This invention relates to water traps, particularly water traps used in plumbing applications, more particularly to water traps in plumbing applications associated with soil and/or waste water pipe drainage systems, even more particularly to an in-line water trap located in the line of the flow of waste water through a generally straight line or bend.
Water traps are used in plumbing applications to prevent airborne diseases, insects and vermin and/or unwelcome odorous gases emanating from a drain stack or gully to re-enter a building causing health risks. The particular configuration of the water trap causes it to retain or trap a nominal amount of waste water after each occasion the plumbing application has been used, essentially creating a water seal and in so doing preventing the ingress of the aforesaid from a sewerage drainage system into a building.
Typically, water traps in plumbing applications comprise bottle traps or U, S or P shaped traps and are utilized in plumbing applications, such as toilets, sinks, wash-hand basins, bathtubs, showers and urinals. The various plumbing applications are in operative communication with a sewerage drainage system which facilitates the removal of waste in the form of soil and/or grey water (which can include rain water) from a building to a sewerage line of a greater reticulation system leading to a septic tank or a public sewer.
An important aspect to consider when designing water traps is the continued maintenance of the water seal. Depending on the size and configuration of a particular design a water trap can siphon off water resulting in its defective operation. Various measures are known to prevent water traps from siphoning off. These classically include providing a particular shape to the water trap and/or air by-pass, or employing purge valves in attendance to the trap and other air admittance valves and/or providing for venting within drain lines of the reticulation system.
The greater reticulation system is typically kept at a pressure close to or at atmospheric pressure. The flow of waste within the drainage system creates a positive pressure downstream of the flow which needs to be purged to prevent the water seal in the water traps downstream from being pushed back up into the plumbing application and allowing waste to enter the plumbing application from the drainage system, which is mostly undesirable, save for a gully which is placed to receive waste in that manner and in turn prevent same from occurring in those plumbing applications in which it is undesirable. The entering of waste into plumbing applications from the drainage system will result in unhygienic conditions with potentially severe health and safety implications. Upstream of the flow a negative pressure is created which needs to be purged to prevent upstream water traps from being siphoned off. In the event of the water seals being broken, airborne diseases and unwelcome odorous gases will freely be able to pass from within the drainage system into a plumbing application and into the building causing unhealthy and unsavory habitation conditions.
Venting and/or air by-pass pipes known to be used in helping to maintain desired pressure in the drainage system are costly, have been known to draw out water seals by high-velocity winds passing over the top of the stack and become clogged and thus prevent the effective purging of that system resulting in defective drainage of waste. Air admittance valves are also known to be used within drainage systems in order to maintain the desired pressure within that system. Although this venting means assists in the maintenance of a desired operative pressure within the drainage system, such mechanisms provide for additional movable parts in an apparatus assembly which often fail, and may be prone to maintenance and repair procedures escalating cost implications.
Typical existing water traps are prone to blockage owing to retained waste solids obstructing a necessary flow path having several bends and a relatively long confined flow path. There is consequently a need for a water trap design which will assist in the flow of waste or prevent the back flow of waste and which will assist in preventing the water seal being siphoned off under excess negative flow pressure. There is also a need for a water trap wherein the confined flow path is reduced having fewer confined bends facilitating the flushing of waste solids. There is a further need for easier and more convenient access to the water trap, if maintenance is required. Conventional drains also require separate access to the trap for maintenance to be conducted.
According to the invention there is provided an in-line water trap comprising:
There is provided that the skirt may comprise at least one lobe and at least one securing wall, the fluid conduit attachingly engaging an inner wall of the at least one securing wall.
In a preferred embodiment of the invention the skirt may comprise two lobes diametrically opposite each other and two securing walls diametrically opposite each other, which two securing walls space the two lobes from each other, the fluid conduit attachingly engaging the inner wall of the two securing walls.
There is further provided that the lobe(s) of the skirt may further comprise a step located between the closed end of the vessel and the open end of the vessel, the step defining a first region proximal the closed end and a second region proximal the open end, wherein the first region defines a smaller volume relative the second region.
The water trap may further comprise at least one mounting member extending from the first end of the fluid conduit to mount the water trap inside a housing.
The water-trap may further comprise at least one attachment means to attach the lobed vessel to the fluid conduit.
The attachment means may have a recessed face located along the conduit, the recessed face defined by the second end of the conduit and the mounting member to operatively receive and seat against the skirt of the lobed vessel in so doing attaching the lobed vessel to the fluid conduit.
The in-line water trap may further comprise an inlet/outlet chamber having at least one inlet/out means extending from and operatively attached to the mounting member, in use, the at least one inlet/outlet means conveying fluid into or out of the inlet/outlet chamber.
The housing may be selected from the group consisting of: plumbing applications, pipes, drains, fittings of pipes and fittings of drains.
There is further provided that the closed end of the vessel may be substantially dome shaped.
There is further provided that the lobed vessel may be resiliently deformable in response to pressure difference across the closed end of the lobed vessel, between an open position, wherein the closed end of the lobed vessel is spaced from the second end of the fluid conduit facilitating fluid flow between an inner volume of the lobed vessel and the passage of the fluid conduit, and a closed position, wherein the closed end of the lobed vessel abuts and seals against the second end of the fluid conduit thereby hindering fluid flow between the inner volume and the passage.
There is further provided that the second end may have extending therefrom a protrusion against which the closed end seats and seals when the water trap is in the closed position.
There is further provided that the lobed vessel may further comprise an actuation means to actuate the lobed vessel between the open and closed positions.
Embodiments of the invention will be described below by way of example only and with reference to the accompanying drawings in which:
a shows a perspective view of a simple embodiment of the in-line water trap, having a single lobe, in accordance with the invention.
b shows a cross-sectional perspective view of the in-line water trap of
a shows a perspective view of a simple embodiment of the in-line water trap, having two lobes, in accordance with the invention.
b shows a cross-sectional perspective view of the in-line water trap of
c shows a cross-sectional view of the in-line water trap with a dome shaped closed end, inside a housing in the form of a pipe in accordance with the invention.
d shows a perspective view of a simple embodiment of the in-line water trap, having three lobes, in accordance with the invention.
e shows a cross-sectional perspective view of the in-line water trap of
f shows a cross-sectional view of the in-line water trap of
a shows an inlet/outlet chamber attached to the mounting member of
b shows an embodiment of a mounting member extending from the fluid conduit, which mounting member comprising a circular arrangement having a Z-shaped cross section.
a shows an outside perspective view of an embodiment of the invention with two lobes.
b shows an inside perspective view of an embodiment the invention with two lobes.
a shows a perspective view of an in-line water trap according to the invention, in use, in a plumbing application, wherein the plumbing application is a drain.
b shows a side view of an embodiment of the invention, in use, in a shower.
c shows a cross-sectional side view of the invention, in use, in a wash hand basin.
Referring to the accompanying diagrammatic drawings,
It is to be understood that the flow of fluid through passage 16 of the fluid conduit 12 and through an inner volume 17 of lobed vessel 18 is unrestricted meaning that a particular volume of fluid can pass between the fluid conduit 12 and the lobed vessel 18, or visa versa, with a minimal amount of restriction in its flow path.
a shows a perspective view of an embodiment of the invention wherein the lobed vessel's 18 skirt 20 is formed to define a single lobe 28 and
a-c show a second embodiment of the invention, an in-line water trap 10, wherein the lobed vessel's 18 skirt 20 is shaped and dimensioned to form two lobes 32 and 34 and two securing walls 36.1 and 36.2 (shown in
It is to be understood that in a preferred embodiment of the invention the lobed vessel 18 is resiliently deformable in response to pressure difference across the closed end 19 of the lobed vessel 18, between an open position (as shown in
c shows a cross sectional view of the in-line water trap 10 accommodated inside a housing 30 in the form of a drain pipe. In
In a particular embodiment of the invention the closed end 19 has an actuating means in the form of a nib 73 (as shown in
d-e show an embodiment of the invention, an in-line water trap 10, wherein the lobed vessel 18 comprises three lobes 44, 46 and 48 spaced in a triangular-type arrangement. The fluid conduit 12 is located within a centre region of the triangular-type arrangement and is attached to the skirt 20 via securing walls 36 of the vessel 18 along its exterior wall 22, as described in the previous embodiments of the invention.
f shows a cross sectional view of the in-line water trap 10 accommodated inside a housing 30 in the form of a drain pipe. In
It is important to note that the in-line water trap 10 can attach to a housing 30 via a mounting member 83, or 99, embodiments of which are shown in
a shows a housing 30 operatively engaged with the mounting means 83 in certain applications. The housing 30 comprises an inlet and/or outlet 124 means and an inlet/outlet chamber 126. It is to be understood that the housing 30 may include a number of inlet/outlet means arranged in various manners to suit various plumbing configurations. It is envisaged that the housing 30 may be moulded together with the mounting member 83 as one part, or alternatively, it may locate via a screw thread and a complementary screw thread. The inlet/outlet chamber 126 operatively attaches and extends from the mounting member 83, in use, the inlet/outlet means 124 conveys fluid into or out of the inlet/outlet chamber 126 and in turn the fluid conduit 12.
b shows a second embodiment of a mounting member 99 comprising a circular arrangement extending from the conduit 12 having a substantially Z-shaped cross section including a web 86 flanked by a pair of arms 88 and 90, such that the arms 88, 90 extend away from each other forming a Z-shape together with the web 86. It is to be understood that the different embodiments of the mounting members 83 and 99 have been designed as such to accommodate ease of differing manufacturing techniques, for example blow moulding and/or injection moulding. Arm 88 defines a recess 101 to operatively accommodate an O-ring 120 (shown in
a shows a side view of an embodiment of the invention wherein the two diametrically opposing lobes 32, 34 are clearly spaced by the securing wall 36.1 and 36.2 (not visible). It is evident from
Regarding now to
When the in-line water trap 10 is located in the lobed vessel fluid-retaining position as shown in
When the in-line water trap 10 is located in the flange fluid-retaining position as shown in
When the in-line water trap 10 is in the flange fluid-retaining position shown in
The resiliently deformable embodiment of the water-trap 10 alleviates the need for venting means associated with the plumbing application and/or the reticulation network.
Typically, in any embodiment of the invention, an in-line water trap 10, the lobed vessel 18 and the fluid conduit 12 are integrally moulded. It is to be understood that in alternative embodiments of the invention that the housing 30 is not limited to a drain pipe and may be any plumbing application including but not limited to the group: toilets, urinals, showers, baths, basins and gulleys. It is further to be understood that the lobed vessel 18 is in any embodiment of the invention described herein, preferably but not necessarily, resiliently deformable.
Generally, as shown in
Typically when the lobed vessel 18 is resiliently deformable it comprises a resilient plastics material to provide an effective sealing arrangement when the vessel 18 is in the closed position preventing fluid flow through several parts of the in-line water trap 10 which would otherwise be in fluid communication with one another. When the lobed vessel 18 is rigid it typically comprises, but is not limited to, a rigid plastics material.
It is to be understood that the housing 30 may comprise, but is not limited to, at least one of the following group of substances: polymer, ceramic, metal, clay, cast iron and cement. It must be further understood that the housing 30 is not limited to being a pipe and extends to various plumbing applications. Similarly, the conduit 12 and the mounting member 83, 99 may comprise, but is not limited to, at least one of the following group of substances: polymer, ceramic, metal, clay, cast iron and cement.
The above described embodiments of the invention provide a more effective means to prevent the ingress of odours and/or sewerage and/or grey water into a plumbing application from within a greater reticulation system whilst concomitantly providing for an effective means to hinder the siphoning off of a water trap. It further provides a more effective means of allowing waste and or grey water from passing through a plumbing application in so doing self flushing and reducing the possibility of waste material being retained in the trap and causing blockages. Furthermore, the water-trap in accordance with the invention allows access to the trap for maintenance via an outlet of a plumbing application and does not require separate access via for example an access panel. The water-trap in accordance with the invention when resiliently deformable also alleviates the need for venting means.
While the invention has been described in detail with respect to specific embodiments thereof, it will be appreciated that those skilled in the art, upon attaining an understand of the foregoing may readily conceive of alterations to, variations of and equivalents to these embodiments. Accordingly, the scope of the present invention should be assessed as that of the appended claims and any equivalents thereto.
Number | Date | Country | Kind |
---|---|---|---|
2011/00126 | Jan 2011 | ZA | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB12/50032 | 1/4/2012 | WO | 00 | 7/3/2013 |