention, a woven orthopedic implant is provided for cartilage replacement having an articulating surface and a bone-contacting surface opposite the articulating surface. The orthopedic implant includes: a first plurality of fibers interwoven to form a top layer of the orthopedic implant, the top layer defining the articulating surface of the orthopedic implant, each of the first plurality of fibers having an exterior surface that is treated to promote articulation; a second plurality of fibers interwoven to form a bottom layer of the orthopedic implant, the bottom layer defining the bone-contacting surface of the orthopedic implant, each of the second plurality of fibers having an exterior surface that promotes bone attachment; and a third plurality of fibers interwoven to form an intermediate layer of the orthopedic implant coupled to both the top and bottom layers of the orthopedic implant, each of the third plurality of fibers having an exterior surface that promotes soft tissue attachment.
The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention itself will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate exemplary embodiments of the invention and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
Referring to
Each fiber 12, including each weft fiber 14, in-layer warp fiber 16, out-of-layer warp fiber 18, and between-layer warp fiber 20, may be made of one or more materials. For example, each fiber 12 may be a braided fiber made of multiple materials. Fibers 12 may be made of biocompatible materials including polymers (such as thermoplastics and hydrophilic hydrogels), acrylics, natural fibers, metals, glass fibers, carbon fibers, ceramics, or other suitable biocompatible materials. Exemplary polymers include propylene, polyester, high density polyethylene (HDPE), low density polyethylene (LDPE), ultra-high molecular weight polyethylene (UHMWPE), polycarbonate urethane, and polyetheretherketones (PEEK). Exemplary hydrophilic hydrogels include polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), and polyethylene glycol (PEG). Exemplary acrylics include polymethyl methacrylate (PMMA). Exemplary natural fibers include elasin, keratin, silk, hydroxyl apatite (HA), collagen, and chitosan. Exemplary metals include stainless steel, titanium, titanium alloys, cobalt, nickel titanium alloy (nitinol), and tantalum. Exemplary ceramics include zirconia, alumina, and silica.
In the illustrated embodiment of
Each layer A, B, C, D, E, is coupled to an adjacent layer through out-of-layer warp fibers 18. Specifically, out-of-layer warp fibers 18A couple layers A and B, out-of-layer warp fibers 18B couple layers B and C, out-of-layer warp fibers 18C couple layers C and D, and out-of-layer warp fibers 18D couple layers D and E. Although out-of-layer warp fibers 18 are shown joining together two adjacent layers, out-of-layer warp fibers 18 may couple together more than two layers. For example, out-of-layer warp fibers 18A could extend beyond layer B and into layer C, D, or E.
In an embodiment of the present invention, three-dimensional woven material 10 includes fibers 12 that form a generally rigid body. In another embodiment of the present invention, three-dimensional woven material 10 includes fibers 12 that form a generally flexible body. In yet another embodiment of the present invention, three-dimensional woven material 10 includes a stiffness gradient. Referring to the illustrated embodiment of
Referring next to
Referring to
Gas plasma treatments, in particular, involve exciting a reactant gas to the plasma state of matter and introducing the excited gas to a substrate to fracture bonds along the surface of the substrate and initiate chemical reactions at the surface of the substrate. These broken bonds and chemical reactions may also occur at a limited depth beneath the surface of the substrate, but the bulk properties of the substrate generally are not altered.
According to an exemplary embodiment of the present invention, fibers 12 having surfaces 13 with various properties may be created, and these surface-treated fibers 12 may be layered to produce three-dimensional woven material 10 having a desired layered functionality. From this layered three-dimensional woven material 10 of
To promote anchoring to surrounding bone of femur 102, fibers 12 in layers A and B may be treated to become hydrophobic in nature. Hydrophobic fibers 12 may repel synovial fluid to permit bone growth into layers A and B of implant 30. Specifically, bone of femur 102 may grow into spaces between fibers 12 and into porous fibers 12 themselves. Alternatively, it has also been shown that hydrophilic materials may promote initial bone adherence, so it is within the scope of the present invention that some or all fibers 12 in layers A and B may be treated to become hydrophilic in nature.
To make fibers 12 hydrophobic in nature, fibers 12 may undergo gas plasma treatment with a fluorinated reactant gas, such as carbon tetrafluoride (CF4), sulfur hexafluoride (SF6), and perfluorohydrocarbons. When the fluorinated reactant gas is energized and exposed to fibers 12, hydrogen atoms along surface 13 of each treated fiber 12 may be substituted for fluorine atoms to create a non-polar, inert, Teflon-like surface 13. It is also within the scope of the present invention that fibers 12 may be sufficiently hydrophobic in nature as manufactured, without requiring subsequent surface treatments.
Also, to promote anchoring to surrounding bone of femur 102, fibers 12 in layers A and B may be roughened or etched to create binding sites for osteocytes and/or bio-active molecules. Such surface treatments may encourage a permanent attachment of implant 30 to femur 102.
In addition, to promote anchoring to surrounding bone of femur 102, fibers 12 in layers A and B may be manufactured or surface treated to include suitable proteins and/or peptides, such as arginine-glycine-aspartate (RGD) peptides, covalently bonded to surface 13 of each treated fiber 12. RGD peptides may be covalently bonded to fibers 12 via suitable functional groups, such as hydroxyl, amino, or carboxyl functional groups, on surface 13 of each treated fiber 12. Such functional groups may be introduced to fibers 12 by blending or co-polymerization. Also, such functional groups may be introduced to fibers 12 by chemical and physical treatments, similar to those treatments discussed above. For example, to deposit an amino functional group onto surfaces 13 of fibers 12, fibers 12 may undergo gas plasma treatment with ammonia as the reactant gas.
To promote soft tissue ingrowth, fibers 12 in layers C and D may be treated to become hydrophilic in nature. For example, polar functional groups, such as carboxyl functional groups or hydroxyl functional groups, may be deposited onto surface 13 of each treated fiber 12 using a gas plasma process. Hydrophilic fibers 12 may encourage soft tissue growth into layers C and D of implant 30. Specifically, soft tissue, such as cartilage 108, may grow into spaces between fibers 12 and into porous fibers 12 themselves. Such surface treatments may encourage a permanent attachment of implant 30 to cartilage 108 surrounding femur 102.
To promote low coefficient of friction articulation and lubrication, fibers 12 in surface layer E may be treated to encourage surface wetting. For example, polar functional groups, such as carboxyl functional groups or hydroxyl functional groups, may be deposited onto surface 13 of each treated fiber 12 using a gas plasma process. Also, fibers 12 in surface layer E may be treated to attract superficial zone proteins. It is within the scope of the present invention that fibers 12 in layer E may be treated using the same method as fibers 12 in layers C and D. It is also within the scope of the present invention that fibers 12 in layer E may be treated to become more hydrophilic than fibers 12 in layers C and D, and that fibers 12 in layers C and D may be treated to become more hydrophilic than fibers 12 in layers A and B. Such surface treatments may enhance articulation with adjacent structures of knee joint 100, including tibia 104 and patella 106, by binding superficial zone proteins common to native cartilage 108.
Referring next to
Continuing to step 204 of
Following step 204, fibers 12 are woven together in step 206 in the desired order and density to form three-dimensional woven material 10. As discussed above, fibers 12 in layers A and B may be surface-treated to promote anchoring to surrounding bone, fibers 12 in layers C and D may be surface-treated to promote soft tissue ingrowth, and fibers 12 in layer E may be surface-treated to promote articulation and lubrication. The fibers may be woven together using known weaving processes, such as the process described in U.S. Pat. No. 4,154,267 to Orr et al., the disclosure of which is incorporated herein by reference. Also, the fibers may be woven together according to processes currently performed by Secant Medical, LLC of Perkasie, Pa.
Advantageously, weaving in step 206 after surface treating in step 204 produces an implant that may have more than two functional layers, including functional top, bottom, and intermediate layers. Also, the implant maintains its desired bulk properties. Surface treating the final bulk implant after weaving, on the other hand, produces at most a functional top layer and a functional bottom layer. Also, depending on the treatment method, surface treating the final bulk implant after weaving may impact only the top-most and bottom-most fibers, not intermediate fibers.
Continuing to step 208 of
Fibers were subjected to various gas plasma treatments to evaluate the impact of such treatments on fiber wettability. The fibers included strands of 220 dtex Dyneema Purity™ SGX yarn, available from DSM Biomedical of the Netherlands. The following treatments were performed using a gas plasma device supplied by PVA TePla America, Inc. of Corona, California: (1) addition of hydroxyl functional group; (2) fluorination; (3) oxidation; and (4) addition of carboxyl functional group.
Each of the four treated yarns and a fifth untreated yarn was cut into five pieces of equal lengths. Individually, one end of each piece of yarn was tied to a ring stand while the other end of the yarn was allowed to hang and contact 40 mL of room temperature Crystal Violet solution, available from Becton, Dickinson and Company of Franklin Lakes, N.J.
Over time, the fibers absorbed the solution. The height or distance (in inches) that the colored solution visibly climbed into the fiber was measured at the following time increments: 5 seconds, 30 seconds, 60 seconds, 90 seconds, and 120 seconds. The graphical results of this experiment are set forth in
While this invention has been described as having preferred designs, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.
This application claims priority from U.S. Provisional Patent Application No. 61/138,374, entitled “In-Line Coating of Yarn Prior to Creating a Fabric,” filed on Dec. 17, 2008, by the same inventor hereof, the disclosure of which is expressly incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61138374 | Dec 2008 | US |