This application is based upon and claims the benefit of priority from Japanese Patent Application No. 2010-030553, filed on Feb. 15, 2010, the entire content of which is incorporated herein by reference.
Embodiments described herein relate to an in-pipe work device that is disposed in a pipe and conducts inspection, repairing and other works for an inner surface of the pipe.
When inspection, process and other works are conducted for an inner surface of a lateral or horizontal pipe in an environment that people have difficulty getting into, an in-pipe work device is sent by remote control into the pipe where the in-pipe work device conducts operations for the inner surface of the pipe. In particular, for example, when high-precision operations are required in an environment such as a nuclear reactor pressure vessel whose interior is complicated and confined, skilled workers and enormous man-hours are necessary. For example, a conventional operation of installing an in-pipe work device in a lateral pipe involves lifting the in-pipe work device down using a large crane or hoist to transfer the in-pipe work device to an inlet of the pipe before disposing the in-pipe work device in the pipe using a mechanism that sends the in-pipe work device in a horizontal direction. Therefore, large equipment is needed to transfer the in-pipe work device to the inlet of the pipe as well as to send the in-pipe work device into the pipe.
As for such an in-pipe work device, there is a device that rotates a processing head inside the lateral pipe to conduct inspection and processes in a circumferential direction of the inner surface of the pipe. For example, what is disclosed in Jpn. Pat. Appln. Laid-open Publication No. 11-304985, the entire content of which is incorporated herein by reference, is a device that rotates a laser emission unit along an internal circumference of the pipe using a rotation motor to irradiate the entire circumference of a welded part of the pipe with the laser beam and performs surface solution heat treatment. The device also includes three support arms, each of which has a roller on a tip of the arm. The support arms are expanded by the same distance and pushed against the inner surface of the pipe so that the device is supported at the center of the axis of the pipe.
As described above, when inspection and processes are carried out for the inner surface of the lateral pipe in a complicated and confined environment, skilled workers and enormous man-hours have been needed for the device to be installed by remote control.
The use of the device designed to rotate an operation head that the in-pipe work device includes and perform inspections and operations in the circumferential direction of the pipe involves the following: before the operation head is positioned, the in-pipe work device is moved to the location where the operation head reaches an operation site. However, in many cases, the shape and inner surface of the pipe, on which operations are conducted, are significantly different from what has been designed. Particularly in a pipe where a welded part exists, there are rugged portions on the inner surface of the pipe due to weld beads. When operations are conducted with the rotating operation head in the circumferential direction of the pipe, it is necessary to keep a constant distance between the operation head and the inner surface of the pipe for precise positioning.
If there are rugged portions on the inner surface of the pipe, it is necessary to make corrections appropriately in order to keep a distance between a process-applied surface and the operation head within a tolerance of an operation condition when the operation head is rotating.
However, as the in-pipe work device becomes larger and more complicated, it is more difficult to install the in-pipe work device and monitor how operations go on, requiring more skilled workers and man-hours.
Moreover, when operations are conducted for the inner surface of a pipe that has been installed in an actual plant and is in operation, there are restrictions, including a distance between a control area for remote operation and a work site, a work atmosphere (underwater, a gas-filled area or the like), effects on peripheral devices, and the like.
The above and other features and advantages of the present invention will become apparent from the discussion hereinbelow of specific, illustrative embodiments thereof presented in conjunction with the accompanying drawings, in which:
A problem to be solved by the present invention is to provide an in-pipe work device that accurately adjusts a distance between the inner surface of the pipe and a rotation axis of the operation head with a simple configuration to improve the accuracy of operations.
According to one embodiment, an in-pipe work device that is inserted into a pipe and remotely controlled by a control device to perform an operation for an inner surface of the pipe is provided. The in-pipe work device comprises: a main unit; a main-unit support unit that comes in contact with the pipe to position and fix the main unit in the pipe; a rotation arm that rotates around a rotation axis that is parallel with a long axis of the pipe; an operation head that is attached to the rotation arm to perform processes for the inner surface of the pipe; a first distance sensor that is placed ahead of the operation head in a rotation direction of the rotation arm to measure a distance to the inner surface of the pipe; and an operation head position adjustment mechanism that changes a distance from a rotation center of the rotation arm to the operation head. The control device makes the operation head position adjustment mechanism expand and contract based upon a result of measurement by the first distance sensor and operation condition information that is input in advance.
The following describes embodiments of the present invention with reference to the accompanying drawings.
The following describes the first embodiment of the present invention with reference to the drawings.
In the present embodiment, the processing device 3 is described as a device that performs processes of laser welding to the inner surface of the nozzle stub 2, for example.
With reference to
The processing device 3 is supported by a plurality of support legs 4 that extend in radial directions of the nozzle stub 2. The support legs 4 are disposed partly within grooves that are formed in a main-unit module 5. Each of the support legs 4 is provided with an expansion mechanism unit 6 that expands and contracts the support leg 4. A processing head 7 and a distance sensor (a second distance sensor) 8 are attached to the processing device 3 via a rotation arm 9, a rotation driving mechanism unit 10 and a back-and-forth driving mechanism unit 11. The processing head 7 and the distance sensor 8 are set so as to face the inner surface of the nozzle stub 2 and to face mutually opposite directions. The processing head 7 and the distance sensor 8 are attached to the rotation arm 9, which is rotated by the rotation driving mechanism unit 10. A pivot axis of the rotation arm 9 is in the same direction as the axial direction of the nozzle stub 2. The back-and-forth driving mechanism unit 11 is attached to the rotation driving mechanism unit 10 and moves the rotation driving mechanism unit 10 back and forth with respect to the main unit of the processing device 3. What is installed between the processing head 7 and the rotation arm 9 is a push driving mechanism unit 12 that expands and contracts (or shortens) in the radial direction of the nozzle stub 2 to move the processing head 7. A head unit monitoring camera is attached to the processing head 7 to monitor a portion on which processes are conducted. Welded parts 13 are convex portions formed on the inner surface of the nozzle stub 2.
The processing device 3 is signally connected to the control device 15 placed on an operation floor via a cable 14. The control device 15 is connected to a driving controller 16 and a state display controller 17. The control device 15, the driving controller 16 and the state display controller 17 communicate with each other. The driving controller 16 generates driving control data using a processing request input by an operator and state data of the processing device 3 collected through the control device 15, and inputs a driving control request of the processing device 3 into the control device 15. The state data of the processing device 3 represents, for example, an attitude, a rotation angle of the rotation arm 9, expansion or contraction state of the support legs 4 or of the back-and-forth driving mechanism unit 11, and the like. The state display controller 17 outputs the state data of the processing device 3, which is collected through the control device 15, and a captured image of a head unit monitoring camera 18. As for the state data, information-processing conversion is performed on the state data that is to be displayed so that it is easy for an operator to know the state of the processing device 3. The control device 15, the driving controller 16 and the state display controller 17 make up a remote control system of the processing device 3.
First, the processing device 3 is put into the nozzle stub 2. That is the processing device 3 is lifted down from outside the nuclear reactor pressure vessel (RPV) 1 (Step S1); the processing device 3 is moved closer to the nozzle stub 2 (Step S2); and the processing device 3 is inserted into the nozzle stub 2 from the nozzle stub 2 (Step S3).
Then, a process of positioning the processing device 3 in the processing location in the nozzle stub 2 is performed. That is the processing device 3 is made move in the nozzle stub 2 to the processing location (Step S4); and the position of the processing device 3 is fixed so that the processing device 3 is positioned at the processing location (Step S5).
Finally, a rotation axis of the rotation arm 9 is positioned on the center of the nozzle stub 2 and a laser welding process is performed. First, the distance sensor 8 attached to the rotation arm 9 detects a difference in position between the center of the nozzle stub 2 and the rotation axis of the rotation arm 9 (Step S6). Based on the detected positional difference, the lengths of the support legs 4 are adjusted so that the rotation axis of the rotation arm 9 comes to the center of the nozzle stub 2 (Step S7). After the positioning of the rotation arm 9 is completed, a laser welding process is carried out by the processing head 7 (Step S8).
Each of the above steps shown in
First, the configuration of devices that put the device 3 into the nozzle stub 2 will be described with reference to
The lifting device 22 is a kind of crane and is attached to a rotation mechanism 25 placed on the operation floor. The lifting device 22 includes: a rotation mechanism installed on the operation floor 93; an expansion arm 26 which is attached to and rotated by the rotation mechanism 25; a wire reel 27 which hangs from a tip of the expansion arm 26; and a lifting wire 28 which is paid out from the wire reel 27. The device insertion jig 23 includes: a device holding jig 29 which holds the processing device 3; a jig-side lifting wire 30 which is to be connected to the lifting wire 28; a jig monitoring camera 31 which monitors how the processing device 3 is inserted into the nozzle stub 2; and a guide cable 32 which is used both for signal communication of the jig monitoring camera 31 and for a direction-adjustment guide of the device insertion jig 23. There are a pair of wire connectors 24, one of which is attached to a tip of the lifting wire 28 and the other to a tip of the jig-side lifting wire 30. After the wire connectors 24 are connected together, the device insertion jig 23 hangs from the lifting device 22. The cable 14 is not shown in this diagram.
The following describes the installation of the processing device 3 with the use of the lifting device 22 and the device insertion jig 23 with reference to
As shown in
A process of installing the processing device 3 will be described in detail with reference to
First, as shown in
Alternatively, if the attitude of the processing device 3 can be kept horizontal, a different method may be used to hold the processing device 3. For example, the following methods may available: a method of attaching male and female members to the device holding jig 29 and the processing device 3 so that the device holding jig 29 and the processing device 3 engage with each other, and a method of pushing convex portions of the processing device 3 from outside to hold. As for the attitude of the processing device 3, all that is required is for the attitude of the processing device 3 to be kept horizontal just before the processing device 3 is inserted into the nozzle stub 2. For example, the following is possible: the attitude of the processing device 3 is kept vertical while the processing device 3 is being lifted down; after the processing device 3 comes closer to the nozzle stub 2, the attitude of the processing device 3 is then turned to become horizontal. This method is effective when the vertical attitude of the processing device 3 is advantageous in moving the processing device 3 inside the nuclear reactor pressure vessel 1 which is a complicated and confined space.
The following describes how to insert the processing device 3 into the nozzle stub 2 with reference to
Watching an image of the jig monitoring camera 31, an operator accurately positions the processing device 3 in front of the entrance of the nozzle stub 2. After the positioning of the processing device 3 is completed, the expansion arm 26 is further contracted, thereby inserting the processing device 3 into the nozzle stub 2 (Step S3 in
The following explains how to position the processing device 3, which is inserted into the nozzle stub 2, at the processing location, with reference to
First, the detailed configuration of the support legs 4 of the processing device 3 will be described with reference to
As described above, the support legs 4 are provided with the expansion mechanism units 6. The expansion mechanism units 6 make the support legs 4 expand or contract in length. The following are provided at the tips of the support legs 4: fixing jigs 40 which come in contact with the internal surface of the nozzle stub 2, and mobile wheels 41. The fixing jigs 40 are provided at the tips of the support legs 4 via pushing mechanisms 42. The pushing mechanisms 42 expand or contract in the same directions as the axes of the support legs 4 to push the fixing jigs 40 against the inner surface of the nozzle stub 2. The expanding and contracting of the pushing mechanisms 42 are independent of the mobile wheels 41. The mobile wheels 41 are provided at the tips of the support legs 4 via springs which are not shown. The mobile wheels 41 are driven by wheel driving mechanisms. Each of the wheel driving mechanism may include a built-in motor which is positioned around the tip of the support leg 4, and a timing belt which transfers the power of the motor to the mobile wheel 41.
With the pushing mechanisms 42 and the wheel driving mechanisms mentioned above, the processing device 3 shifts between a motion mode and a fixed mode; the processing device 3 moves to the processing location where the processing device 3 is positioned and fixed. The following provides a detailed description thereof with reference to
In the motion mode shown in
In the fixed mode shown in
In that manner, the driving of the expansion mechanism units 6, the pushing mechanisms 42 and the wheel driving mechanisms, which are provided on the support legs 4, is controlled, and the processing device 3 therefore shifts between the motion mode and the fixed mode. Thus, it is possible to move the processing device 3 to the processing location for positioning (Step S5 in
The following describes a process of positioning the rotation axis of the rotation arm 9 at the center of the nozzle stub 2 with reference to
First, a process of detecting a difference in position between the center of the nozzle stub 2 and the rotation axis of the rotation arm 9 will be described with reference to
The rotation axis 52 of the rotation arm 9 is positioned away from the center 51 of the nozzle stub 2. The processing device 3 is in the fixed mode, which is illustrated in
As for the difference in position between the center of the nozzle stub 2 and the rotation axis of the rotation arm 9, (Ld+Lmi) is measured by the distance sensor 8 while the rotation arm 9 is rotated one revolution. Therefore, it is possible to detect the direction and distance of the positional difference. The following provides a detailed description thereof with reference to
The direction of the positional difference of the center 51 relative to the rotation axis 52 is φm, which is obtained by the measurement described above. The magnitude of the positional difference between the center 51 and the rotation axis 52 is Δd. Angles such as φm are based on the initial position of the rotation arm 9.
The following describes an example of how to correct the position of the rotation axis 52 with reference to
The length of the support legs 4a, 4b and 4c, after the rotation axis 52 is corrected, is determined by calculating the length of the corrected support-leg axes 64a, 64b and 64c, i.e. La+Δa, Lb+Δb and Lc+Δc. The following provides a detailed description of how to calculate Lc+Δc, the length of the corrected support-leg axis 64c, among the corrected support-leg axes 64a, 64b and 64c.
Suppose that in
φic=φa+120 (1)
where φa is the angle between the support leg 4a and the difference direction 55 as shown in
Based on the information described above, the square of (Lc+Δc), i.e. the square of the length of segment AO, is calculated by the following equation (2) because of the second law of cosines.
(Lc+Δc)2=Lc2+Δd2−2Lc×Δd×|cos(φic)| (2)
Each parameter in the right side of equation (2) is already known as described above. Therefore, it is possible to calculate the length of the corrected support-leg axis 64c based upon equation (2). It is also possible to calculate La+Δa and Lb+Δb from the angles and length that are already known in a similar way.
As described above, the length of the support legs 4a, 4b and 4c is adjusted based on the calculated length of the corrected support-leg axes 64a, 64b and 64c. In this manner, corrections are made so that the rotation axis 52 comes to the position of the center 51 (Step S7 in
The following describes the laser welding process by the processing head 7 for the inner surface of the nozzle stub 2 with reference to
The processing head 7 is attached to the tip of the rotation arm 9 through the push driving mechanism unit 12. The processing head 7 includes: a roller holding unit 76 which holds scanning guide rollers 71; a cover 78 which is attached to the tip side through an elastic body 77; a welding nozzle 72 which is attached to the inner side of the cover; a filler supply nozzle 73; and a cover gas nozzle 74. An optical fiber (not shown) is connected to the welding nozzle 72 to transfer a laser beam. A hose (not shown) is connected to the cover gas nozzle 74 to supply gas. A filler drum 75 is attached to the rotation arm 9 and supplies filler (not shown) to the filler supply nozzle 73. In both the cases of
The following describes the process of operation performed by the processing head 7. After the position of the rotation axis 52 is corrected, the rotation arm 9 is rotated so that the rotation arm 9 comes to a process start position. Then, the processing head 7 is moved in the axial direction of the nozzle stub 2 by the back-and-forth driving mechanism unit 11 illustrated in
As described above, according to the processing device 3 of the present embodiment, even if the shape of the inner surface of the nozzle stub 2 is different from what has been designed, it is possible to highly accurately perform the laser welding process to the inner surface of the nozzle stub 2 by measuring the inner surface of the nozzle stub 2 and correcting the difference between the rotation axis 52 and the center 51 after the processing device 3 is installed in the nozzle stub 2, on which the process of operation is conducted.
In the present embodiment described above, the laser welding process is performed by the processing head 7. However, for any operation in which the distance between the processing head 7 and the inner surface of the nozzle stub 2 affects the accuracy of processes, the present invention helps to improve the accuracy. For example, instead of the processing head 7, an operation head for laser peening, ultrasonic flaw detection, surface polishing or the like may be used.
As for the process of correcting the difference in position of the rotation axis 52, the calculation method described in the present embodiment is one example. Alternatively, it may be also possible to use a calculation method depending on the configuration of the processing device 3 or the way the distance sensor 8 measures the positional difference. For example, in the present embodiment, the contact points of the support legs 4a, 4b and 4c with the inner surface of the nozzle stub 2 are held unmoved and corrections are made only by expanding and contracting the support legs 4a, 4b and 4c as described above. However, alternatively, the following structures may be also possible: a structure in which mechanisms that move in the circumferential direction of the nozzle stub 2 is provided on the tips of the support legs 4a, 4b and 4c and corrections are made while the angles between the support legs 4a, 4b and 4c are kept unchanged; a structure in which sensors are mounted to measure the angles between the support legs 4a, 4b and 4c and the angles between the support legs 4a, 4b and 4c can be adjusted. Then, a correction process or calculation method suitable for each of the structures described above may be adopted. For example, for the structure in which corrections are made while the angles between the support legs 4a, 4b and 4c are kept unchanged, the following processes may be possible: after the center 51 is calculated, the entire processing device 3 is rotated so that one of the support legs 4a, 4b and 4c is on the difference direction 55; if the support leg 4a is put on the difference direction 55, the support leg 4a is expanded while the support legs 4b and 4c are contracted by the same amount; and corrections are made so that the rotation axis 52 moves along the difference direction 55 to the center 51. For example, such a process is possible when the support legs 4a, 4b and 4c have the flexibility to move slightly in the circumferential direction because the support legs 4a, 4b and 4c are fixed on the processing device 3 through elastic bodies such as spring or rubber.
In the present embodiment, the processing head 7 is continuously rotated while the processing device 3 moves axially, and the process of operation is conducted while the processing head 7 draws a spiral trajectory as described above. However, the process of operation can alternatively be performed by repeating the following operation: an operation in which the rotation arm 9 is rotated one revolution while the processing device 3 remains unmoved axially and then the processing device 3 moves axially after the processing head 7 is rotated one revolution.
When the process of operation is performed with the processing head 7 drawing a spiral trajectory, a slip ring is adopted for the rotation driving mechanism unit 10 in order to prevent kinks in cables such as that of the distance sensor 8 as the rotation arm 9 is continuously rotated in the same direction. Therefore, it is possible to continuously perform the process of operation using the processing head 7 and therefore reduce the time required for the process of operation.
When the process of operation is conducted by alternately performing the process of rotating the rotation arm 9 and the process of moving the processing device 3, the rotation direction of the rotation arm 9 is controlled in such a way that the rotation direction is reversed every time the rotation arm 9 is rotated one revolution. In this case, a slip ring is not required. Therefore, it is possible to make the configuration of the processing device 3 more simplified.
The following describes the second embodiment of the present invention with reference to the drawings. The same components as those in the first embodiment are denoted by the same reference symbols, and repetitive explanation will be omitted.
If there is a rugged area on the inner surface of the nozzle stub 2 due to the accuracy of manufacturing, aging degradation or the like, the distance between the processing head 7 and the inner surface of the nozzle stub 2 varies during the process of operation. The device and method described in the first embodiment are highly accurate by correcting the rotation axis 52 in such a way that the rotation axis 52 comes to the center 51 of the nozzle stub 2, as well as particularly effective for the case where the tolerance of an process condition, such as the engineer works of laser welding, is small. However, when the fluctuation range is large because of the rugged area on the inner surface of the nozzle stub 2, there may be impact on the quality of the processes even if the rotation axis 52 is corrected.
The following describes the configuration of the processing head 7 of the present embodiment with reference to
A processing head position adjustment mechanism 85 is provided on the processing head 7. The processing head position adjustment mechanism 85 drives the welding nozzle 72, filler supply nozzle 73 and cover gas nozzle 74 of the processing head 7 up and down in relation to the inner surface of the nozzle stub 2 in response to an instruction from the driving controller 16. Based on the distance data detected by the magnetic distance sensor 81, the processing head position adjustment mechanism 85 is driven. Therefore, it is possible to highly accurately keep the constant distance between the processing head 7 and the inner surface of the nozzle stub 2. If adjustments need to be made beyond a range in which the processing head position adjustment mechanism 85 can make corrections, the push driving mechanism unit 12 is also driven for adjustments.
A procedure of the above operation will be described with reference to
At first, the control device 15 receives the distance data detected by the magnetic distance sensor 81 (Step S11 in
As described above, the magnetic distance sensor 81 is provided ahead of the scanning direction of the processing head 7. With the use of the data concerning the distance between the processing head 7 and the inner surface of the nozzle stub 2, adjustments are appropriately made to the push driving mechanism unit 12 and the processing head position adjustment mechanism 85. Therefore, it is possible to highly accurately keep the constant distance between the processing head unit and the inner surface of the nozzle stub 2. Such a driving control process makes it possible to carry out the process of operation smoothly and continuously even if there is a rugged or distorted area on the inner surface of the nozzle stub 2. When it is difficult to carry out the process of operation properly because of a significantly rugged or distorted area on the inner surface of the nozzle stub 2, an interlock works to suspend the process of operation before the process of operation starts. Therefore, it is possible to prevent troubles or useless operations from happening and improve efficiency.
In the present embodiment, the adjustment of the distance between the processing head unit and the inner surface of the nozzle stub 2 by the processing head position adjustment mechanism 85 or the like has been described on the assumption that the difference in position of the rotation axis of the rotation arm 9 of the first embodiment is corrected. However, it is possible to obtain the above-described advantageous effects associated with the structure including the processing head position adjustment mechanism 85 without correcting the positional difference.
Alternatively, the following operation process may also be possible: a process of storing in the control device 15 an adjustable distance range of the processing head position adjustment mechanism 85 as a threshold value, carrying out an operation without correcting the positional difference of the rotation axis of the rotation arm 9, and then suspending the operation when a result of measurement by the magnetic distance sensor 81 exceeds the threshold value to correct the positional difference of the rotation axis of the rotation arm 9. Such an operation process makes it possible to skip the process of correcting the positional difference of the rotation axis of the rotation arm 9 if the distance between the processing head unit and the inner surface of the nozzle stub 2 can be adjusted only by the processing head position adjustment mechanism 85.
The processing head position adjustment mechanism 85 is not limited to the structure described above as long as it is possible to change the distance between the rotation center of the rotation arm 9 and the processing head 7.
The following describes the third embodiment of the present invention with reference to the drawings. The same components as those in the second embodiment are denoted by the same reference symbols, and repetitive explanation will be omitted.
The following describes the configuration of the processing head 7 of the processing device 3 of the present embodiment with reference to
A laser scanner measures the distance by irradiating a wide range with a laser beam. Since the laser scanner is employed for the laser distance sensor 91, it is possible to collect distance data as to a portion that is vertically below the laser distance sensor 91 as well as to the vicinity thereof. With the use of the distance data information collected by laser scanning, it is possible to display three-dimensional graphics of the inner surface of the nozzle stub 2 on the state display controller 17. An example of how graphics are displayed on the state display controller 17 in this case will be described with reference to FIG. 16.
The rotation arm angle display D1 uses segment 102 to show the angle of the rotation arm 9 on the inner surface of the nozzle stub 2, enabling the state of the angle of the rotation arm 9 to be easily checked. The shape of the inner surface of the nozzle stub 2 that is based on design information is displayed with a solid line; the shape of the inner surface of the nozzle stub 2 that is based on the measured distance data is displayed with a dotted line. Therefore, it is easy to know the difference in shape between the actual nozzle stub 2 and the design thereof.
The processing device position display D2 displays the position of the processing device 3 in the nozzle stub 2, enabling the position of the axial direction of the processing device 3 in the nozzle stub 2 to be easily understood. Moreover, the position of a welding line of the nozzle stub 2 is drawn at the same time. Therefore, it is easy to know the position of the processing device 3 relative to the welding line.
As described above, the pipe inner surface display D3 shows three-dimensional graphics of the inner surface of the nozzle stub 2 that are based on the distance data measured by laser scanning of the laser distance sensor 91.
The process condition history display D4 shows the process condition tolerance of the distance between the processing head 7 and the inner surface of the nozzle stub 2 as well as a history record concerning the distance between the processing head 7 and the inner surface of the nozzle stub 2 in the actual process of operation. Dotted line 104 represents a process condition. Dotted lines 105 and 106 represent the plus- and minus-side tolerances of the process condition, respectively. Solid line 103 represents an actual process record. The process history 103 that is within a process condition tolerance range, or the range between the dotted lines 105 and 106, means that the process of operation has been conducted under an appropriate condition. Therefore, it is easy to know that the process of operation by the processing device 3 continues within the condition tolerance range.
As described above, according to the present embodiment, instead of the magnetic distance sensor 81 of the second embodiment, the laser distance sensor 91 is used. Therefore, it is possible to obtain similar advantageous effects to those in the second embodiment. Moreover, a laser scanner is employed for the laser distance sensor 91. Therefore, it is possible to collect the distance data concerning a portion vertically below the laser distance sensor 91 as well as the vicinity thereof. Based on the collected distance data, three-dimensional graphics are displayed to show the inner surface of the nozzle stub 2, making it possible for an operator to easily recognize the state of the inner surface of the nozzle stub 2.
The embodiments of the present invention have been described above with reference to the drawings. It is also possible to form a structure by arbitrarily combining the features of the embodiments described above. It is possible for those skilled in the art to make various modifications and changes in the concrete examples without departing from the technical idea and scope of the present invention. For example, in the embodiments, the device is described as having three support legs. However, the device may have four or more support legs. The support legs may not be arranged equiangularly.
If the process of correcting the positional difference of the rotation axis is not performed but only the process of adjusting the distance between the processing head unit and the inner surface of the nozzle stub 2 is performed by the device including the processing head position adjustment mechanism 85 of the second embodiment, the positioning and fixing of the processing device 3 may not be performed by the support legs 4. In such a case, for example, a special-purpose jig or the like is also available. The jig may be attached to the periphery of the processing device 3 and put in place around the inlet of the nozzle stub as the processing device 3 is inserted into the nozzle stub, thereby positioning and fixing the processing device 3.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel embodiments described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the embodiments described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions.
Number | Date | Country | Kind |
---|---|---|---|
2010-30553 | Feb 2010 | JP | national |