The present invention relates to a helmet with a shield, more specifically, a helmet having a pivotable shield.
Helmets protect a person's head during, for example, a crash or a fall. Helmets are used in a variety of different sports and occupations, such as, for example, bicycle riding, American Football, motorcycle racing, horse riding, ice hockey, fire fighting, etc. Such helmets are typically formed by well known assembly processes, including but not limited to in-moulding processes involving the use of a hollow mould into which an expandable material, such as a foam and/or a foam precursor is added. The mould is typically heated up prior to or during the process, and often a vacuum is applied to help expand the foam and/or foam precursor.
In-moulding, also known as injection-moulding and co-injection moulding, is well-known in the art of helmet making for combining a hard outer layer with an inner polystyrene shape. Processes are also known for adding a lacquered outer layer to a STYROFOAM®, polystyrene foam, or other foam helmet. Other processes are known for injecting a pre-mixture of, for example expandable poly styrene (EPS) beads and spongy particles into a mould together so as to allegedly produce a helmet with a balance between impact protection and impact absorption. In some cases expandable poly propylene (EPP) beads are used as well. Some processes apply different materials into the mould at the same time, while other processes first form the pieces separately and then affix them together afterwards.
Other assembly process are also well-known in the helmet art, including moulding, fitting, etc. Oftentimes polycarbonate, plastic and/or composite parts are formed separately and then assembled together via screws, fasteners, etc. Designs, liners, foam padding, etc. may be added as well. Othertimes the manufacturer makes as much as possible together in a single mould.
Pivotable face shields are also well-known in fill-face helmets, such as motorcycle/racing helmets a dirt bike helmets. In a racing helmet, the face shield is typically formed of PLEXIGLAS® or other clear plastic and tends to cover the face, either partially or completely. Such a clear face shield is often required for safety and to meet various regulatory requirements. Face shields are often able to pivot up relative to the bicycle helmet so as to, for example, allow the user to clean condensation from the inside of the bicycle helmet without taking it off. However, such face shields are usually intended to be permanently affixed to the bicycle helmet as removing them may potentially cause safety issues during subsequent use. Nonetheless, some motorcycle helmet face shields are intended to be removable and/or replaceable by the user.
In cases such as horse riding and BMX-biking, full-face helmets are sometimes used and these may have sun visors affixed thereupon. Such sun visors are typically opaque and shield the face from the sun much like the bill of a baseball cap. Such sun visors are typically permanently fixed to the bicycle helmet and are unmovable—i.e., they are not intended to be removed by the bicycle helmet user.
Certain motorcycle helmets include a pivotable, tinted internal shield which is inside of the normal pivotable face shield. Such a dual shield system is intended to reduce glare, block ultraviolet (UV) rays, etc. and thereby replace sunglasses during riding, while also allowing high visibility during low light and night conditions. Due to the dual-layer construction, such a pivotable internal shield is typically controlled by an external control lever such as in the SHOEI® GT-AIR™ helmet with an internal sun shield (see, for example, http:/Iwww.shoei-helmets.corn/gt-air.aspx). The external control lever allows the user to slide the sun shield up into concealment, or down to cover the eyes, without having to open the external face shield. Such a system is useful in wet or high speed conditions. However, such a system requires a deformation of the forehead portion of the outer helmet layer which can affect aerodynamics, weight distribution and balance, and other factors. Such a construction method also requires extra complexity and is not suited to simpler helmets such as, for example, bicycle helmets, ski helmets, etc.
Accordingly, there remains a need for an improved helmet, especially an in-moulded helmet, having a pivoting visor which is, for example, easily constructed in an efficient manner, and/or has a removable/replaceable shield. There also remains a need for a simple helmet with a pivotable shield, such as a sun shield, which is at least somewhat protected from scratching, cracking, etc.
The present invention relates to a helmet containing a convex, hard outer shell, a concave, impact-dissipating inner layer, a shield, and a shield cover. The concave, impact-dissipating inner layer is fitted to the convex, hard outer shell. The concave, impact-dissipating inner layer contains a front portion having a shield indentation, a back portion opposite the front portion, a top portion joining the front portion and the back portion, a right side portion joining the front portion, the back portion, and the top portion, and a left side portion joining the front portion, the back portion, and the top portion. The left side portion is opposite the right side portion. The shield is pivotably attached to the helmet via a fulcrum and pivots about the fulcrum. The shield also partially occludes the shield indentation. The shield cover is fixably attached to the helmet and at least partially occludes the front portion. The shield cover also at least partially occludes the shield.
Without intending to be limited by theory, it is believed that the present invention provides significant advantages such as, for example, protection of the shield when not in use (i.e., when stored behind the shield cover) which leads to reduced scratching, abrasion, etc., a more durable shield, greater flexibility of the shield during use, reduced manufacturing complexity, reduced manufacturing time, etc.
The figures herein are for illustrative purposes only and not necessarily drawn to scale.
Unless otherwise specifically provided, all tests herein are conducted at standard conditions which include a room and testing temperature of 25° C., sea level (1 atm.) pressure, pH 7, as appropriate, and all measurements are made in metric units. Furthermore, all percentages, ratios, etc. herein are by weight, unless specifically indicated otherwise.
Unless otherwise explicitly indicated, as used herein the terms “internal”, “inner” and “inside” indicate a relative position towards the helmet portion which is or would be closer to the wearer's head. Unless otherwise explicitly indicated, as used herein the terms “exterior”, “outer” and “external” indicate a relative position towards the helmet portion which is or would be closer to the outside of a helmet which is or would be away from the wearer's head.
An embodiment of the present invention relates to a helmet; or an in-moulded helmet; containing a convex, hard outer shell, a concave, impact-dissipating inner layer, a shield and a shield cover. The concave, impact-dissipating inner layer is fitted to; or in-moulded with; the convex, hard outer shell. The concave, impact-dissipating inner layer contains a front portion with a shield indentation; a back portion opposite the front portion; a top portion joining the front portion and the back portion; an right side portion joining the front portion, the back portion and the top portion; and a left side portion joining the front portion, the back portion and the top portion. The shield is pivotably attached to the helmet by a fulcrum and at least partially occludes the shield indentation. The shield cover is fixably attached to the helmet at least partially occludes the front portion, and at least partially occludes the shield.
Turning to the figures,
In embodiments where the hard outer shell is separately formed from the inner layer, it may be fitted thereto and attached with fasteners, bolts, screws, etc. as desired. Alternatively, an adhesive may be used as well. If in-moulded, then the hard outer shell is typically permanently bound to the impact-dissipating member during the in-moulding process.
The hard outer shell serves multiple purposes such as aesthetics, additional impact dissipation, friction reduction, etc. For example, the hard outer shell may have various pigments, patterns, and/or textures thereupon or therein, including those recognizable as designs, logos, brand names, etc. In an embodiment herein, the hard outer shell is a hard, brittle material such as, for example, polycarbonate, polystyrene, or the like, which is intended to shatter upon impact so as to further dissipate the impact of a collision. In theory, such a shattering of the shell propagates the impact force in a lateral direction, so as to reduce the force transmitted through to the impact-dissipating material. A shattered or cracked hard outer shell after an impact may also be an indication that the impact was so great that structural integrity of the helmet may have been compromised, and therefore indicate to the user that the helmet should be replaced with a new helmet, checked for structural integrity and/or repaired.
In an embodiment herein the hard outer shell contains a shell material selected from a polymeric material; or from a polycarbonate, a polystyrene, a polyacrylate and a mixture thereof; or from an extruded polystyrene, acrylonitrile butadiene styrene, an expanded polystyrene, and a mixture thereof; or acrylonitrile butadiene styrene, an expanded polystyrene; and a mixture thereof.
In an embodiment herein, the hard outer shell contains a friction-reducing material selected from polytetraflouroethylene, perfluoroalkoxy, fluorinated ethylene propylene, aluminium magnesium boride, nylon, acetal, ultra high molecular weight polyethylene, and a mixture thereof. Such a friction-reducing material is especially useful in, for example, a racing helmet or a helmet intended for use in a competitive sport/activity.
The inner layer is formed of an impact-dissipating material typically selected from a polymeric material; or from a polystyrene, a polypropylene, and a mixture thereof; or from an extruded polystyrene, an expanded polystyrene; expanded polypropylene, and a mixture thereof; or an expanded polystyrene, and a mixture thereof. Without intending to be limited be theory, we believe that these materials provide a good balance between factors such as cost, weight, durability, impact-dissipation, formability, comfort, stability across various temperature ranges, etc. Expanded polystyrene especially tends to be light and also able to withstand both high and low temperature extremes and maintain its physical shock-absorbing properties for use in, for example, skiing helmets as well as water sport helmets.
In the embodiment of
The shield, 20, is typically formed of a shield material selected from, for example, a plastic, glass, a polymer, a resin, and a combination thereof, or PLEXIGLAS®, polyethylene, acrylic polymers, silicone polymers/copolymers, polycarbonate (e.g., LEXAN®), nylon, styrene, and a combination thereof or PLEXIGLAS®, acrylonitrile butadiene styrene, polycarbonate, polyethylene and a combination thereof. The shield may be coated with a film, if desired to provide various physical or chemical qualities such as, but not limited to, shatter resistance, scratch or abrasion resistance, ultraviolet (UV) protection, tinting, light wavelength filtering/absorption, reflectance (e.g., mirrored films), and a combination thereof. The shield, 20, may be transparent or tinted as desired, and is typically tinted to absorb visible light such that the total luminous transmittance (T1) according to the American Society for Testing and Materials ASTM D1003 11 e1 according to the section “7. Procedure A—Hazemeter” with a sample cut to 50 mm×50 mm square and a thickness of 2 mm is from about 10% to about 100% or from about 25% to about 95% or from about 35% to about 90%. In an embodiment herein the shield is tinted so as to absorb from about 10% to about 100% or from about 25% to about 95% or from about 35% to about 90% of a visible light wavelength of from about 7000 Å to about 4000 Å; or to absorb from about 10% to about 100% or from about 25% to about 50% or from about 35% to about 90% of a visible light wavelength selected from red light (at about 6870 Å), yellow light (at about 5875 Å), green light (at about 5132 Å), blue light (at about 4560 Å), and a combination thereof. In an embodiment herein the shield (and/or a coating thereupon) is tinted a color selected from yellow, brown, grey, black and a combination thereof. In an embodiment herein the tint in the shield is comparable to that used in the sunglasses industry. In an embodiment herein the shield has a mirror-like reflective surface. Without intending to be limited by theory, it is believed that such a shield helps to protect the user's eyes from bright light, excessive ultraviolet (UV) light, etc. This can be a great benefit during use, as, for example, the user would not need to wear sunglasses at the same time, thereby increasing comfort and usability.
In an embodiment herein the helmet contains a plurality of shields; or from about 2 to about 4 shields, or about 2 shields. In an embodiment where there is a plurality of shields, then each shield may have different characteristics, such as, for example, a first shield to reduce glare during the daytime, and a second shield to enhance vision during low light conditions, in snowy conditions, etc. In such a case, the various shields may be attached at the same place and possess a common fulcrum, may each possess a separate fulcrum, or anywhere in between.
In an embodiment herein the helmet contains one shield.
In an embodiment herein, the shield includes a corrective lens; or corrects a condition selected from the group consisting of myopia, hyperopia, presbyopia, astigmatism and a combination thereof; or includes at least one prescription lens. In an embodiment herein the shield contains a corrective lens customized for a particular user. A corrective lens as used herein indicates a portion of the shield which is shaped, treated, formed, etc. such that it corrects for abnormalities in the vision or enhances the vision of the user. In an embodiment herein the shield contains multiple corrective lenses. In an embodiment herein the corrective lens has a plurality of focal lengths; or is a bifocal lens or a trifocal lens; or is a bifocal lens.
In an embodiment herein the shield is designed to be replaceable by the user, such that it may be easily removed and replaced with another shield with differing properties, (e.g., a lighter or darker tint, different color, etc.) or with another shield with the same properties (e.g., if the original shield is damaged, etc.). In such an embodiment, the replacement of the shield may employ merely simple, common tools, or even no tools at all. In an embodiment of a kit herein, a customized tool is provided to the user for use in replacing the shield.
The shield cover, 22, may be made of a material similar to that of the shield, or a different material. In an embodiment herein the shield cover is formed from substantially the same material as the hard outer shell. In an embodiment herein the colour, design, or combination thereof of the shield cover is substantially the same as the hard outer shell. In an embodiment herein the colour, design, or combination thereof of the shield cover is different from the hard outer shell.
If the shield cover, 22, is intended to protect the shield, 20, from scratches, abrasion, etc., then the shield cover may be formed of a tougher and/or more resilient material such as a metal, a plastic, a laminate, and a combination thereof or aluminum, polypropylene, nylon, acrylonitrile butadiene styrene, and a combination thereof or a hard plastic. In an embodiment herein the shield cover, 22, and the hard outer shell, 12, and the notch, 24, are designed with relatively tight manufacturing tolerances so as to reduce air resistance when the helmet, 10, is in use.
In
While in
In
The shield, 20, is attached such that it may at least partially; or at least partially covers the shield indentation, 18, especially when the visor is pivoted up above the front portion, 16, towards the top portion, 32. For example, it can be seen that the shield, 20, may be pivoted down, in the direction of arrow A, or the shield, 20, may be pivoted up, in the direction of arrow B. When the user does not wish to look through the shield, 20, they will pivot the shield, 20, up in the direction of arrow B, so that the shield, 20, substantially retracts into the shield indentation, 18. Conversely, when the user wishes to see through the shield, 20, they will pivot the shield, 20, down in the direction of arrow A, so that the shield, 20, is at least partially removed from the shield indentation, 18, and is lowered in front of the user's eyes.
In
In an embodiment herein, the shield, the shield indentation, and the shield are designs such that the arcs (or their 3D equivalents) they form are portions of concentric circles and/or spheres, respectively. Without being limited by theory, it is believed that such a design increases the chances that the shield, shield cover, and/or the shield indentation are compatible during use and reduces jamming and rubbing. This way, for example, it is unlikely that the shield will pivot in such a way that the shield cover or the shield indentation unintentionally block the pivoting motion.
In
In
The helmet, 10, includes an optional vent, 48, which passes through both the inner layer, 14, and the hard outer shell, 12, so as to allow air to circulate within the helmet, 10. In an embodiment herein, the helmet contains a plurality of vents; or from about 1 to about 40 vents; or from about 2 to about 30 vents; or from about 4 to about 20 vents. Such vents may be located in various positions designed to enhance air flow and/or to reduce air resistance. In
In
The comfort-enhancing member may be attached with, for example, a removable and/or a low-strength adhesive, a hook-and-loop fastener system such as VELCRO®, by employing a key-and-lock type fastener, a removeable snap fit fastener, or other methods known in the art. Such a removable comfort-enhancing member may be desirable to enable washing, replacement, etc. of the comfort-enhancing member. Such fasteners and adhesives are well-known in the art and available from multiple suppliers world-wide.
The comfort-enhancing member may be formed of any useful material known in the art, such as, for example, a plastic, rubber, a foam, cloth, and a combination thereof; or a memory foam, cloth, a porous plastic, rubber and a combination thereof, or a memory foam, cloth, and a combination thereof. Without intending to be limited by theory, it is believed that a memory foam provides improved comfort to the user, while a cloth or a porous plastic provides sweat wicking and breathability properties that enhance the comfort of the user. In an embodiment herein the comfort-enhancing member is balloon-like and inflated with a gas such as air or an inert gas. In an embodiment herein, the comfort-enhancing member is a balloon-like inflatable structure. In an embodiment herein the balloon-like inflatable structure is adjustable by the user.
In an embodiment herein the comfort-enhancing member may also serve to reduce the amount of impact force transmitted to the user's head and body. Such an impact force reduction may be due to, for example absorption or dissipation of at least a portion of the impact force. This, in turn, may reduce injury to the head, neck, spine, etc.
In
In
In
In an embodiment herein the helmet is an in-moulded helmet. Furthermore, while the specification herein distinctly describes an in-moulded helmet, one skilled in the art would understand that they technology herein is applicable to a wide variety of helmets and not only those that are in-moulded. Accordingly, even though the present invention provides distinct advantages to an in-moulded helmet, one skilled in the art would not believe that the invention is limited thereto.
In an embodiment herein the helmet is a skating helmet, a cycling helmet, a snow helmet, a water sport helmet, or a combination thereof or a skating helmet, a cycling helmet, a snow helmet, or a combination thereof or a skating helmet, a snow helmet, or a combination thereof. A skating helmet is intended to protect the user while engaging in skating-type sports/activities and may be, for example, a roller skating helmet, an in-line skating helmet, a skateboarding helmet, an ice-skating helmet, or a combination thereof, or a competitive roller skating helmet, a competitive in-line skating helmet, a competitive skateboarding helmet, a competitive ice-skating helmet, or a combination thereof. A cycling helmet is intended to protect the user while engaging in cycling-type sports/activities such as riding a unicycle, a bicycle, a tricycle, a quadracycle, and other human-powered vehicles. Thus, a cycling helmet is typically a recreational cycling helmet, a competitive cycling helmet, or a combination thereof. A snow helmet is a helmet intended to protect the user while engaging in snow-related sports/activities and may be, for example, a skiing helmet, a snowmobile helmet, a snowboarding helmet, etc.; or a skiing helmet, a snowboarding helmet, or a combination thereof or a competitive skiing helmet, a competitive snowboarding helmet; or a combination thereof. A water sport helmet is intended to protect the user while engaging in water sports/activities and may be, for example, a water skiing helmet, a boating helmet, a jet-skiing helmet, an inner-tubing helmet, a canoeing helmet, a rafting helmet, or a combination thereof.
It should be understood that the above only illustrates and describes examples whereby the present invention may be carried out, and that modifications and/or alterations may be made thereto without departing from the spirit of the invention.
It should also be understood that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention which are, for brevity, described in the context of a single embodiment, may also be provided for separately or in any suitable subcombination.
Number | Date | Country | Kind |
---|---|---|---|
13110982 | Sep 2013 | HK | national |
Number | Name | Date | Kind |
---|---|---|---|
3081460 | Miller | Mar 1963 | A |
3310811 | Iacono, Jr. | Mar 1967 | A |
3315272 | Olt | Apr 1967 | A |
3345642 | Uminski | Oct 1967 | A |
3353187 | Lastnik | Nov 1967 | A |
3400407 | Aileo | Sep 1968 | A |
3495273 | Aileo | Feb 1970 | A |
3543308 | Stapenhill | Dec 1970 | A |
3568211 | Plaskon | Mar 1971 | A |
3593338 | Penny | Jul 1971 | A |
3721994 | DeSimone | Mar 1973 | A |
3748657 | Aileo | Jul 1973 | A |
4170042 | Aileo | Oct 1979 | A |
4227520 | Lord | Oct 1980 | A |
4305160 | Sundahl | Dec 1981 | A |
4748696 | Fohl | Jun 1988 | A |
5062162 | Kamata | Nov 1991 | A |
5091997 | Foehl | Mar 1992 | A |
5165117 | Kamata | Nov 1992 | A |
5177817 | Kamata | Jan 1993 | A |
5187502 | Howell | Feb 1993 | A |
5283914 | James | Feb 1994 | A |
5333329 | Hong | Aug 1994 | A |
5448780 | Gath | Sep 1995 | A |
5671483 | Reuber | Sep 1997 | A |
5680656 | Gath | Oct 1997 | A |
6260213 | Eom | Jul 2001 | B1 |
6282726 | Noyerie | Sep 2001 | B1 |
6438763 | Guay | Aug 2002 | B2 |
6598238 | Hong | Jul 2003 | B2 |
6826783 | Grove | Dec 2004 | B1 |
6842913 | Song | Jan 2005 | B1 |
6944887 | Heine | Sep 2005 | B2 |
7065798 | Kuo | Jun 2006 | B2 |
7398561 | Kim | Jul 2008 | B2 |
7798635 | Shindler | Sep 2010 | B1 |
8214919 | Gafforio | Jul 2012 | B2 |
8250669 | Gafforio | Aug 2012 | B2 |
8695121 | Nolan | Apr 2014 | B2 |
8984672 | Arnold | Mar 2015 | B2 |
9167861 | Gafforio | Oct 2015 | B2 |
9277780 | Hillion | Mar 2016 | B2 |
20010032351 | Nakayama | Oct 2001 | A1 |
20030182716 | Wu | Oct 2003 | A1 |
20070056071 | Smith | Mar 2007 | A1 |
20070074335 | Gafforio | Apr 2007 | A1 |
20070124851 | Pyo | Jun 2007 | A1 |
20080196148 | Morin | Aug 2008 | A1 |
20090038057 | Tews | Feb 2009 | A1 |
20090070908 | Gafforio | Mar 2009 | A1 |
20090100576 | Kim | Apr 2009 | A1 |
20090265840 | Favre-Felix | Oct 2009 | A1 |
20100095977 | Schmitz | Apr 2010 | A1 |
20100132096 | Chen | Jun 2010 | A1 |
20100186152 | Freeman | Jul 2010 | A1 |
20100229288 | Higgins | Sep 2010 | A1 |
20110283431 | Miller, IV | Nov 2011 | A1 |
20110302701 | Kuo | Dec 2011 | A1 |
20120102628 | Righi | May 2012 | A1 |
20130014315 | Valdez Diaz | Jan 2013 | A1 |
20130031699 | Gafforio | Feb 2013 | A1 |
20130212785 | Ratti | Aug 2013 | A1 |
20140189939 | Cheng | Jul 2014 | A1 |
20140317834 | Power | Oct 2014 | A1 |
20140366252 | Mazzarolo | Dec 2014 | A1 |
20150074875 | Schimpf | Mar 2015 | A1 |
20150250253 | Jacobsen | Sep 2015 | A1 |
20150272260 | Ryan | Oct 2015 | A1 |
20160000167 | Alley | Jan 2016 | A1 |
20160000170 | Simons | Jan 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20150082520 A1 | Mar 2015 | US |