IN SILICO IDENTIFICATION OF CANCER MOLECULAR SIGNALING PATHWAYS AND DRUG CANDIDATES

Information

  • Patent Application
  • 20150302140
  • Publication Number
    20150302140
  • Date Filed
    November 04, 2013
    11 years ago
  • Date Published
    October 22, 2015
    9 years ago
Abstract
Disclosed is an in silico method to identify molecular signaling pathways that influence cancer development as well as therapeutic compounds with activity against them.
Description
BACKGROUND

Ovarian cancer (OVCA) has the highest mortality of all gynecologic cancers (Siegel R, et al. CA Cancer J Clin. 2012 62(1):10-29). Although patients are initially sensitive to cytotoxic therapy (using platinum/taxane-based regimens), resistance to existing therapies develops in the majority of patients with OVCA (Baker V V. Hematol Oncol Clin North Am. 2003 17(4):977-88; Gadducci A, et al. Gynecol Oncol. 1998 68(2):150-5; Hansen H H, et al. Ann Oncol. 1993 4 Suppl 4:63-70; McGuire W P, et al. N Engl J Med. 1996 334(1):1-6). Once chemoresistance has developed, for most patients, overall survival is extremely short (Herrin V E, et al. Semin Surg Oncol. 1999 17(3):181-8). The lack of progress in improvement in cure rates for this disease is somewhat reflective of an incomplete understanding of the molecular basis to disease development. Improvements in understanding the molecular basis to ovarian carcinogenesis will hopefully lead to the identification of more active therapies.


SUMMARY

Disclosed is an in silico strategy that identifies 1) new cancer therapeutic targets (molecular signaling pathways associated with cancer development) and 2) new cancer therapeutic candidates (drugs and agents that target molecular signaling pathways associated with cancer development). These may include new uses for existing drugs (drug re-purposing). This method was used to identify 1) genes and molecular signaling pathways associated with the development of cancer and 2) new drugs/agents that target those molecular signaling pathways and that could potentially lead to new therapeutics for ovarian cancer.


Also disclosed is an in silico method for individualized treatment of a subject with cancer that involves assaying an RNA sample from a tumor biopsy for differential gene expression in one or more molecular pathways, and using that information to select a suitable therapeutic regimine.


The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.





DESCRIPTION OF DRAWINGS


FIG. 1 shows results for principal component analysis (PCA) of gene expressions in NOSE (open circles), primary pelvic (filled circles), and extrapelvic (triangles) samples. The first principal component (PC1) explains 35.4% of the variation, whereas the second (PC2) explains 6.3%.



FIGS. 2A-2C are Kaplan-Meier curves depicting the association between the TGF-WNT/cytoskeleton remodeling-pathway PCA score (using median PCA threshold) and overall survival from OVCA (GSE9891, survival information available for 218 of the 220 samples) (FIG. 2A), colon cancer (GSE17538, n=177) (FIG. 2B), and leukemia (TCGA database, n=182) (FIG. 2C). Log-rank test P values indicate significance.



FIG. 3 shows Kaplan-Meier curves depicting the association between the chemokines/cell adhesion pathway PCA score (using median PCA threshold) and overall survival from colon cancer (GSE17538, n=177). Log-rank test P values indicate significance.



FIGS. 4A and 4B are Kaplan-Meier curves depicting the association between the chemokines/cell adhesion pathway PCA score (using median PCA threshold) and overall survival from OVCA (MCC dataset, n=142) (FIG. 4A) and colon cancer (GSE17538, n=177) (FIG. 4B). Log-rank test P values indicate significance.



FIG. 5 shows HeyA8 cells treated with 25 mM and 50 mM artesunate (ART) were impaired in their ability to fill in the gap of a scratch test. In contrast, cells cultured in the presence of DMSO vehicle completely closed the gap within 2 days.



FIGS. 6A to 6C are maps of the TGF-WNT/cytoskeleton remodeling pathway (FIG. 6A), chemokines/cell adhesion pathway (FIG. 6B), and histamine signaling/immune response pathway (FIG. 6C). Thermometers indicate direction change (upward or downward) in expression of genes associated with extrapelvic implant samples.



FIG. 7 is a flow chart depicting an embodiment of an in silico method to identify therapeutic agents to treat cancer.



FIG. 8 is a flow chart depicting an embodiment of an in silico method for selecting a cancer treatment regimen for a subject.





DETAILED DESCRIPTION

Currently, the management of advanced-stage ovarian cancer (OVCA) includes cytoreductive surgery (debulking) followed by platinum-based chemotherapy. Approximately 70% of patients will demonstrate a complete clinical response to this primary therapeutic approach, however, the majority of these complete responders will eventually develop platinum-resistant, progressive or recurrent disease. Once platinum-resistance has developed, few active therapeutic options exist and patient survival is generally short-lived. These dismal statistics reflect in-part, an incomplete understanding of the root causes of ovary carcinogenesis and a lack of targeted agents that specifically attack the molecular basis of disease development.


Disclosed is an in silico method to identify molecular signaling pathways that influence cancer development, as well as to identify therapeutic compounds with activity against them. The method involves evaluating gene expression datasets to identify genes differentially expressed in cancer. For example, the method can involve identifying genes and represented pathways whose expression is increased or decreased in cancer by at least 50%, by at least 100%, or by at least 200%. The method can further involve identifying pathways represented by differentially expressed genes.


In some embodiments, the cancer is ovarian cancer (OVCA). However, the disclosed method may be used to identify molecular signaling pathways and drug candidates for any cancer type or subtype. A representative but non-limiting list of cancers include lymphoma, B cell lymphoma, T cell lymphoma, mycosis fungoides, Hodgkin's Disease, myeloid leukemia, bladder cancer, brain cancer, nervous system cancer, head and neck cancer, squamous cell carcinoma of head and neck, kidney cancer, lung cancers such as small cell lung cancer and non-small cell lung cancer, neuroblastoma/glioblastoma, ovarian cancer, pancreatic cancer, prostate cancer, skin cancer, liver cancer, melanoma, squamous cell carcinomas of the mouth, throat, larynx, and lung, colon cancer, cervical cancer, cervical carcinoma, breast cancer, epithelial cancer, renal cancer, genitourinary cancer, pulmonary cancer, esophageal carcinoma, head and neck carcinoma, large bowel cancer, hematopoietic cancers (e.g., leukemia); testicular cancer; rectal cancers, prostatic cancer, and pancreatic cancer.


In some cases, the method involves identifying genes and represented pathways within the genomic datasets that have a False Discovery Rate (FDR) less than 0.1, less than 0.05, or less than 0.01. Instead of controlling the chance of any false positives (as Bonferroni or random field methods do), FDR controls the expected proportion of false positives among suprathreshold voxels. An FDR threshold is determined from the observed p-value distribution, and hence is adaptive to the amount of signal in the data.


The method can further involve evaluating the differentially expressed pathways for associations with survival as an indication of biological relevance. The method can involve assaying a biological sample, such as a tumor biopsy, from the subject for gene expression levels, comparing these levels to control values to identify differentially expressed genes, identifying molecular pathways represented by the differentially expressed genes, evaluating the molecular pathways for associations with cancer survival as an indication of biological relevance, and identifying agents or drugs that have activity against the pathways associated with cancer survival.


In some embodiments, gene expression levels are determined using a gene expression microarray. Gene expression microarrays provide a snapshot of all the transcriptional activity in a biological sample. Unlike most traditional molecular biology tools, which generally allow the study of a single gene or a small set of genes, microarrays facilitate the discovery of totally novel and unexpected functional roles of genes. Non-limiting examples of gene expression microarrays include those produced by Affymetrix, Agilent, and Nimblegen. Affymetrix microarrays are composed of spots of 25-bp probes. A target sequence is associated with a “probe-set,” typically 11-16 probes whose signal is integrated to produce a single intensity. The sample is labeled by incorporation of biotin-labeled nucleotides, and a dedicated fluidics system washes the hybridized sample. Nimblegen and Agilent use different array synthesis methods that can create longer probes (up to ˜60 bp), and labeling is by cy3,5 fluores, which are also used to label cDNA arrays.


A wide range of methods to adjust for testing multiple samples to identify differential gene expression are available. Many rely on the assumption that the tests are independent. However, the preferred approach for microarray analysis is to control the “false-discovery rate” (FDR), the probability that any particular significant finding is a false-positive. To better account for the dependencies within the data, multiple testing adjustment using “permutation-based” methods can be used, which estimate the null distribution by permuting the actual data. If that is not feasible, the Benjamini-Hochberg step-down method offers a reasonable combination of statistical rigor and power for microarray analysis. As an example, the BioConductor software package or the GenePattern analysis pipeline software can be used to identify differential expression. Users of a multtest package can choose among several parametric methods (which make assumptions about the normality of the data), including the Welch t-test, paired t-test, or ANOVA. All of these look for differences in the average expression level between groups. Since assumptions about normality are often inappropriate, the reported p-values are more appropriately used as a guide to prioritizing the genes, not as accurate probabilities, even after adjusting for multiple testing.


Molecular pathways represented by the differentially expressed genes can be identified using databases of protein interactions and metabolic and signaling pathways. Examples of suitable databases include Ariadne Genomics' PathwayStudio®, BIOBASE's The ExPlain™ Analysis System, GeneGo's MetaCore™, Genomatix′ BiblioSphere Pathway Edition, and Ingenuity Pathways Analysis (IPA).


Multivariate statistical analysis can then be used to summate the expression of one or more molecular pathways into a single numeric value. For example, the method can involve the use of multivariate regression analysis (e.g., determined by linear regression) or principal component analysis (PCA) to generate a single numeric value for each molecular pathway. PCA is a multivariate technique that analyzes a data table in which observations are described by several inter-correlated quantitative dependent variables. Its goal is to extract the important information from the table, to represent it as a set of new orthogonal variables called principal components, and to display the pattern of similarity of the observations and of the variables as points in maps. Pathways with expression scores associated with 2 or more survival datasets can then evaluated in vitro.


The method can further involve in silico analysis to identify agents or drugs that have activity against the differentially expressed pathways associated with survival. For example, pathway scores and agent/drug sensitivity/activity scores can be compared, e.g., by Pearson's correlation, to identify drugs that demonstrate activity that correlate with the expression of each of the specific differentially expressed pathways associated with survival.


For example, using four paired normal/cancer genomic datasets from a total of 58 normal ovarian surface epithelium (NOSE) specimens and 756 epithelial ovarian cancer samples genes and represented pathways associated with OVCA were first identified in each dataset. Pathways found common to at least 3 datasets meeting an FDR<0.05 (n=14) were evaluated for associations with survival as an indication of biologic relevance. To do this, the expression of each pathway was summated into a single numeric value using PCA modeling of all objects (probesets/genes) within the pathway as defined by GeneGO Metacore™ software, and evaluated within 5 independent OVCA survival datasets. Those pathways with expression scores associated with 2 or more survival datasets were then evaluated within the NCI60 cancer cell line panel, drug screening database for associations with GI50 values over 48,000 compounds.


In this manner, TGF-WNT/cytoskeleton remodeling pathway, WNT2 pathway, integrin pathway, chemokines/cell adhesion pathway, and histamine signaling/immune response pathway were found differentially associated with OVCA and had expression (PCA) scores that suggested a biologic relevance to overall survival from the disease. Of course, it may be an oversimplification to discuss these pathways or any others as separate entities as more and more research highlights the networking and interconnectedness of biologic processes. For instance, targeting integrins directly or indirectly may decrease the invasive potential of OVCA (Choi Y P, et al. Biochem Biophys Res Commun. 2012 Epub. Sep. 28, 2012; Lau M T, et al. Cancer Lett. 2012 320(2):198-204; Sawada K, et al. J Oncol. 2012 Epub. Dec. 25, 2011), and influence chemoresponse (Loessner D, et al. Gynecol Oncol. 2012 Epub. Sep. 8, 2012), the latter of which may be associated with a downstream modulation of TGF-beta activity (Tumbarello D A, et al. Mol Cancer. 2012 11:36). For example, Integrins, TGF/Wnt, and Wnt pathways are known to affect epithelial-mesenchymal transition (EMT) (Kiefel H, et al. Carcinogenesis. 2012 33(10):1919-29; Shah P P, et al. Oncogene. 2012 31(26):3124-35; Gil D, et al. Adv Enzyme Regul. 2011 51(1):195-207; Jing Y, et al. Cell Biosci. 2011 1:29; Borok Z. J Clin Invest. 2009 119(1):7-10; Mamuya F A, et al. J Cell Mol Med. 2012 16(3):445-55; Chen Y S, et al. Mol Cell Proteomics. 2011 10(2):M110 001131).


The expression of the Integrins, TGF/Wnt, and Wnt pathways correlated with NCI60 cell line GI50 values to 89, 446, and 42 agents, respectively (Bonferroni adjusted P<0.01). Five agents were correlated with Integrins, TGF/Wnt, and Wnt pathways, while 38 compounds were common between the TGF/Wnt and Wnt pathway associations. In theory, agents identified by this methodology should demonstrate a negative influence on OVCA cell growth and/or survival through the targeted inhibition of the associated pathway. As proof of principle for this methodology, two agents were selected to test for activity against a panel of OVCA cells; Dasatinib, uniquely associated with Integrins pathway expression, and Artesunate, uniquely associated with TGF/Wnt pathway expression. Dasatinib showed significant anti-proliferative activity against a panel of OVCA cells. Similar outcomes were observed for the anti-malarial drug, Artesunate, which the in silico analysis identified to be associated with TGF/Wnt pathway expression. Artesunate has been reported to disrupt Wnt signaling as well as decrease the transcriptional expression of TGF-beta (Wang Y, et al. Zhonghua Gan Zang Bing Za Zhi. 2012 20(4):294-9; Li L N, et al. Int J Cancer. 2007 121(6):1360-5; Wenisch C, et al. J Clin Immunol. 1995 15(2):69-73). Artesunate also showed anti-proliferative activity against OVCA cells.


Therefore, also disclosed is a method of treating ovarian cancer. The method can involve administering to the subject a composition that inhibits the TGF-WNT/cytoskeleton remodeling pathway, WNT2 pathway, integrin pathway, chemokines/cell adhesion pathway, histamine signaling/immune response pathway, or any combination thereof. In some cases, the composition inhibits all of these pathways. The composition can contain, for example, Dasatinib, which is an inhibitor of the integrin pathway. The composition can contain Artesunate, which is an inhibitor of the TGF/Wnt pathway. Other agents for use in the disclosed compositions and methods can be identified by the methods disclosed herein.


In general, candidate agents can be identified from large libraries of natural products or synthetic (or semi-synthetic) extracts or chemical libraries according to methods known in the art. Those skilled in the field of drug discovery and development will understand that the precise source of test extracts or compounds is not critical to the screening procedure(s) used.


Accordingly, virtually any number of chemical extracts or compounds can be screened using the exemplary methods described herein. Examples of such extracts or compounds include, but are not limited to, plant-, fungal-, prokaryotic- or animal-based extracts, fermentation broths, and synthetic compounds, as well as modification of existing compounds. Numerous methods are also available for generating random or directed synthesis (e.g., semi-synthesis or total synthesis) of any number of chemical compounds, including, but not limited to, saccharide-, lipid-, peptide-, and nucleic acid-based compounds. Synthetic compound libraries are commercially available, e.g., from purveyors of chemical libraries including but not limited to ChemBridge Corporation (16981 Via Tazon, Suite G, San Diego, Calif., 92127, USA, www.chembridge.com); ChemDiv (6605 Nancy Ridge Drive, San Diego, Calif. 92121, USA); Life Chemicals (1103 Orange Center Road, Orange, Conn. 06477); Maybridge (Trevillett, Tintagel, Cornwall PL34 OHW, UK)


Alternatively, libraries of natural compounds in the form of bacterial, fungal, plant, and animal extracts are commercially available from a number of sources, including 02H, (Cambridge, UK), MerLion Pharmaceuticals Pte Ltd (Singapore Science Park II, Singapore 117528) and Galapagos NV (Generaal De Wittelaan L11 A3, B-2800 Mechelen, Belgium).


In addition, natural and synthetically produced libraries are produced, if desired, according to methods known in the art, e.g., by standard extraction and fractionation methods or by standard synthetic methods in combination with solid phase organic synthesis, micro-wave synthesis and other rapid throughput methods known in the art to be amenable to making large numbers of compounds for screening purposes. Furthermore, if desired, any library or compound, including sample format and dissolution is readily modified and adjusted using standard chemical, physical, or biochemical methods.


When a crude extract is found to have a desired activity, further fractionation of the positive lead extract is necessary to isolate chemical constituents responsible for the observed effect. The same assays described herein for the detection of activities in mixtures of compounds can be used to purify the active component and to test derivatives thereof. Methods of fractionation and purification of such heterogeneous extracts are known in the art. If desired, compounds shown to be useful agents for treatment are chemically modified according to methods known in the art. Compounds identified as being of therapeutic value may be subsequently analyzed using in vitro cell based models and animal models for diseases or conditions, such as those disclosed herein.


Candidate agents encompass numerous chemical classes, but are most often organic molecules, e.g., small organic compounds having a molecular weight of more than 100 and less than about 2,500 Daltons. Candidate agents can include functional groups necessary for structural interaction with proteins, particularly hydrogen bonding, and typically include at least an amine, carbonyl, hydroxyl or carboxyl group, for example, at least two of the functional chemical groups. The candidate agents often contain cyclical carbon or heterocyclic structures and/or aromatic or polyaromatic structures substituted with one or more of the above functional groups.


In some embodiments, the candidate agents are proteins. In some aspects, the candidate agents are naturally occurring proteins or fragments of naturally occurring proteins. Thus, for example, cellular extracts containing proteins, or random or directed digests of proteinaceous cellular extracts, can be used. In this way libraries of procaryotic and eucaryotic proteins can be made for screening using the methods herein. The libraries can be bacterial, fungal, viral, and vertebrate proteins, and human proteins.


The term “subject” refers to any individual who is the target of administration or treatment. The subject can be a vertebrate, for example, a mammal. Thus, the subject can be a human or veterinary patient. The term “patient” refers to a subject under the treatment of a clinician, e.g., physician.


The term “sample from a subject” refers to a tissue (e.g., tissue biopsy), organ, cell (including a cell maintained in culture), cell lysate (or lysate fraction), biomolecule derived from a cell or cellular material (e.g. a polypeptide or nucleic acid), or body fluid from a subject.


The term “treatment” refers to the medical management of a patient with the intent to cure, ameliorate, stabilize, or prevent a disease, pathological condition, or disorder. This term includes active treatment, that is, treatment directed specifically toward the improvement of a disease, pathological condition, or disorder, and also includes causal treatment, that is, treatment directed toward removal of the cause of the associated disease, pathological condition, or disorder. In addition, this term includes palliative treatment, that is, treatment designed for the relief of symptoms rather than the curing of the disease, pathological condition, or disorder; preventative treatment, that is, treatment directed to minimizing or partially or completely inhibiting the development of the associated disease, pathological condition, or disorder; and supportive treatment, that is, treatment employed to supplement another specific therapy directed toward the improvement of the associated disease, pathological condition, or disorder.


The term “tumor” or “neoplasm” refers to an abnormal mass of tissue containing neoplastic cells. Neoplasms and tumors may be benign, premalignant, or malignant. The term “cancer” or “malignant neoplasm” refers to a cell that displays uncontrolled growth, invasion upon adjacent tissues, and often metastasis to other locations of the body. The term “metastasis” refers to the spread of malignant tumor cells from one organ or part to another non-adjacent organ or part. Cancer cells can “break away,” “leak,” or “spill” from a primary tumor, enter lymphatic and blood vessels, circulate through the bloodstream, and settle down to grow within normal tissues elsewhere in the body. When tumor cells metastasize, the new tumor is called a secondary or metastatic cancer or tumor.


EXAMPLES
Example 1
Materials and Methods

Identification of Molecular Signaling Pathways Associated with OVCA Development:


To identify molecular signaling pathways associated with OVCA development, an in silico analysis of 4 paired normal/cancer genomic datasets from a total of 58 normal ovarian surface epithelium (NOSE) specimens and 756 epithelial ovarian cancer samples was performed. The four datasets included: 1) the Moffitt (MCC) dataset (Affymetrix U133Plus GeneChips), 28 NOSE versus 78 OVCA; 2) the Total Cancer Care (TCC)™ dataset (Affymetrix Custom GeneChip Arrays), 12 NOSE versus 57 OVCA; 3) the Cancer Genome Atlas (TCGA) dataset (Affymetrix U133A GeneChips, publicly available), 8 NOSE versus 568 OVCA; and 4) the MD Anderson (MDA) Dataset (Affymetrix U133Plus GeneChips; publicly available), 10 NOSE versus 53 OVCA.


The MCC and TCC datasets were subjected to RMA using the Affymetrix Expression Console. Genes with an False Discovery Rate (FDR)<1% and a fold change >2 were selected for further pathway analysis. These genes were uploaded to GeneGo Metacore systems biology analysis software. Pathways represented within genes differentially expressed between NOSE and OVCA were identified and compared between the 4 datasets for commonly represented pathways.


Identification of Associations Between Expression of Molecular Signaling Pathways and Overall Survival of Patients with OVCA:


For pathways that were identified as common in 3 or more of the datasets, Principal Component Analysis (PCA) was used to generate a score that summarized the overall expression of each pathway. In this way, selecting the first principal component (PC1), a single numeric score was generated for each pathway, which summarized its level of expression. Associations were then explored between pathway expression (using median PC1 score as the threshold to define high versus low pathway score) and overall survival in 5 datasets for which both gene expression and overall survival data were available, including 1) The Moffitt (MCC) dataset (Affymetrix U133Plus GeneChips), n=142 OVCAs; 2) the Total Cancer Care (TCC)™ dataset (Affymetrix Custom GeneChip Arrays), n=57 OVCAs; 3) the Cancer Genome Atlas (TCGA) dataset (Affymetrix U133A GeneChips, publicly available), n=492 OVCAs; 4) the MD Anderson (MDA) Dataset (Affymetrix U133Plus GeneChips; publicly available), n=53 OVCAs; and 5) the Australian (Aus) Dataset (Affymetrix U133Plus GeneChips, publicly available), n=218 OVCAs.


Identification of Agents and Drugs that Target Molecular Signaling Pathways Associated with the Development of and Overall Survival from OVCA:


Pathways associated with the development of OVCA (differentially expressed between NOSE and OVCA) that also demonstrated associations between expression (PCA score) and overall patient survival in >2/5 datasets were subjected to further in silico analysis in an effort to identify novel agents or drugs that may have activity against the pathway. For this analysis, the aim was to identify novel therapeutic approaches to OVCA, either using agents that have not previously been explored as cancer therapeutics or re-purposing existing drugs as OVCA therapeutic agents. To accomplish this, Affymetrix HG-U133A expression genomic data was downloaded for 60 human cancer cell lines (6 leukemia, 9 melanoma, 9 non-small cell lung, 7 colon, 6 central nervous system, 7 ovarian, 8 renal, 2 prostate, and 6 breast cancer cell lines) and also measures of sensitivity (GI50) for each of the 60 cancer cell lines to ˜48,000 agents from the NCI website. For each pathway and all 48,000 agents/drugs in 59 NCI60 cells, a Pearson's correlation analysis was performed between pathway score and agent/drug sensitivity/activity (measured by GI50). The Pearson's correlation was between each pathway PC1 score and GI50 for ˜48,000 agents/drugs. Analysis was conducted to identify which of the 48,000 drugs demonstrated activity that correlated with the expression of each of the specific pathways. In this way, for each of the molecular signaling pathways found to be associated with both 1) OVCA development (differentially expressed between NOSE and OVCA) and 2) patient survival from OVCA, a list of agents was identified that showed activity correlated with pathway expression (that is, drugs predicted to target each specific pathway).


Statistical Analyses:


For each of the four datasets, gene expression data was compared at a probe-set level between NOSE and OVCA using Student's t-test. P-values were adjusted using the FDR methodology. For correlation analyses, significance was evaluated statistically by Pearson's score, P value, and Bonferroni-corrected P value.


Cell Culture and Survival Assays:


Ovarian cancer cell lines were either obtained from the European Collection of Cell Cultures, Salisbury, England (A2780S), or were kind gifts from Dr. Patricia Kruk, Department of Pathology, College of Medicine, University of South Florida, Tampa, Fla., and Susan Murphy, PhD, Dept of OB/GYN, Division of GYN Oncology, Duke University, Durham, N.C. (HeyA8, OVCAR2, OVCAR8, and OVCA420). Cell lines were maintained in RPMI-1640 (Invitrogen; Carlsbad, Calif.) supplemented with 10% fetal bovine serum (Fisher Scientific; Pittsburgh, Pa.), 1% sodium pyruvate, 1% penicillin/streptomycin, and 1% nonessential amino acids (HyClone; Hudson, N.H.). Mycoplasma testing was performed every 6 months following manufacturer's protocol (Lonza, Rockland, Me.).


The MTS assay was used to assess viability of the OVCA cell lines. For the assays, 3-5×104 cells in 100 μL were plated to each well of a 96-well plate and allowed to adhere overnight at 37° C. and 5% CO2. The following day, cells were incubated with increasing concentrations of drug for 72 hours. Cell viability was analyzed using the CellTiter96® MTS assay kit (Promega, Madison, Wis.). Three replicate wells were used for each drug concentration, and an additional three control wells received a diluent control without drug. After drug incubation, the optical density of each well was read at 490 nm using a SpectraMax 190 microplate reader (Molecular Devices Inc., Sunnyvale, Calif.). Percent cell survival was expressed as (control-treated)/(control-blank)×100. All experiments were performed three times, or the minimum number of times to ensure reproducibility and accuracy of the results.


Results


Identification of Molecular Signaling Pathways Associated with OVCA Development


In the in silico analysis of 4 paired normal/cancer genomic datasets from a total of 58 normal ovarian surface epithelium (NOSE) specimens and 756 epithelial ovarian cancer samples, the following numbers of differentially expressed genes (FDR<1%, fold-change >2) and represented pathways (FDR<5%) were identified: 923 genes in the Moffitt Cancer Center (MCC) dataset (506 upregulated, 417 downregulated), 2,942 genes in the Total Cancer Care (TCC) dataset (2,236 upregulated, 706 downregulated), 368 genes in The Cancer Genome Atlas (TCGA) dataset (117 upregulated, 251 downregulated), and 1,353 genes in the MD Anderson (MDA) dataset (231 upregulated, 1,122 downregulated) (Table 1). The following number of represented pathways (FDR<5%) were also identified: 19 in the MCC dataset, 35 in the TCC dataset, 18 pathways in the TCGA dataset, and 41 in the MDA dataset (Table 1).









TABLE 1







Genes and pathways associated


with the development of OVCA.















#
#
#
Total
# Sig.



#
OVCA
Up
Down
Sig.
Represented


Dataset
NOSE
Samples
Genes
Genes
Genes
Pathways
















MCC
28
78
506
417
923
19


(U133PLUS)











TCC
12
57
2236
706
2942
35


(HuRSTA)











TCGA
8
568
117
251
368
18


(U133A)











MDA
10
53
231
1122
1353
41


(U133PLUS)





Gene cutoff: FDR < 0.01, fold change > 2


Pathway cutoff: FDR < 0.05






Of the pathways identified, 4 pathways were common to all 4 datasets, 28 pathways were common to 3, and 66 pathways were common to two datasets (Table 6). We found 181 pathways that were uniquely represented in one dataset only. The 4 pathways that were identified to be common in all 4 datasets were the following: 1) Cytoskeleton remodeling_TGF, WNT and cytoskeletal remodeling, 2) Immune response_Alternative complement pathway, 3) Immune response_MIF—the neuroendocrine-macrophage connector, and 4) Integrins (Table 2). A list of these pathways can be found in Table 2 along with the number of genes (objects) found differentially expressed in cancer belonging to that pathway over the total number of objects within that pathway, and the represented P-value.









TABLE 2





Common biologic pathways associated


with OVCA development in all used databases.


















Cytoskeleton remodeling_TGF,
Immune response_



WNT and
Alternative


Pathway
cytoskeletal remodeling
complement pathway


















Database
MCC
TCC
TCGA
MDA
MCC
TCC
TCGA
MDA





# Objects
7/111
16/111
5/111
10/111
4/39
16/39
3/39
10/39





P-Value
0.033
0.009
0.034
0.008
0.022
<0.001
0.025
<0.001





FDR < 0.05?
No
No
No
No
No
Yes
No
Yes













Immune response_MIF-




the neuroendocrine-



Pathway
macrophage connector
Integrins


















Database
MCC
TCC
TCGA
MDA
MCC
TCC
TCGA
MDA





# Objects
5/46 
8/46
3/46 
7/46
3/22
 5/22
2/22
 3/22





P-Value
0.008
0.021
0.038
0.001
0.022
 0.022
0.049
 0.046





FDR < 0.05?
No
No
No
Yes
No
No
No
No





MCC: Moffitt Cancer Center


TCC: Total Cancer Care Protocol


TCGA: Thel Cancer Genome Atlas


MDA: MD Anderson






Out of the 28 pathways found common in 3 datasets, 10 pathways showed an FDR<0.05, including: 1) Cell cycle_The metaphase checkpoint, 2) Cell cycle_Spindle assembly and chromosome separation, 3) Cell cycle_Role of APC in cell cycle regulation, 4) Cell cycle_Chromosome condensation in prometaphase, 5) Cell cycle_Initiation of mitosis, 6) Cell cycle_Nucleocytoplasmic transport of CDK/Cyclins, 7) Reproduction_Progesterone-mediated oocyte maturation, 8) Cell cycle_Role of Nek in cell cycle regulation, 9) Cell adhesion_Tight junctions, and 10) Development_WNT signaling pathway, Part 2.


Identification of Associations Between Expression of Molecular Signaling Pathways and Overall Survival of Patients with OVCA


To analyze associations between pathway expression and patient overall survival, the PCA methodology was used to derive a numeric score that summarized the overall expression of each pathway. The first principal component (PC1), which contains the highest variance, was used to define high versus low pathway score. Using the median PC1 as a threshold, each of the 14 pathways (pathways common to ≧3 datasets with FDR<0.05) was tested for an association with overall survival in 5 independent OVCA datasets (Table 3). Only pathways associated with survival in more than one OVCA dataset were considered further. This analysis indicated that overall survival from OVCA was associated with the expression of TGF/WNT, Integrins, and WNT2 pathways. Expression of the TGF/WNT pathway was associated with survival in two datasets (MCC, P<0.01 and Aus, P<0.01). Expression of the Integrins pathway was associated with survival in three datasets (MCC, P<0.001, Aus, P=0.02; and TCC™, P=0.05). WNT2 was associated with survival in two datasets (MCC, P<0.01; and TCC™, P<0.01) (Table 3). Genes included in the PC1 signature scores for the Integrins, TGF/WNT, and WNT2 pathways are listed in Table 4.









TABLE 3







The association of pathway expression scores, as determined by PCA modeling, with


survival from OVCA. Median PCA score was used as a threshold.









p-values













Pathway Name
Abbreviation
MCC
MDA
AUS
TCC
TCGA
















Cytoskeleton remodeling_TGF,
TGF.WNT
0.0099
0.1247
0.0055
0.4695
0.9162


WNT and cytoskeletal remodeling


Immune response_Alternative
Immune
0.3255
0.6733
0.6925
0.5714
0.2034


complement pathway


Immune response_MIF - the
MIF
0.0016
0.8244
0.3228
0.9348
0.1161


neuroendocrine-macrophage


connector


Integrins
Integrins
4.00E−04
0.9618
0.0221
0.0457
0.723


Cell cycle_The metaphase
metaphase
0.7817
0.4034
0.8891
0.264
0.9152


checkpoint


Cell cycle_Spindle assembly and
Spindle
0.3587
0.5336
0.6782
0.2669
0.6367


chromosome separation


Cell cycle_Role of APC in cell
APC
0.2925
0.7035
0.8763
0.3237
0.6887


cycle regulation


Cell cycle_Chromosome
prometaphase
0.123
0.2978
0.9533
0.1674
0.461


condensation in prometaphase


Cell cycle_Initiation of mitosis
mitosis
0.0779
0.9422
0.8708
0.0808
0.2365


Cell cycle_Nucleocytoplasmic
CDK
0.515
0.5642
0.8876
0.6047
0.5741


transport of CDK/Cyclins


Reproduction_Progesterone-
oocyte
0.0059
0.7217
0.1051
0.5166
0.7599


mediated oocyte maturation


Cell cycle_Role of Nek in cell
Nek
0.6154
0.9161
0.8622
0.1557
0.7758


cycle regulation


Cell adhesion_Tight junctions
Tight
0.0249
0.9733
0.0631
0.8872
0.9205


Development_WNT signaling
WNT2
0.002
0.4174
0.1594
0.0081
0.343


pathway. Part 2
















TABLE 4







Genes used for PCA modeling from the Integrins, TGF/Wnt, and Wnt


pathways.











TGF-WNT
WNT2
Integrins







ACTA1
APC
ANGPT1



ACTA2
AXIN1
ANGPT2



ACTB
AXIN2
EGFR



ACTC1
BMP4
F11R



ACTG1
SMARCA4
FGF1



ACTG2
BCL9
FIGF



ACTN1
CTNNB1
FLT1



ACTN2
CREBBP
ITGA1



ACTN3
CD44
ITGA3



ACTN4
CBY1
ITGA5



ACTR2
CSNK1E
ITGA9



ACTR3
CSNK2A1
ITGAV



ACTR3B
CSNK2A2
ITGB1



AKT1
CLDN1
ITGB3



AKT2
CCND1
ITGB6



AKT3
DAB2
ITGB8



ARPC1A
DKK1
KDR



ARPC1B
DVL1
NGF



ARPC2
DVL2
PRKCA



ARPC3
DVL3
PRKCB



ARPC4
CDH1
PRKCD



ARPC5
ENC1
PRKCE



AXIN1
FRAT1
PRKCG



AXIN2
FOSL1
PRKCH



BCAR1
FZD1
PRKCI



CASP9
FZD10
PRKCQ



CAV1
FZD2
PRKCZ



CCND1
FZD3
PRKD1



CDC42
FZD4
PRKD2



CDKN1A
FZD5
PRKD3



CDKN2B
FZD6
PTK2



CFL1
FZD7
SEMA7A



CFL2
FZD8
SRC



CHUK
FZD9
VEGFA



COL4A1
GSK3B
VEGFC



COL4A2
TCF4



COL4A3
LRP5



COL4A4
LEF1



COL4A5
MESDC2



COL4A6
MMP26



CRK
MMP7



CSNK2A1
NLK



CSNK2A2
NRCAM



CSNK2B
REST



CTNNB1
PPM1A



DOCK1
PPARD



DSTN
PYGO1



DVL1
PYGO2



DVL2
GAST



DVL3
RUVBL1



EIF4E
RUVBL2



EIF4EBP1
RHOA



FN1
SNAI2



FOXO3
SNAI1



FRAT1
BIRC5



FZD1
TAB1



FZD10
MAP3K7



FZD2
TCF7L2



FZD3
TCF7



FZD4
TCF7L1



FZD5
VEGFA



FZD6
VIM



FZD7
WIF1



FZD8
WNT1



FZD9
WNT10A



GRB2
WNT10B



GSK3B
WNT11



HRAS
WNT16



ILK
WNT2



JUN
WNT2B



KDR
WNT3



LAMA1
WNT3A



LAMB1
WNT4



LAMC1
WNT5A



LEF1
WNT5B



LIMK1
WNT6



LIMK2
WNT7A



LRP5
WNT7B



MAP2K1
WNT8A



MAP2K2
WNT8B



MAP2K3
WNT9A



MAP3K11
WNT9B



MAP3K7
JUN



MAPK1
MYC



MAPK11



MAPK12



MAPK13



MAPK14



MAPK3



MDM2



MKNK1



MMP13



MMP7



MTOR



MYC



MYL1



MYL12A



MYL12B



MYL2



MYL3



MYL4



MYL5



MYL6



MYL6B



MYL7



MYL9



MYLK



MYLK2



MYLK3



MYLPF



NCL



NLK



PAK1



PIK3CA



PIK3CB



PIK3CD



PIK3R1



PIK3R2



PIK3R3



PLAT



PLAU



PLAUR



PLG



PPARD



PPP1CB



PPP1R12A



PTK2



PXN



RAC1



RAF1



RHEB



RHOA



ROCK1



ROCK2



RPS6KA5



SERPINE1



SERPING1



SHC1



SMAD2



SMAD3



SOS1



SOS2



SP1



SRC



TAB1



TCF7



TCF7L1



TCF7L2



TGFB1



TGFBR1



TGFBR2



TLN1



TLN2



TP53



TSC2



VAV1



VCL



VEGFA



VTN



WASL



WIF1



WNT1



WNT10A



WNT10B



WNT11



WNT16



WNT2



WNT2B



WNT3



WNT3A



WNT4



WNT5A



WNT5B



WNT6



WNT7A



WNT7B



WNT8A



WNT8B



WNT9A



WNT9B



XIAP



ZFYVE9










Identification of Compounds that Target Molecular Signaling Pathways Associated with the Development of and Overall Survival from OVCA


In an effort to identify novel therapeutic approaches for the treatment of OVCA, either using agents not previously explored as cancer therapeutics or by re-purposing existing drugs as OVCA therapeutic agents, compounds were identified with in vitro activity that correlated with pathway expression. Pathways that were associated with the development of OVCA (differentially expressed between NOSE and OVCA) and that demonstrated associations between expression (PCA score) and overall patient survival in more than one OVCA dataset were correlated with in-vitro sensitivity of the NCI60 cell line panel to 48,000 compounds. Pearson's correlation indicated that in-vitro expression of the Integrins pathway (quantified by PC1 score) was associated with NCI60 cell line sensitivity (quantified by GI50) to 89 agents (P<0.01, Bonferroni adjusted), whereas the WNT2 pathway PC1 score was associated with sensitivity to 42 agents (P<0.01, Bonferroni adjusted), and the TGF/WNT pathway PC1 score was associated with sensitivity to 446 agents (P<0.01, Bonferroni adjusted) (Tables 7-9).


Identified Compounds Decrease OVCA Cell Proliferation


The cytotoxic effects of continuous exposure to dasatinib and artesunate were assessed for five OVCA cell lines at 72 hours using the MTS assay (Table 5). The mean IC50 of Dasatinib was 0.577 uM (log 10; −0.30486 uM) with a range of 0.214 uM to 0.953 uM (log 10; −0.02085 uM to −0.6685 uM). The median IC50 of artesunate was 7.13 uM (log 10; 0.6321 uM) with a range of 1.23 uM to 19.32 uM (log 10; 0.0882 uM to 1.286 uM).









TABLE 5







Sensitivity of OVCA cell lines to Dasatinib and Artesunate as determined


by MTS cell proliferation assays.













A2780S
OVCA420
OVCA2
OVCA8
HEYA8
















Dasatinib:







Log10 IC50
−0.03735
−0.3655
−0.02085
−0.4321
−0.6685


SEM
0.03997
0.1225
0.1337
0.05971
0.07254


Artesunate:


Log10 IC50
0.0882
1.286
0.1173
0.7705
0.8985


SEM
0.0564
0.06618
0.02667
0.05188
0.07381
















TABLE 6







Pathways common to all datasets













FDR






Pathway Name
<0.05
p-value
ratio
dataset
common















Cytoskeleton remodeling_TGF, WNT and
no
9.05E−03
16/111
tcc
4


cytoskeletal remodeling


Cytoskeleton remodeling_TGF, WNT and
no
3.39E−02
 5/111
tcga
4


cytoskeletal remodeling


Cytoskeleton remodeling_TGF, WNT and
no
8.06E−03
10/111
mda
4


cytoskeletal remodeling


Cytoskeleton remodeling_TGF, WNT and
no
3.33E−02
 7/111
mcc
4


cytoskeletal remodeling


Immune response_Alternative complement
yes
6.99E−09
16/39 
tcc
4


pathway


Immune response_Alternative complement
no
2.49E−02
3/39
tcga
4


pathway


Immune response_Alternative complement
yes
1.05E−06
10/39 
mda
4


pathway


Immune response_Alternative complement
no
2.17E−02
4/39
mcc
4


pathway


Immune response_MIF - the
no
2.07E−02
8/46
tcc
4


neuroendocrine-macrophage connector


Immune response_MIF - the
no
3.81E−02
3/46
tcga
4


neuroendocrine-macrophage connector


Immune response_MIF - the
yes
1.40E−03
7/46
mda
4


neuroendocrine-macrophage connector


Immune response_MIF - the
no
8.30E−03
5/46
mcc
4


neuroendocrine-macrophage connector


Integrins
no
2.18E−02
5/22
tcc
4


Integrins
no
4.87E−02
2/22
tcga
4


Integrins
no
4.63E−02
3/22
mda
4


Integrins
no
2.16E−02
3/22
mcc
4


Apoptosis and survival_BAD
no
4.58E−03
4/42
tcga
3


phosphorylation


Apoptosis and survival_BAD
yes
8.00E−04
7/42
mda
3


phosphorylation


Apoptosis and survival_BAD
no
5.63E−03
5/42
mcc
3


phosphorylation


Apoptosis and survival_Role of IAP-
no
1.34E−02
3/31
tcga
3


proteins in apoptosis


Apoptosis and survival_Role of IAP-
no
2.66E−02
4/31
mda
3


proteins in apoptosis


Apoptosis and survival_Role of IAP-
yes
1.69E−04
6/31
mcc
3


proteins in apoptosis


Cell adhesion_Endothelial cell contacts by
yes
1.15E−06
11/26 
tcc
3


junctional mechanisms


Cell adhesion_Endothelial cell contacts by
no
1.46E−02
4/26
mda
3


junctional mechanisms


Cell adhesion_Endothelial cell contacts by
yes
5.94E−05
6/26
mcc
3


junctional mechanisms


Cell adhesion_Plasmin signaling
no
3.88E−03
8/35
tcc
3


Cell adhesion_Plasmin signaling
yes
1.63E−03
6/35
mda
3


Cell adhesion_Plasmin signaling
no
2.51E−03
5/35
mcc
3


Cell adhesion_Tight junctions
yes
2.39E−04
10/36 
tcc
3


Cell adhesion_Tight junctions
yes
1.90E−03
6/36
mda
3


Cell adhesion_Tight junctions
yes
3.99E−04
6/36
mcc
3


Cell cycle_Cell cycle (generic schema)
yes
1.71E−05
5/21
tcga
3


Cell cycle_Cell cycle (generic schema)
no
6.76E−03
4/21
mda
3


Cell cycle_Cell cycle (generic schema)
yes
1.57E−05
6/21
mcc
3


Cell cycle_Chromosome condensation in
yes
2.71E−13
10/21 
tcga
3


prometaphase


Cell cycle_Chromosome condensation in
yes
4.40E−07
8/21
mda
3


prometaphase


Cell cycle_Chromosome condensation in
yes
4.39E−08
8/21
mcc
3


prometaphase


Cell cycle_Initiation of mitosis
yes
2.23E−06
6/25
tcga
3


Cell cycle_Initiation of mitosis
yes
2.06E−06
8/25
mda
3


Cell cycle_Initiation of mitosis
yes
3.46E−06
7/25
mcc
3


Cell cycle_Nucleocytoplasmic transport of
yes
4.37E−08
6/14
tcga
3


CDK/Cyclins


Cell cycle_Nucleocytoplasmic transport of
yes
1.04E−04
5/14
mda
3


CDK/Cyclins


Cell cycle_Nucleocytoplasmic transport of
yes
3.21E−08
7/14
mcc
3


CDK/Cyclins


Cell cycle_Regulation of G1/S transition
yes
2.92E−05
6/38
tcga
3


(part 1)


Cell cycle_Regulation of G1/S transition
yes
2.52E−03
6/38
mda
3


(part 1)


Cell cycle_Regulation of G1/S transition
no
3.63E−03
5/38
mcc
3


(part 1)


Cell cycle_Regulation of G1/S transition
yes
7.47E−04
4/26
tcga
3


(part 2)


Cell cycle_Regulation of G1/S transition
no
1.46E−02
4/26
mda
3


(part 2)


Cell cycle_Regulation of G1/S transition
no
5.21E−03
4/26
mcc
3


(part 2)


Cell cycle_Role of APC in cell cycle
yes
1.30E−12
11/32 
tcga
3


regulation


Cell cycle_Role of APC in cell cycle
yes
9.96E−09
11/32 
mda
3


regulation


Cell cycle_Role of APC in cell cycle
yes
1.26E−07
9/32
mcc
3


regulation


Cell cycle_Role of Nek in cell cycle
yes
1.21E−09
9/32
tcga
3


regulation


Cell cycle_Role of Nek in cell cycle
yes
1.59E−05
8/32
mda
3


regulation


Cell cycle_Role of Nek in cell cycle
yes
1.67E−03
5/32
mcc
3


regulation


Cell cycle_Sister chromatid cohesion
yes
3.84E−04
4/22
tcga
3


Cell cycle_Sister chromatid cohesion
no
8.03E−03
4/22
mda
3


Cell cycle_Sister chromatid cohesion
no
2.16E−02
3/22
mcc
3


Cell cycle_Spindle assembly and
yes
1.29E−15
13/33 
tcga
3


chromosome separation


Cell cycle_Spindle assembly and
yes
1.45E−08
11/33 
mda
3


chromosome separation


Cell cycle_Spindle assembly and
yes
1.10E−08
10/33 
mcc
3


chromosome separation


Cell cycle_The metaphase checkpoint
yes
1.80E−13
12/36 
tcga
3


Cell cycle_The metaphase checkpoint
yes
3.13E−09
12/36 
mda
3


Cell cycle_The metaphase checkpoint
yes
1.79E−09
11/36 
mcc
3


Cell cycle_Transition and termination of
yes
9.97E−04
4/28
tcga
3


DNA replication


Cell cycle_Transition and termination of
no
1.89E−02
4/28
mda
3


DNA replication


Cell cycle_Transition and termination of
yes
9.28E−05
6/28
mcc
3


DNA replication


Cytoskeleton remodeling_Keratin filaments
yes
7.33E−06
12/36 
tcc
3


Cytoskeleton remodeling_Keratin filaments
no
4.32E−02
4/36
mda
3


Cytoskeleton remodeling_Keratin filaments
yes
3.85E−07
9/36
mcc
3


Development_EPO-induced PI3K/AKT
no
4.08E−02
7/43
tcc
3


pathway and Ca(2+) influx


Development_EPO-induced PI3K/AKT
no
3.20E−02
3/43
tcga
3


pathway and Ca(2+) influx


Development_EPO-induced PI3K/AKT
no
2.99E−02
4/43
mcc
3


pathway and Ca(2+) influx


Development_Regulation of epithelial-to-
no
2.10E−02
10/64 
tcc
3


mesenchymal transition (EMT)


Development_Regulation of epithelial-to-
yes
8.65E−10
16/64 
mda
3


mesenchymal transition (EMT)


Development_Regulation of epithelial-to-
no
8.11E−03
6/64
mcc
3


mesenchymal transition (EMT)


Development_TGF-beta-dependent
no
4.53E−02
6/35
tcc
3


induction of EMT via SMADs


Development_TGF-beta-dependent
yes
3.46E−07
10/35 
mda
3


induction of EMT via SMADs


Development_TGF-beta-dependent
no
2.51E−03
5/35
mcc
3


induction of EMT via SMADs


Development_WNT signaling pathway. Part 2
yes
1.73E−03
11/53 
tcc
3


Development_WNT signaling pathway. Part 2
yes
6.81E−04
8/53
mda
3


Development_WNT signaling pathway. Part 2
yes
5.76E−04
7/53
mcc
3


G-protein signaling_Regulation of CDC42
no
3.51E−02
6/33
tcc
3


activity


G-protein signaling_Regulation of CDC42
yes
1.87E−03
4/33
tcga
3


activity


G-protein signaling_Regulation of CDC42
yes
1.18E−03
6/33
mda
3


activity


Histamine metabolism
yes
1.14E−03
4/29
tcga
3


Histamine metabolism
no
2.13E−02
4/29
mda
3


Histamine metabolism
no
4.45E−02
3/29
mcc
3


PGE2 pathways in cancer
yes
6.78E−04
12/55 
tcc
3


PGE2 pathways in cancer
no
1.57E−02
6/55
mda
3


PGE2 pathways in cancer
yes
1.17E−04
8/55
mcc
3


Reproduction_Progesterone-mediated
yes
4.32E−04
5/40
tcga
3


oocyte maturation


Reproduction_Progesterone-mediated
yes
1.18E−05
9/40
mda
3


oocyte maturation


Reproduction_Progesterone-mediated
yes
7.17E−04
6/40
mcc
3


oocyte maturation


Retinol metabolism/Rodent version
yes
2.01E−03
13/70 
tcc
3


Retinol metabolism/Rodent version
no
2.65E−02
4/70
tcga
3


Retinol metabolism/Rodent version
no
4.49E−02
6/70
mda
3


Signal transduction_PKA signaling
no
1.32E−02
9/51
tcc
3


Signal transduction_PKA signaling
no
3.98E−02
5/51
mda
3


Signal transduction_PKA signaling
no
1.27E−02
5/51
mcc
3


Apoptosis and survival_HTR1A signaling
no
3.26E−02
8/50
tcc
2


Apoptosis and survival_HTR1A signaling
no
1.00E−02
6/50
mda
2


Apoptosis and survival_p53-dependent
yes
1.14E−03
4/29
tcga
2


apoptosis


Apoptosis and survival_p53-dependent
yes
1.05E−03
5/29
mcc
2


apoptosis


Apoptosis and survival_Role of CDK5 in
no
1.73E−02
3/34
tcga
2


neuronal death and survival


Apoptosis and survival_Role of CDK5 in
no
2.20E−03
5/34
mcc
2


neuronal death and survival


Cell adhesion_Cadherin-mediated cell
yes
4.72E−04
8/26
tcc
2


adhesion


Cell adhesion_Cadherin-mediated cell
no
3.37E−02
3/26
mcc
2


adhesion


Cell adhesion_Chemokines and adhesion
yes
4.45E−04
18/100
tcc
2


Cell adhesion_Chemokines and adhesion
yes
3.11E−04
12/100
mda
2


Cell adhesion_ECM remodeling
yes
9.49E−05
13/52 
tcc
2


Cell adhesion_ECM remodeling
yes
2.40E−06
11/52 
mda
2


Cell adhesion_Ephrin signaling
no
5.77E−03
9/45
tcc
2


Cell adhesion_Ephrin signaling
yes
1.22E−03
7/45
mda
2


Cell adhesion_Histamine H1 receptor
no
5.77E−03
9/45
tcc
2


signaling in the interruption of cell barrier


integrity


Cell adhesion_Histamine H1 receptor
no
3.46E−02
4/45
mcc
2


signaling in the interruption of cell barrier


integrity


Cell adhesion_Role of CDK5 in cell
no
3.01E−03
4/9 
tcc
2


adhesion


Cell adhesion_Role of CDK5 in cell
no
2.39E−02
2/9 
mcc
2


adhesion


Cell cycle_Role of 14-3-3 proteins in cell
no
5.11E−03
3/22
tcga
2


cycle regulation


Cell cycle_Role of 14-3-3 proteins in cell
no
2.16E−02
3/22
mcc
2


cycle regulation


Cell cycle_Role of SCF complex in cell
no
1.12E−02
3/29
tcga
2


cycle regulation


Cell cycle_Role of SCF complex in cell
no
7.76E−03
4/29
mcc
2


cycle regulation


Cell cycle_Start of DNA replication in early
no
1.46E−02
3/32
tcga
2


S phase


Cell cycle_Start of DNA replication in early
no
2.96E−02
4/32
mda
2


S phase


CFTR-dependent regulation of ion channels
no
1.60E−02
8/44
tcc
2


in Airway Epithelium (norm and CF)


CFTR-dependent regulation of ion channels
no
6.88E−03
5/44
mcc
2


in Airway Epithelium (norm and CF)


Chemotaxis_Inhibitory action of lipoxins on
no
4.93E−02
3/51
tcga
2


IL-8- and Leukotriene B4-induced


neutrophil migration


Chemotaxis_Inhibitory action of lipoxins on
no
3.98E−02
5/51
mda
2


IL-8- and Leukotriene B4-induced


neutrophil migration


Chemotaxis_Leukocyte chemotaxis
yes
4.12E−04
15/75 
tcc
2


Chemotaxis_Leukocyte chemotaxis
no
3.31E−02
4/75
tcga
2


Cytoskeleton remodeling_Reverse signaling
no
2.65E−02
6/31
tcc
2


by ephrin B


Cytoskeleton remodeling_Reverse signaling
no
2.66E−02
4/31
mda
2


by ephrin B


Development_A1 receptor signaling
no
4.43E−02
8/53
tcc
2


Development_A1 receptor signaling
yes
6.81E−04
8/53
mda
2


Development_Angiotensin signaling via
no
3.06E−02
6/32
tcc
2


STATs


Development_Angiotensin signaling via
no
2.96E−02
4/32
mda
2


STATs


Development_Delta- and kappa-type opioid
no
6.07E−03
6/23
tcc
2


receptors signaling via beta-arrestin


Development_Delta- and kappa-type opioid
no
9.44E−03
4/23
mda
2


receptors signaling via beta-arrestin


Development_Hedgehog signaling
yes
1.93E−03
10/46 
tcc
2


Development_Hedgehog signaling
yes
2.51E−04
8/46
mda
2


Development_Leptin signaling via
no
3.66E−02
5/25
tcc
2


JAK/STAT and MAPK cascades


Development_Leptin signaling via
no
3.04E−02
3/25
mcc
2


JAK/STAT and MAPK cascades


Development_MicroRNA-dependent
no
5.01E−03
3/10
mda
2


inhibition of EMT


Development_MicroRNA-dependent
no
2.94E−02
2/10
mcc
2


inhibition of EMT


Development_PEDF signaling
no
4.46E−02
3/49
tcga
2


Development_PEDF signaling
no
3.43E−02
5/49
mda
2


Development_PIP3 signaling in cardiac
no
4.02E−02
3/47
tcga
2


myocytes


Development_PIP3 signaling in cardiac
no
3.98E−02
4/47
mcc
2


myocytes


Development_Role of CDK5 in neuronal
no
1.73E−02
3/34
tcga
2


development


Development_Role of CDK5 in neuronal
no
3.60E−02
4/34
mda
2


development


Development_SSTR1 in regulation of cell
no
1.94E−02
6/29
tcc
2


proliferation and migration


Development_SSTR1 in regulation of cell
no
4.45E−02
3/29
mcc
2


proliferation and migration


Development_TGF-beta-dependent
no
3.81E−02
3/46
tcga
2


induction of EMT via RhoA, PI3K and ILK.


Development_TGF-beta-dependent
yes
3.91E−05
9/46
mda
2


induction of EMT via RhoA, PI3K and ILK.


Development_Thrombospondin-1 signaling
no
1.89E−02
4/28
mda
2


Development_Thrombospondin-1 signaling
no
4.07E−02
3/28
mcc
2


Development_VEGF signaling and
no
3.20E−02
3/43
tcga
2


activation


Development_VEGF signaling and
no
4.77E−03
6/43
mda
2


activation


Development_VEGF signaling via VEGFR2 -
no
2.35E−02
12/84 
tcc
2


generic cascades


Development_VEGF signaling via VEGFR2 -
no
4.71E−02
4/84
tcga
2


generic cascades


DNA damage_ATM/ATR regulation of G2/
yes
7.47E−04
4/26
tcga
2


M checkpoint


DNA damage_ATM/ATR regulation of G2/
no
5.21E−03
4/26
mcc
2


M checkpoint


DNA damage_ATM/ATR regulation of
yes
1.67E−03
4/32
tcga
2


G1/S checkpoint


DNA damage_ATM/ATR regulation of
no
1.10E−02
4/32
mcc
2


G1/S checkpoint


DNA damage_Brca1 as a transcription
no
1.23E−02
3/30
tcga
2


regulator


DNA damage_Brca1 as a transcription
yes
1.40E−04
6/30
mcc
2


regulator


ENaC regulation in airways (normal and
no
4.01E−02
8/52
tcc
2


CF)


ENaC regulation in airways (normal and
no
4.28E−02
5/52
mda
2


CF)


G-protein signaling_G-Protein alpha-i
yes
2.81E−03
5/27
mda
2


signaling cascades


G-protein signaling_G-Protein alpha-s
no
4.32E−02
4/36
mda
2


signaling cascades


G-protein signaling_Proinsulin C-peptide
no
9.78E−03
4/52
tcga
2


signaling


G-protein signaling_Proinsulin C-peptide
no
4.28E−02
5/52
mda
2


signaling


G-protein signaling_Regulation of RAC1
no
2.01E−02
3/36
tcga
2


activity


G-protein signaling_Regulation of RAC1
no
1.00E−02
5/36
mda
2


activity


G-protein signaling_RhoA regulation
yes
7.22E−04
9/34
tcc
2


pathway


G-protein signaling_RhoA regulation
no
3.60E−02
4/34
mda
2


pathway


Immune response_CD28 signaling
no
4.87E−02
8/54
tcc
2


Immune response_CD40 signaling
no
8.92E−03
11/65 
tcc
2


Immune response_Classical complement
yes
4.74E−12
22/52 
tcc
2


pathway


Immune response_Classical complement
yes
3.50E−09
14/52 
mda
2


pathway


Immune response_CXCR4 signaling via
no
4.00E−02
6/34
tcc
2


second messenger


Immune response_CXCR4 signaling via
no
3.60E−02
4/34
mda
2


second messenger


Immune response_IL-5 signalling
no
4.54E−02
7/44
tcc
2


Immune response_IL-5 signalling
no
3.40E−02
3/44
tcga
2


Immune response_Inflammasome in
no
1.43E−02
7/35
tcc
2


inflammatory response


Immune response_Inflammasome in
no
3.95E−02
4/35
mda
2


inflammatory response


Immune response_Lectin induced
yes
1.00E−13
23/49 
tcc
2


complement pathway


Immune response_Lectin induced
yes
1.49E−07
12/49 
mda
2


complement pathway


Immune response_MIF-JAB1 signaling
no
6.56E−03
3/24
tcga
2


Immune response_MIF-JAB1 signaling
no
2.73E−02
3/24
mcc
2


Immune response_Oncostatin M signaling
no
1.66E−02
3/20
mcc
2


via JAK-Stat in human cells


Immune response_Oncostatin M signaling
no
1.24E−02
3/18
mcc
2


via JAK-Stat in mouse cells


Immune response_PGE2 common pathways
no
4.96E−03
10/52 
tcc
2


Immune response_PGE2 common pathways
yes
2.89E−03
7/52
mda
2


Immune response_PGE2 in immune and
no
1.60E−02
8/44
tcc
2


neuroendocrine system interactions


Immune response_PGE2 in immune and
no
5.36E−03
6/44
mda
2


neuroendocrine system interactions


Neurophysiological process_Corticoliberin
no
3.70E−02
5/50
mda
2


signaling via CRHR1


Neurophysiological process_Corticoliberin
no
4.82E−02
4/50
mcc
2


signaling via CRHR1


Neurophysiological process_Dopamine D2
no
4.25E−02
5/26
tcc
2


receptor transactivation of PDGFR in CNS


Neurophysiological process_Dopamine D2
no
1.46E−02
4/26
mda
2


receptor transactivation of PDGFR in CNS


Neurophysiological process_Netrin-1 in
no
2.99E−03
9/41
tcc
2


regulation of axon guidance


Neurophysiological process_Netrin-1 in
no
3.75E−03
6/41
mda
2


regulation of axon guidance


Neurophysiological process_PGE2-induced
no
4.08E−02
7/43
tcc
2


pain processing


Neurophysiological process_PGE2-induced
no
2.07E−02
5/43
mda
2


pain processing


Neurophysiological process_Receptor-
no
5.77E−03
9/45
tcc
2


mediated axon growth repulsion


Neurophysiological process_Receptor-
no
2.48E−02
5/45
mda
2


mediated axon growth repulsion


Proteolysis_Role of Parkin in the Ubiquitin-
yes
1.62E−03
5/24
mda
2


Proteasomal Pathway


Proteolysis_Role of Parkin in the Ubiquitin-
no
2.73E−02
3/24
mcc
2


Proteasomal Pathway


Pyruvate metabolism
no
4.46E−02
3/49
tcga
2


Pyruvate metabolism
no
4.53E−02
4/49
mcc
2


Retinol metabolism
yes
3.54E−04
15/74 
tcc
2


Retinol metabolism
no
3.17E−02
4/74
tcga
2


Role of alpha-6/beta-4 integrins in
yes
1.62E−03
10/45 
tcc
2


carcinoma progression


Role of alpha-6/beta-4 integrins in
no
2.48E−02
5/45
mda
2


carcinoma progression


Signal transduction_Activation of PKC via
yes
1.47E−03
11/52 
tcc
2


G-Protein coupled receptor


Signal transduction_Activation of PKC via
no
4.28E−02
5/52
mda
2


G-Protein coupled receptor


Signal transduction_cAMP signaling
no
2.21E−02
7/38
tcc
2


Signal transduction_cAMP signaling
yes
4.25E−04
7/38
mda
2


Some pathways of EMT in cancer cells
no
3.63E−02
8/51
tcc
2


Some pathways of EMT in cancer cells
no
1.10E−02
6/51
mda
2


Transcription_Androgen Receptor nuclear
no
1.82E−02
8/45
tcc
2


signaling


Transcription_Androgen Receptor nuclear
no
2.48E−02
5/45
mda
2


signaling


Transcription_Ligand-dependent activation
no
1.23E−02
3/30
tcga
2


of the ESR1/SP pathway


Transcription_Ligand-dependent activation
yes
1.23E−03
5/30
mcc
2


of the ESR1/SP pathway


Transcription_P53 signaling pathway
yes
2.07E−03
9/39
tcc
2


Transcription_P53 signaling pathway
no
2.49E−02
3/39
tcga
2


Transcription_Role of heterochromatin
no
4.87E−02
2/22
tcga
2


protein 1 (HP1) family in transcriptional


silencing


Transcription_Role of heterochromatin
no
4.63E−02
3/22
mda
2


protein 1 (HP1) family in transcriptional


silencing


Translation_Non-genomic (rapid) action of
yes
2.50E−03
9/40
tcc
2


Androgen Receptor


Translation_Non-genomic (rapid) action of
no
2.66E−02
3/40
tcga
2


Androgen Receptor


wtCFTR and delta508-CFTR traffic/
no
3.26E−02
8/50
tcc
2


Generic schema (norm and CF)


wtCFTR and delta508-CFTR traffic/
no
3.70E−02
5/50
mda
2


Generic schema (norm and CF)


Apoptosis and survival_Anti-apoptotic
no
3.24E−02
7/41
tcc
1


TNFs/NF-kB/Bcl-2 pathway


Apoptosis and survival_Beta-2 adrenergic
yes
1.32E−03
5/23
mda
1


receptor anti-apoptotic action


Apoptosis and survival_Ceramides signaling
no
2.66E−02
3/40
tcga
1


pathway


Apoptosis and survival_Regulation of
no
1.23E−02
4/33
mcc
1


Apoptosis by Mitochondrial Proteins


Arachidonic acid production
no
4.69E−02
3/50
tcga
1


Atherosclerosis_Role of ZNF202 in
no
1.80E−02
5/21
tcc
1


regulation of expression of genes involved


in Atherosclerosis


Autophagy_Autophagy
no
2.96E−02
4/32
mda
1


Bacterial infections in CF airways
yes
7.79E−05
14/58 
tcc
1


Blood coagulation_GPCRs in platelet
no
4.76E−02
6/71
mda
1


aggregation


Blood coagulation_GPIb-IX-V-dependent
no
3.31E−02
4/75
tcga
1


platelet activation


Blood coagulation_GPVI-dependent platelet
yes
2.37E−03
11/55 
tcc
1


activation


C and CxC3 Chemokines
no
4.90E−02
2/5 
tcc
1


cAMP/Ca(2+)-dependent Insulin secretion
no
2.07E−02
5/43
mda
1


Cannabinoid receptor signaling in nicotine
no
3.60E−02
4/34
mda
1


addiction


Cardiac Hypertrophy_Ca(2+)-dependent
yes
3.94E−05
10/57 
mda
1


NF-AT signaling in Cardiac Hypertrophy


Cardiac Hypertrophy_NF-AT signaling in
yes
1.26E−04
10/65 
mda
1


Cardiac Hypertrophy


Catecholamine metabolism
no
2.91E−02
4/72
tcga
1


Catecholamine metabolism/Human version
no
3.04E−02
4/73
tcga
1


CC chemokines/receptor faimly CC15-
no
4.87E−02
2/22
tcga
1


CCL28


Cell adhesion_Alpha-4 integrins in cell
no
4.00E−02
6/34
tcc
1


migration and adhesion


Cell adhesion_Endothelial cell contacts by
no
3.11E−02
5/24
tcc
1


non-junctional mechanisms


Cell adhesion_Gap junctions
no
1.23E−02
3/30
tcga
1


Cell adhesion_Integrin-mediated cell
no
4.24E−02
3/48
tcga
1


adhesion and migration


Cell cycle_Influence of Ras and Rho
no
1.05E−02
4/53
tcga
1


proteins on G1/S Transition


CFTR folding and maturation (norm and
no
1.36E−02
3/14
mda
1


CF)


Chemotaxis_CCR4-induced chemotaxis of
no
1.22E−02
7/34
tcc
1


immune cells


CXC Chemokine-receptor family
yes
4.45E−04
7/20
tcc
1


Cytokine production by Th17 cells in CF
no
2.52E−02
7/39
tcc
1


Cytokine production by Th17 cells in CF
no
9.10E−03
6/49
mda
1


(Mouse model)


Cytoskeleton remodeling_Alpha-1A
no
3.72E−02
2/19
tcga
1


adrenergic receptor-dependent inhibition of


PI3K


Cytoskeleton remodeling_CDC42 in cellular
yes
8.57E−04
7/22
tcc
1


processes


Cytoskeleton remodeling_Cytoskeleton
no
2.47E−02
 5/102
tcga
1


remodeling


Cytoskeleton remodeling_Neurofilaments
no
7.37E−03
3/25
tcga
1


Cytoskeleton remodeling_Regulation of
no
5.81E−03
3/23
tcga
1


actin cytoskeleton by Rho GTPases


Cytoskeleton remodeling_Role of PDGFs in
no
1.10E−02
4/24
mda
1


cell migration


Cytoskeleton remodeling_Role of PKA in
no
2.86E−02
7/40
tcc
1


cytoskeleton reorganisation


Cytoskeleton remodeling_Thyroliberin in
no
6.89E−03
5/33
mda
1


cytoskeleton remodeling


dCTP/dUTP metabolism
no
3.31E−02
4/75
tcga
1


Development_A2A receptor signaling
no
4.08E−02
7/43
tcc
1


Development_A3 receptor signaling
no
3.43E−02
5/49
mda
1


Development_ACM2 and ACM4 activation
no
2.07E−02
5/43
mda
1


of ERK


Development_Activation of ERK by Kappa-
no
4.32E−02
4/36
mda
1


type opioid receptor


Development_Alpha-2 adrenergic receptor
no
1.78E−02
4/62
tcga
1


activation of ERK


Development_Angiotensin activation of Akt
no
2.70E−02
5/46
mda
1


Development_Angiotensin signaling via
no
1.27E−02
4/25
mda
1


beta-Arrestin


Development_Beta-adrenergic receptors
no
7.43E−03
6/47
mda
1


regulation of ERK


Development_Beta-adrenergic receptors
no
4.28E−02
5/52
mda
1


signaling via cAMP


Development_Cross-talk between VEGF
no
1.14E−02
6/26
tcc
1


and Angiopoietin 1 signaling pathways


Development_EDNRB signaling
no
3.70E−02
5/50
mda
1


Development_EGFR signaling pathway
no
4.63E−02
9/63
tcc
1


Development_EPO-induced Jak-STAT
no
4.53E−02
6/35
tcc
1


pathway


Development_EPO-induced MAPK
no
5.77E−03
9/45
tcc
1


pathway


Development_FGF-family signaling
no
1.50E−02
9/52
tcc
1


Development_FGFR signaling pathway
no
4.87E−02
8/54
tcc
1


Development_GDNF family signaling
no
2.07E−02
8/46
tcc
1


Development_Glucocorticoid receptor
no
3.11E−02
5/24
tcc
1


signaling


Development_GM-CSF signaling
no
4.69E−02
3/50
tcga
1


Development_Growth hormone signaling
no
1.43E−02
7/35
tcc
1


via STATs and PLC/IP3


Development_Hedgehog and PTH signaling
no
2.85E−03
5/36
mcc
1


pathways in bone and cartilage development


Development_HGF signaling pathway
no
9.09E−03
5/47
mcc
1


Development_Inhibition of angiogenesis by
no
2.66E−02
4/31
mda
1


PEDF


Development_Melanocyte development and
no
9.10E−03
6/49
mda
1


pigmentation


Development_Mu-type opioid receptor
no
7.59E−03
6/24
tcc
1


signaling via Beta-arrestin


Development_Osteopontin signaling in
no
6.02E−03
7/30
tcc
1


osteoclasts


Development_Oxytocin receptor signaling
yes
3.30E−03
6/40
mda
1


Development_PACAP signaling in neural
no
1.40E−02
5/39
mda
1


cells


Development_PDGF signaling via MAPK
no
2.93E−02
5/47
mda
1


cascades


Development_Prolactin receptor signaling
no
2.13E−02
5/58
mcc
1


Development_Regulation of CDK5 in CNS
no
4.07E−02
3/28
mcc
1


Development_Regulation of telomere length
no
1.43E−02
7/35
tcc
1


and cellular immortalization


Development_Role of HDAC and
no
4.91E−02
5/54
mda
1


calcium/calmodulin-dependent kinase


(CaMK) in control of skeletal myogenesis


Development_S1P1 signaling pathway
no
5.36E−03
6/44
mda
1


Development_S1P2 and S1P3 receptors in
no
8.23E−03
3/26
tcga
1


cell proliferation and differentiation


Development_S1P3 receptor signaling
no
4.77E−03
6/43
mda
1


pathway


Development_Signaling of Beta-adrenergic
no
4.25E−02
5/26
tcc
1


receptors via Beta-arrestins


Development_Slit-Robo signaling
no
4.53E−03
5/30
mda
1


Development_SSTR2 in regulation of cell
no
1.00E−02
5/36
mda
1


proliferation


Development_TGF-beta-dependent
no
7.43E−03
6/47
mda
1


induction of EMT via MAPK


Development_Thrombopoetin signaling via
no
2.16E−02
3/22
mcc
1


JAK-STAT pathway


Development_Thrombopoietin-regulated
no
5.87E−03
4/45
tcga
1


cell processes


Development_Thyroliberin signaling
no
7.10E−03
7/61
mda
1


Development_WNT signaling pathway. Part
no
1.16E−02
5/19
tcc
1


1. Degradation of beta-catenin in the


absence WNT signaling


Development_WNT5A signaling
no
2.70E−02
5/46
mda
1


Glycolysis and gluconeogenesis p.3
no
2.73E−02
3/24
mcc
1


Glycolysis and gluconeogenesis p.3/
no
2.73E−02
3/24
mcc
1


Human version


G-protein signaling_G-Protein beta/gamma
no
7.84E−03
5/34
mda
1


signaling cascades


G-protein signaling_RAC1 in cellular
yes
1.85E−04
10/35 
tcc
1


process


G-protein signaling_Rap2A regulation
no
2.34E−02
3/17
mda
1


pathway


G-protein signaling_Regulation of cAMP
no
2.48E−02
5/45
mda
1


levels by ACM


G-protein signaling_RhoB regulation
yes
7.60E−04
6/16
tcc
1


pathway


GTP metabolism
no
1.44E−02
6/54
mda
1


Immune response_CCR3 signaling in
yes
1.69E−03
14/77 
tcc
1


eosinophils


Immune response_IFN gamma signaling
no
6.55E−03
10/54 
tcc
1


pathway


Immune response_Sialic-acid receptors
yes
7.78E−06
7/12
tcc
1


(Siglecs) signaling


Immune response_Antigen presentation by
no
9.84E−03
4/12
tcc
1


MHC class II


Immune response_Antiviral actions of
yes
3.93E−04
12/52 
tcc
1


Interferons


Immune response_Bacterial infections in
no
3.69E−03
10/50 
tcc
1


normal airways


Immune response_BCR pathway
no
1.89E−02
9/54
tcc
1


Immune response_CCR5 signaling in
no
2.00E−02
6/58
mda
1


macrophages and T lymphocytes


Immune response_CD137 signaling in
no
1.12E−02
3/29
tcga
1


immune cell


Immune response_CD16 signaling in NK
no
3.37E−02
10/69 
tcc
1


cells


Immune response_Fc epsilon RI pathway
no
7.48E−03
10/55 
tcc
1


Immune response_Fc gamma R-mediated
no
7.76E−03
9/47
tcc
1


phagocytosis in macrophages


Immune response_Function of MEF2 in T
no
1.00E−02
6/50
mda
1


lymphocytes


Immune response_Histamine H1 receptor
no
3.17E−02
5/48
mda
1


signaling in immune response


Immune response_Histamine signaling in
no
3.70E−02
5/50
mda
1


dendritic cells


Immune response_HMGB1/RAGE signaling
yes
1.17E−04
13/53 
tcc
1


pathway


Immune response_HMGB1/TLR signaling
yes
1.13E−03
9/36
tcc
1


pathway


Immune response_ICOS pathway in T-
no
6.71E−03
9/46
tcc
1


helper cell


Immune response_IFN alpha/beta signaling
yes
4.25E−06
10/24 
tcc
1


pathway


Immune response_IL-1 signaling pathway
no
4.54E−02
7/44
tcc
1


Immune response_IL-10 signaling pathway
no
1.46E−02
4/26
mda
1


Immune response_IL-7 signaling in B
no
4.99E−03
4/43
tcga
1


lymphocytes


Immune response_IL-7 signaling in T
no
3.17E−03
4/38
tcga
1


lymphocytes


Immune response_Immunological synapse
yes
1.31E−03
12/59 
tcc
1


formation


Immune response_Inhibitory action of
no
4.02E−02
3/47
tcga
1


Lipoxins on pro-inflammatory TNF-alpha


signaling


Immune response_Inhibitory action of
no
4.29E−03
10/51 
tcc
1


lipoxins on superoxide production induced


by IL-8 and Leukotriene B4 in neutrophils


Immune response_Innate immune response
no
1.64E−02
6/28
tcc
1


to RNA viral infection


Immune response_NFAT in immune
yes
3.24E−04
12/51 
tcc
1


response


Immune response_PIP3 signaling in B
no
3.56E−03
9/42
tcc
1


lymphocytes


Immune response_Role of DAP12 receptors
no
4.87E−02
8/54
tcc
1


in NK cells


Immune response_Role of HMGB1 in
no
3.20E−03
7/27
tcc
1


dendritic cell maturation and migration


Immune response_Role of integrins in NK
no
2.21E−02
7/38
tcc
1


cells cytotoxicity


Immune response_Role of the Membrane
no
3.60E−02
4/34
mda
1


attack complex in cell survival


Immune response_T cell receptor signaling
no
1.50E−02
9/52
tcc
1


pathway


Immune response_TCR and CD28 co-
no
9.06E−03
8/40
tcc
1


stimulation in activation of NF-kB


Immune response_Th17 cell differentiation
no
3.88E−03
8/35
tcc
1


Immune response_TLR signaling pathways
no
8.50E−03
10/56 
tcc
1


Inhibitory action of Lipoxins on Superoxide
no
3.16E−03
10/49 
tcc
1


production in neutrophils


Mechanism of action of CCR4 antagonists
no
1.22E−02
7/34
tcc
1


in asthma and atopic dermatitis (Variant 1)


Membrane-bound ESR1: interaction with G-
no
3.59E−03
7/54
mda
1


proteins signaling


Mucin expression in CF via IL-6, IL-17
no
4.00E−02
6/34
tcc
1


signaling pathways


Muscle contraction_ACM regulation of
no
2.36E−02
9/56
tcc
1


smooth muscle contraction


Muscle contraction_GPCRs in the regulation
no
1.16E−02
8/83
mda
1


of smooth muscle tone


Muscle contraction_Oxytocin signaling in
no
6.49E−03
7/60
mda
1


uterus and mammary gland


Muscle contraction_Regulation of eNOS
no
4.42E−03
7/56
mda
1


activity in cardiomyocytes


Muscle contraction_Regulation of eNOS
no
9.20E−03
7/64
mda
1


activity in endothelial cells


Muscle contraction_Relaxin signaling
no
8.23E−03
6/48
mda
1


pathway


Neurophysiological process_ACM
yes
1.40E−03
7/46
mda
1


regulation of nerve impulse


Neurophysiological process_Dopamine D2
no
2.93E−02
5/47
mda
1


receptor signaling in CNS


Neurophysiological process_EphB receptors
no
1.43E−02
7/35
tcc
1


in dendritic spine morphogenesis and


synaptogenesis


Neurophysiological process_GABA-A
no
1.38E−02
6/27
tcc
1


receptor life cycle


Neurophysiological process_Glutamate
no
1.82E−02
8/45
tcc
1


regulation of Dopamine D1A receptor


signaling


Neurophysiological process_Long-term
no
9.10E−03
6/49
mda
1


depression in cerebellum


Neurophysiological process_Melatonin
no
2.07E−02
5/43
mda
1


signaling


Neurophysiological process_Mu-type opioid
no
2.39E−02
4/30
mda
1


receptor-mediated analgesia


Neurophysiological process_NMDA-
no
9.39E−03
8/80
mda
1


dependent postsynaptic long-term


potentiation in CA1 hippocampal neurons


NGF activation of NF-kB
no
1.12E−02
3/29
tcga
1


Nicotine signaling in glutamatergic neurons
yes
1.18E−03
6/33
mda
1


Normal and pathological TGF-beta-
no
1.23E−02
4/33
mcc
1


mediated regulation of cell proliferation


O-glycan biosynthesis
no
7.04E−03
11/63 
tcc
1


O-glycan biosynthesis/Human version
no
7.04E−03
11/63 
tcc
1


Oxidative stress_Angiotensin II-induced
no
1.43E−02
7/35
tcc
1


production of ROS


Polyamine metabolism
no
2.42E−02
4/68
tcga
1


Possible influence of low doses of Arsenite
no
1.01E−02
3/28
tcga
1


on glucose uptake in muscle


Protein folding_Membrane trafficking and
yes
5.17E−04
5/19
mda
1


signal transduction of G-alpha (i)


heterotrimeric G-protein


Proteolysis_Putative SUMO-1 pathway
no
2.13E−02
4/29
mda
1


Putative pathways for stimulation of fat cell
no
3.06E−02
6/32
tcc
1


differentiation by Bisphenol A


Regulation of CFTR activity (norm and CF)
yes
1.25E−03
8/58
mda
1


Regulation of lipid metabolism_Alpha-1
no
2.65E−02
4/70
tcga
1


adrenergic receptors signaling via


arachidonic acid


Regulation of lipid metabolism_G-alpha(q)
no
3.20E−02
9/59
tcc
1


regulation of lipid metabolism


Regulation of lipid metabolism_Regulation
no
6.00E−03
6/45
mda
1


of lipid metabolism by niacin and


isoprenaline


Regulation of lipid metabolism_Stimulation
no
2.91E−02
4/72
tcga
1


of Arachidonic acid production by ACM


receptors


Reproduction_GnRH signaling
no
3.54E−03
7/72
mcc
1


Serotonin-melatonin biosynthesis and
no
4.93E−02
3/51
tcga
1


metabolism


Signal transduction_Calcium signaling
yes
1.22E−03
7/45
mda
1


Signal transduction_Erk Interactions:
yes
1.39E−03
6/34
mda
1


Inhibition of Erk


Signal transduction_IP3 signaling
no
9.10E−03
6/49
mda
1


Stem cell marker (Nanog, Sox2, Oct4,
no
1.81E−02
3/8 
tcc
1


CD133, Nestin)


Transcription_ChREBP regulation pathway
no
6.76E−03
4/21
mda
1


Transcription_CREB pathway
no
2.93E−02
5/47
mda
1


Transcription_NF-kB signaling pathway
yes
2.07E−03
9/39
tcc
1


Transcription_Role of Akt in hypoxia
no
5.98E−03
4/27
mcc
1


induced HIF1 activation


Transcription_Transcription regulation of
no
3.04E−02
3/25
mcc
1


aminoacid metabolism


Transport_ACM3 in salivary glands
no
4.24E−03
6/42
mda
1


Transport_Aldosterone-mediated regulation
no
2.39E−02
4/30
mda
1


of ENaC sodium transport


Transport_Alpha-2 adrenergic receptor
yes
1.59E−03
7/47
mda
1


regulation of ion channels


Transport_Macropinocytosis regulation by
no
8.46E−03
7/63
mda
1


growth factors


Tyrosine metabolism p.1 (dopamine)
no
1.98E−02
4/64
tcga
1


Untitled
no
2.76E−02
1/1 
mcc
1


wtCFTR and deltaF508 traffic/Membrane
no
3.60E−02
4/34
mda
1


expression (norm and CF)
















TABLE 7







Pearson's correlation for Integrin Drugs















Bonferroni


NSC



Adjusted p-


No.
Compound Name
Pearson Score
p-value
value














676497
TP4EK
0.766727885
2.28E−12
5.24E−08


676495
NA
0.751476854
1.07E−11
2.46E−07


671526
TOXIN .DELTA.53L
0.736035292
4.61E−11
1.06E−06


688718
NA
−0.700760613
6.44E−10
1.48E−05


723742
Diethyl N[4-[(3-phenyl-5,7-
−0.706925314
1.14E−09
2.62E−05



diaminoquinoxalin-2-yl)amino]benzoyl]-L-glutamate


723740
Diethyl N-[-[(3-phenyl-5,7-
−0.690810438
1.40E−09
3.22E−05



diaminoquinoxalin-2-



yl)aminomethyl]benzoyl]-L-gluatamate


645157
4,7-[Bis-N,N′-(3-amino-9-thioacetamido)-
−0.682148303
2.70E−09
6.21E−05



acridine]-biphenyl


716261
NA
0.698290184
3.09E−09
7.11E−05


680073
NA
−0.674463414
4.72E−09
0.000108569


699428
NA
−0.673855388
6.73E−09
0.000154803


35049
NA
−0.667543843
7.72E−09
0.000177575


687978
NA
−0.693298313
8.72E−09
0.000200577


712623
NA
−0.687454524
9.37E−09
0.000215529


623436
TGF.alpha.-PE40
0.721444283
1.06E−08
0.000243821


369318
NA
−0.661991143
1.13E−08
0.000259923


704609
NA
−0.67995242
1.14E−08
0.000262223


635157
Dichlorobisoxinatotitanium(IV)
−0.722426059
1.45E−08
0.000333529


703315
NA
−0.670789286
1.54E−08
0.000354231


633207
NA
−0.709546693
1.64E−08
0.000377233


616511
NA
0.662658493
1.96E−08
0.000450839


625495
1-Piperidinecarbodithioic acid, antimony
−0.650579578
2.44E−08
0.000561249



complex


723001
Diethyl-N[4-(3-thienylquinoxalyn-2-
0.659986786
3.15E−08
0.000724563



yl)oxiphenylacetyl]-L-glutamate


677960
16.beta.-N-methylpiperazino-5-androstene-
−0.645051147
3.50E−08
0.00080507



3.beta.,17.beta.-diol-diacetate


716729
NA
−0.655806396
4.11E−08
0.000945382


677395
2-Azido-10-[(4-
−0.641851353
4.29E−08
0.000986786



dimethylamino)butyl]phenothiazine, oxalate



salt


625502
4-Morpholinecarbodithioic acid, antimony
−0.641295412
4.45E−08
0.001023589



complex


2186
Thymophthalein, 1(3H)-Isobenzofuranone,
−0.639442901
5.00E−08
0.0011501



3,3-bis[4-hydroxy-2-methyl-5-(1-



methylethyl)phenyl]-


351075
1H-Azepine-1-carbothioic acid, hexahydro-,
−0.648145415
5.02E−08
0.0011547



[1-(2-pyridinyl)ethylidene]hydrazide, N-



oxide


17474
SKF 5019, Eskazine, Calmazine
−0.639354768
5.03E−08
0.001157001


13984
NA
−0.639206645
5.07E−08
0.001166201


627050
Dispiro[cyclopropane-1,2′(3′H)-naphthalene-
−0.639055416
5.12E−08
0.001177702



3′,2″-imidazolidine], 1″,3″-dimethyl-


686324
Indolizine, 1-methyl-3-[4-[2-
−0.636942362
5.85E−08
0.001345617



(dimethylamino)ethoxy]phenyl]-2-phenyl-


700422
NA
−0.640908346
5.98E−08
0.00137552


11225
Klot, Blutene, Toluidine Blue O
−0.636039696
6.19E−08
0.001423824


676879
Phenothiazine, 2-azido-10-[4-(4-methyl-1-
−0.639940972
6.36E−08
0.001462927



piperazinyl)butyl]-, difumarate


701666
Benzenamine, N-[4-(4-chlorophenyl)-3-(2-
−0.648677587
6.43E−08
0.001479029



propenyl)-2(3H)-thiazolylidene]-2-methoxy-,



hydrobromide, (2Z)-


657562
2-[(Z)-bromoiodomethylidene]
−0.634417368
6.84E−08
0.001573337



cyclohexanone


708089
NA
−0.63408625
6.99E−08
0.00160784


34924
NA
−0.631194088
8.35E−08
0.001920667


742850
NA
−0.630058793
8.95E−08
0.002058679


715472
NA
−0.633788471
9.28E−08
0.002134586


716535
NA
−0.628790703
9.67E−08
0.002224293


641056
NA
−0.675691328
1.00E−07
0.0023002


679749
NA
−0.641398269
1.00E−07
0.0023002


676498
TP4EK-K6
0.632034958
1.03E−07
0.002369206


682932
NA
0.640707558
1.05E−07
0.00241521


684411
NA
−0.645241923
1.05E−07
0.00241521


685016
NA
−0.635434747
1.10E−07
0.00253022


641220
NA
−0.639578183
1.12E−07
0.002576224


687976
NA
−0.648879965
1.12E−07
0.002576224


675006
NA
−0.639227622
1.14E−07
0.002622228


631522
NA
−0.634530774
1.16E−07
0.002668232


658215
1H,5H-Benzo[ij]quinolizine-5-one, 7-azido-
−0.629718727
1.19E−07
0.002737238



2,3-dihydro-6-nitro-


660634
2-Chloro-3-(2-chloroethoxy)-naphthazarin
−0.643044568
1.20E−07
0.00276024


741338
12-Benzyl-5,12-dihydro-
0.633441773
1.23E−07
0.002829246



indeno[2′,1′:4,5]pyrrolo[3,2-c]chinolin-6,7-



dione


692583
NA
−0.641429714
1.32E−07
0.003036264


686368
Quinazolin-4(3H)-one, 3-ethyl-2-[[[5-
0.627785195
1.33E−07
0.003059266



(phenylamino)-1,3,4-thiadiazol-2-



yl]methyl]thio]-


715690
NA
0.630136941
1.50E−07
0.0034503


116532
NA
−0.622772645
1.79E−07
0.004117358


691220
NA
0.630535419
1.91E−07
0.004393382


732517
Dasatinib
0.616761441
1.98E−07
0.004554396


711830
NA
−0.639031012
1.99E−07
0.004577398


697882
NA
−0.625076405
2.02E−07
0.004646404


665689
NA
−0.61600903
2.07E−07
0.004761414


709922
Landomycin E
−0.615886676
2.08E−07
0.004784416


695332
NA
0.657261403
2.16E−07
0.004968432


252188
2,5-Cyclohexadiene-1,4-dione, 2-chloro-5,6-
−0.619277844
2.19E−07
0.005037438



dimethoxy-3-(octylthio)-


716294
NA
−0.636503239
2.30E−07
0.00529046


682300
NA
−0.617465383
2.43E−07
0.005589486


635322
NA
−0.664949195
2.54E−07
0.005842508


335791
3-Azabicyclo[3.2.2]nonane-3-carbothioic
−0.614728899
2.84E−07
0.006532568



acid, [1-(2-pyridinyl)butylidene]hydrazide


644583
NA
−0.662436695
2.92E−07
0.006716584


688816
NA
0.613706891
3.01E−07
0.006923602


639386
NA
−0.67850119
3.02E−07
0.006946604


715486
NA
−0.61359876
3.03E−07
0.006969606


702397
NA
0.612845334
3.16E−07
0.007268632


635308
NA
−0.671652795
3.22E−07
0.007406644


304379
NA
−0.625773257
3.24E−07
0.007452648


644933
NA
−0.650080298
3.24E−07
0.007452648


354671
1-Piperazinecarbothioic acid, 4-(2-
−0.606816872
3.49E−07
0.008027698



pyridinyl)-, [1-(2-



thiazolyl)ethylidene]hydrazide


710404
NA
−0.606388072
3.58E−07
0.008234716


660632
2-Chloro-3-[2-(2-butoxyethoxy)ethoxy]-
−0.619351079
3.60E−07
0.00828072



naphthazarin


303612
LM 209, Virginan, Mequitazine
−0.605774639
3.70E−07
0.00851074


246981
NA
−0.608689581
3.99E−07
0.009177798


735179
(1,1-dioxido-3-oxo-1,2-benzisothiazol-
−0.604344993
4.01E−07
0.009223802



2(3H)-yl)methyl diethyldithiocarbamate


671409
NA
0.607992724
4.15E−07
0.00954583


666075
1,1-diiodo-2,2-dimethoxy-2-phenylethane
−0.607935343
4.16E−07
0.009568832


625501
Antimony, chlorobis(1-
−0.603385633
4.23E−07
0.009729846



piperidinecarbodithioato-S,S′)-


684480
7H-Pyrido[3,2-d][1]benzazepin-6-one, 2-(3-
0.603028503
4.32E−07
0.009936864



chlorophenyl)-5,6-dihydro-4-phenyl-
















TABLE 8







Pearson's correlation for WNT2 drugs















Bonferroni


NSC No.
Compound Name
Pearson Score
p-value
Adjusted p-value














724325
NA
−0.710613594
5.93E−10
1.36E−05


150412
NA
0.6828783
3.53E−09
8.12E−05


680313
NA
−0.668529078
7.20E−09
0.000165614


711070
NA
−0.67727365
7.24E−09
0.000166534


674493
Hydrazinecarboxamide, N-(1-naphthyl)-2-[(4-
−0.661389005
1.18E−08
0.000271424



nitrophenyl)methylene]-


678057
Pyridine-3-carbonitrile, 6-(4-chlorophenyl)-1-
−0.660202214
1.28E−08
0.000294426



(.beta.-D-glucopyranosyl)-1,2-dihydro-2-



thioxo-, 2′,3′,4′,6′-tetraacetate


630375
2H-1-Benzopyran-2-one, 4-(2-benzofuranyl)-
−0.658161133
2.64E−08
0.000607253



7-methoxy-


702397
NA
−0.651626077
3.03E−08
0.000696961


635157
Dichlorobisoxinatotitanium(IV)
0.709975874
3.29E−08
0.000756766


672768
NA
−0.65232352
3.85E−08
0.000885577


135371
NA
0.647588118
3.93E−08
0.000903979


354670
3-Azabicyclo[3.2.2]nonane-3-carbothioic acid,
0.642865361
4.02E−08
0.00092468



[1-(2-thiazolyl)ethylidene]hydrazide


682817
7,10:11,14-Dietheno-28H-23,27-nitrilo-22H-
−0.642149215
4.21E−08
0.000968384



dibenzo[b,p]



[1,18,5,14]dioxadiazacyclopentacosine


645392
2-Propen-1-one, 1-(4-chlorophenyl)-3-[4-[2-
−0.642046828
4.24E−08
0.000975285



oxo-2-(4-phenyl-1-



piperazinyl)ethoxy]phenyl]-, (E)-


670782
NA
0.640394693
4.71E−08
0.001083394


625542
Methanone, phenyl-2-pyridyl-, 2-
0.637130403
5.78E−08
0.001329516



pyridylhydrazone, nickel acetate complex


668836
NA
−0.662104347
6.70E−08
0.001541134


650792
1,4,7,10-Tetrathia-13-azacyclopentadecane,
−0.632373275
7.77E−08
0.001787255



13-[(4-methylphenyl)sulfonyl]-


351078
Hydrazinecarbothioamide, N,N-dimethyl-2-[1-
0.628686077
9.73E−08
0.002238095



(2-pyridinyl)-ethylidene]-, N-oxide


742036
NA
−0.656281605
1.28E−07
0.002944256


657562
2-[(Z)-bromoiodomethylidene] cyclohexanone
0.622000673
1.45E−07
0.00333529


647133
NA
0.66907426
1.48E−07
0.003404296


677640
NA
−0.621411198
1.50E−07
0.0034503


682504
NA
−0.620249301
1.61E−07
0.003703322


685848
4(3H)-Quinazolinone, 3-[[(2-
−0.623088892
1.76E−07
0.004048352



nitrophenyl)methylene]amino]-2-phenyl-


716535
NA
0.618478624
1.79E−07
0.004117358


745449
NA
0.617892232
1.85E−07
0.00425537


625543
ANTINEOPLASTIC-625543
0.616754535
1.98E−07
0.004554396


682932
NA
−0.629475374
2.03E−07
0.004669406


622613
3H-Naphtho[1,8-bc]furan-2-carboxylic acid,
−0.617922148
2.37E−07
0.005451474



4,5-dihydro-6-nitro-, ethyl ester


166588
METHYLUNDECYLPIPERIDINE, TRANS
0.612415173
2.54E−07
0.005842508


321206
NA
0.609213968
3.05E−07
0.00701561


736442
7-fluoro-2-(thien-2-ilcarbonyl)-3-
0.60831884
3.21E−07
0.007383642



trifluoromethylquioxaline 1,4-dioxide


715648
NA
−0.607728018
3.32E−07
0.007636664


683922
NA
0.60713614
3.43E−07
0.007889686


637921
1H-Pyrazole-1-propanamide, 3,5-diphenyl-N-
−0.606346286
3.59E−07
0.008257718



(4-methoxyphenyl)-4-[(4-methylphenyl)azo]-



.beta.-oxo-


176632
Stannane, trimethyl[(4-
0.675314344
3.60E−07
0.00828072



morpholinylthioxomethyl)thio]-


691422
acetonitrile, dimethoxyphenyl, pyrimidin
−0.609371891
3.84E−07
0.008832768


691415
NA
−0.604707722
3.93E−07
0.009039786


711222
NA
−0.604718705
3.93E−07
0.009039786


338304
Iron, dichloro[hexahydro-1H-azepine-1-
0.603615641
4.18E−07
0.009614836



carbothioic acid [1-(2-



pyridinyl)ethylidene]hydraziato]


667722
NA
−0.634935881
4.29E−07
0.009867858
















TABLE 9







Pearson's correlation for TGF-WNT drugs















Bonferroni


NSC No.
Compound Name
Pearson Score
p-value
Adjusted p-value














682932
NA
0.778356256
1.66E−12
3.82E−08


661232
2-(4-hydroxybenzylidene)-5-((phenyl-
−0.769299612
1.73E−12
3.98E−08



amino)methyl)cyclopentanone


635131
NA
−0.806525613
4.54E−12
1.04E−07


645157
4,7-[Bis-N,N′-(3-amino-9-thioacetamido)-acridine]-
−0.753473538
5.74E−12
1.32E−07



biphenyl


354671
1-Piperazinecarbothioic acid, 4-(2-pyridinyl)-, [1-(2-
−0.752586626
6.27E−12
1.44E−07



thiazolyl)ethylidene]hydrazide


736442
7-fluoro-2-(thien-2-ilcarbonyl)-3-
−0.746277988
1.17E−11
2.69E−07



trifluoromethylquioxaline 1,4-dioxide


351075
1H-Azepine-1-carbothioic acid, hexahydro-, [1-(2-
−0.752883461
1.43E−11
3.29E−07



pyridinyl)ethylidene]hydrazide, N-oxide


670782
NA
−0.741846529
1.79E−11
4.12E−07


351078
Hydrazinecarbothioamide, N,N-dimethyl-2-[1-(2-
−0.740214447
2.09E−11
4.81E−07



pyridinyl)-ethylidene]-, N-oxide


717769
NA
−0.737729565
2.64E−11
6.07E−07


354670
3-Azabicyclo[3.2.2]nonane-3-carbothioic acid, [1-(2-
−0.736446198
2.98E−11
6.85E−07



thiazolyl)ethylidene]hydrazide


735181
(1,1-dioxido-3-oxo-1,2-benzisothiazol-2(3H)-
−0.739547945
3.34E−11
7.68E−07



yl)methyl 4-methylpiperazine-1-carbodithioate


680072
Ochraceolide A
−0.733329843
3.97E−11
9.13E−07


635157
Dichlorobisoxinatotitanium(IV)
−0.794330317
4.45E−11
1.02E−06


166588
METHYLUNDECYLPIPERIDINE, TRANS
−0.729674697
5.54E−11
1.27E−06


689279
NA
−0.74663529
5.97E−11
1.37E−06


618059
1-Penten-3-one, 5-(4-morpholinyl)-1-phenyl-,
−0.737077947
6.26E−11
1.44E−06



hydrochloride


135371
NA
−0.732185189
6.53E−11
1.50E−06


691422
acetonitrile, dimethoxyphenyl, pyrimidin
0.730371627
7.68E−11
1.77E−06


639617
NA
−0.722380828
1.06E−10
2.44E−06


625542
Methanone, phenyl-2-pyridyl-, 2-pyridylhydrazone,
−0.722307568
1.07E−10
2.46E−06



nickel acetate complex


682866
Ethanone, 1-[7-(4-chlorophenyl)-5,6-dihydro-9-
−0.724082351
1.33E−10
3.06E−06



methyl-7H-benzo[h]thiazolo[2,3-b]quinazolin-10-yl]-


716535
NA
−0.719557758
1.35E−10
3.11E−06


630375
2H-1-Benzopyran-2-one, 4-(2-benzofuranyl)-7-
0.725397007
1.74E−10
4.00E−06



methoxy-


745449
NA
−0.716570478
1.75E−10
4.03E−06


35949
NA
−0.716500964
1.76E−10
4.05E−06


657562
2-[(Z)-bromoiodomethylidene] cyclohexanone
−0.716273257
1.79E−10
4.12E−06


672768
NA
0.723956796
1.97E−10
4.53E−06


685485
NA
−0.725536895
2.53E−10
5.82E−06


682990
Withafastuosin D diacetate
−0.716487305
2.55E−10
5.87E−06


688718
NA
−0.71101908
2.79E−10
6.42E−06


640927
NA
−0.769114997
4.27E−10
9.82E−06


124784
NA
−0.746146175
5.01E−10
1.15E−05


335791
3-Azabicyclo[3.2.2]nonane-3-carbothioic acid, [1-(2-
−0.706043967
5.99E−10
1.38E−05



pyridinyl)butylidene]hydrazide


620674
NA
0.764730078
6.15E−10
1.41E−05


319447
NA
−0.705228379
6.39E−10
1.47E−05


646162
NA
−0.742503567
6.73E−10
1.55E−05


711474
NA
−0.726537639
7.36E−10
1.69E−05


622696
Thioperoxydicarbonic diamide, tetramethyl-
−0.703386618
7.40E−10
1.70E−05


626881
NA
−0.734501928
8.53E−10
1.96E−05


13984
NA
−0.696932095
8.72E−10
2.01E−05


736443
7-fluoro-2-(2-furoyl)-3-trifluoromethylquioxaline 1,4-
−0.696803932
8.81E−10
2.03E−05



dioxide


645392
2-Propen-1-one, 1-(4-chlorophenyl)-3-[4-[2-oxo-2-(4-
0.695091956
1.01E−09
2.32E−05



phenyl-1-piperazinyl)ethoxy]phenyl]-, (E)-


695320
NA
0.722078326
1.05E−09
2.42E−05


622579
Carbamimidothioic acid, N,N-dimethyl-N′-
−0.693477682
1.14E−09
2.62E−05



[(phenylimino) (methylthio)methyl]-, phenylmethyl



ester, hydroiodide


672464
NA
−0.692483163
1.23E−09
2.83E−05


630128
Trichlorotris-3-(t-butyl)pyrazoleruthenium(III)
−0.699003864
1.47E−09
3.38E−05


716261
NA
0.708143378
1.48E−09
3.40E−05


639518
Cyclopentanone, 2-[[4-(benzoyloxy)-3-
−0.689508702
1.55E−09
3.57E−05



methoxyphenyl] methylene]-5-



[(dimethylamino)methyl]-, hydrochloride


616362
2-Methoxycarbonyl-3,4-dichloro-5-nitrofuran
−0.689270154
1.58E−09
3.63E−05


707098
NA
0.711791456
1.60E−09
3.68E−05


73109
NA
−0.693321966
1.62E−09
3.73E−05


724325
NA
0.697302962
1.68E−09
3.86E−05


656909
NA
0.710973829
1.70E−09
3.91E−05


637921
1H-Pyrazole-1-propanamide, 3,5-diphenyl-N-(4-
0.686537316
1.94E−09
4.46E−05



methoxyphenyl)-4-[(4-methylphenyl)azo]-.beta.-oxo-


658873
NA
−0.708992013
1.98E−09
4.55E−05


301457
Cycloalkannin
−0.69032212
2.03E−09
4.67E−05


711070
NA
0.69448207
2.08E−09
4.78E−05


702397
NA
0.689732966
2.12E−09
4.88E−05


9291
Naphthol blue, Benzo[a]phenoxazinium, 9-
−0.727580409
2.16E−09
4.97E−05



(dimethylamino)-, chloride


711222
NA
0.684305482
2.30E−09
5.29E−05


716431
NA
−0.716425863
2.34E−09
5.38E−05


629738
1-Naphthalenecarboxamide,N,N′-1,8-(octanediyl)bis-
0.697276026
2.37E−09
5.45E−05


645153
9(10H)-Acridinethione, bis[3-[1,1′-biphenyl-2,2′-diyl]
−0.683305498
2.47E−09
5.68E−05



(2-aminoacetyl)amino-


715335
NA
−0.687461266
2.51E−09
5.77E−05


707828
NA
−0.682752254
2.58E−09
5.93E−05


674493
Hydrazinecarboxamide, N-(1-naphthyl)-2-[(4-
0.682213563
2.68E−09
6.16E−05



nitrophenyl)methylene]-


645979
NA
−0.690372774
2.82E−09
6.49E−05


88871
NA
−0.679569766
3.26E−09
7.50E−05


641396
1H-Benzo[a]carbazole-1,4(11H)-dione, 8-methoxy-11-
−0.688269536
3.29E−09
7.57E−05



methyl-


635418
NA
−0.721088004
3.50E−09
8.05E−05


316458
Neplanocin A
−0.677770643
3.72E−09
8.56E−05


646161
Propanethioamide, N-hydroxy-N-methyl-
−0.677446841
3.81E−09
8.76E−05


678057
Pyridine-3-carbonitrile, 6-(4-chlorophenyl)-1-(.beta.-
0.677218475
3.87E−09
8.90E−05



D-glucopyranosyl)-1,2-dihydro-2-thioxo-, 2′,3′,4′,6′-



tetraacetate


661442
NA
−0.676640304
4.04E−09
9.29E−05


675208
NA
−0.719082529
4.05E−09
9.32E−05


612955
1,5-Dihydroxy-1,5-di(pyridin-3-yl)pentan-3-one
−0.67650484
4.08E−09
9.38E−05


35446
PROPIOPHENONE, 3-PHENYL-3-PIPERIDINO-
−0.676193635
4.17E−09
9.59E−05


668267
2H-1-Benzopyran-2-one, 3-chloro-7-[(tetrahydro-4-
−0.680572446
4.17E−09
9.59E−05



methylene-5-oxo-2-phenyl-2-furanyl)methoxy]-4-



methyl-


625543
ANTINEOPLASTIC-625543
−0.676095483
4.20E−09
9.66E−05


662383
2-Bromo-5,8-dihydroxy-3-methyl-1,4-naphthoquinone
−0.675908564
4.26E−09
9.80E−05


669598
NA
−0.679808474
4.40E−09
0.000101209


671883
NA
−0.675010335
4.54E−09
0.000104429


658366
NA
−0.679140058
4.62E−09
0.000106269


668258
NA
−0.678993295
4.67E−09
0.000107419


621888
Cyclopentanone, 2-[(dimethylamino)methyl]-,
−0.678548761
4.82E−09
0.00011087



hydrochloride


657021
NA
−0.711165794
4.97E−09
0.00011432


697862
NA
−0.672735925
5.35E−09
0.000123061


600060
Hydrazinecarbodithioic acid, [(6-methyl-2-pyridinyl)
−0.671941342
5.66E−09
0.000130191



ethylidene]-, methyl ester


695323
NA
−0.704312399
5.67E−09
0.000130421


647133
NA
−0.718634004
6.08E−09
0.000139852


645167
NA
−0.713321612
6.13E−09
0.000141002


687976
NA
−0.693252109
6.25E−09
0.000143763


670969
NA
−0.674599101
6.39E−09
0.000146983


631888
Chlorobisoximatobismuth(III)-dihydrochloride
−0.71218276
6.64E−09
0.000152733


658514
GAB-GELDANAMYCIN
−0.669614632
6.67E−09
0.000153423


645151
3-Acridineamine, 9-[[(4-nitrophenyl)methyl]thio]-
−0.669574019
6.69E−09
0.000153883


717768
NA
−0.669576976
6.69E−09
0.000153883


716522
NA
−0.669562222
6.70E−09
0.000154113


630599
NA
−0.717204481
6.73E−09
0.000154803


617145
(2,2-Dimethyl)-1,3-propandiyl-bis(2,3-
−0.711673108
6.89E−09
0.000158484



dichloro)maleimide


639520
Cyclohexanone, 2-[(2-methoxyphenyl)methylene]-5-
−0.668782424
7.08E−09
0.000162854



[(4-morpholinyl)methyl]-, hydrochloride


630684
8-Quinolinecarboxaldehyde, 2-(2,4-dinitrophenyl)-2-
0.682078965
7.11E−09
0.000163544



methyl-hydrazone


34924
NA
−0.668596594
7.17E−09
0.000164924


742857
NA
−0.668150449
7.40E−09
0.000170215


690983
NA
−0.685979248
7.48E−09
0.000172055


681105
Acetic acid, [1,4,7,10-tetraazacyclododecane-1,7-
−0.671920346
7.72E−09
0.000177575



diyl]bis


680625
NA
0.704598201
7.91E−09
0.000181946


632899
NA
0.714240069
8.29E−09
0.000190687


660977
2-bromo-8-hydroxy-6-methyl-1,4-naphthoquinone
−0.670485996
8.53E−09
0.000196207


658886
NA
−0.665742922
8.75E−09
0.000201268


338304
Iron, dichloro[hexahydro-1H-azepine-1-carbothioic
−0.665206987
9.08E−09
0.000208858



acid [1-(2-pyridinyl)ethylidene]hydraziato]


675989
1,3-Dithiolo[3,4-d]pyrimidine-2-thione, 5,7-dichloro-
−0.664774761
9.36E−09
0.000215299


74663
NA
−0.707096039
9.48E−09
0.000218059


625539
Methanone, phenyl-2-pyridinyl-, 2-
−0.71226679
9.50E−09
0.000218519



pyridinylhydrazone,trichloroiron complex


661233
NA
−0.668824679
9.57E−09
0.000220129


661238
NA
−0.668798038
9.59E−09
0.000220589


639539
NA
−0.717160971
9.78E−09
0.00022496


697663
NA
0.681115155
1.05E−08
0.000241521


680313
NA
0.663003348
1.06E−08
0.000243821


309883
NA
−0.662152673
1.12E−08
0.000257622


658165
NA
−0.694264745
1.14E−08
0.000262223


127763
Propanamide, 2,3-dichloro-N-(9,10-dihydro-9,10-
−0.660875151
1.22E−08
0.000280624



dioxo-1-anthracenyl)-


636344
NA
−0.708187447
1.26E−08
0.000289825


711611
NA
−0.668749482
1.31E−08
0.000301326


68093
NA
−0.701980767
1.35E−08
0.000310527


677938
NA
−0.65936957
1.36E−08
0.000312827


670961
NA
−0.663580425
1.37E−08
0.000315127


671888
NA
−0.659264612
1.37E−08
0.000315127


632950
NA
−0.70122392
1.42E−08
0.000326628


376266
1-Piperazinethiocarboxylic acid, 4-(2-propynyl)-2-[1-
−0.66296559
1.43E−08
0.000328929



(2-pyridinyl)ethylidene]hydrazide


722185
6-(2,4-Difluorophenylmethylideneamino)-3-(4-
0.671604346
1.46E−08
0.000335829



fluorophenyl)thiazolo[4,5-d]pyrimidin-6(7H)-one-



2(3H)-thione


641160
NA
−0.711225345
1.47E−08
0.000338129


155595
NA
−0.700586007
1.48E−08
0.00034043


305978
Herbimycin Herbimycin A
−0.722078474
1.48E−08
0.00034043


716984
NA
−0.657771963
1.51E−08
0.00034733


640391
Cyclopentanone, 2,5-bis[(dimethylamino)methyl]-, cis-,
−0.661561238
1.57E−08
0.000361131



dihydrochloride


635448
Copper, bromo[2-[1-(2-pyridinyl)ethylidene][N,N-
−0.66505518
1.67E−08
0.000384133



dimethyl-hydrazinecarbothioamidato-N,N,S]-


684411
NA
−0.67402613
1.69E−08
0.000388734


695801
2,11-Diaza-5,8-dioxadodecane,1,12-bis(6-methoxy-2-
−0.655761764
1.73E−08
0.000397935



naphthalenyl)-, monohydrochloride


673611
NA
−0.664518126
1.74E−08
0.000400235


182855
Eriolangin
−0.655342699
1.78E−08
0.000409436


624508
NA
−0.708143919
1.80E−08
0.000414036


650935
3,8-Dimethyl-1,2-naphthoquinone
−0.696949729
1.89E−08
0.000434738


645640
NA
−0.702044157
1.90E−08
0.000437038


684985
NA
0.667370203
1.94E−08
0.000446239


715230
NA
−0.658384108
1.94E−08
0.000446239


638287
NA
−0.696132137
1.99E−08
0.00045774


658215
1H,5H-Benzo[ij]quinolizine-5-one, 7-azido-2,3-
−0.657957791
2.00E−08
0.00046004



dihydro-6-nitro-


658526
NA
−0.657959487
2.00E−08
0.00046004


639519
NA
−0.695800053
2.03E−08
0.000466941


711759
NA
−0.666608765
2.04E−08
0.000469241


650748
NA
−0.657335446
2.08E−08
0.000478442


369318
NA
−0.652912664
2.09E−08
0.000480742


684983
NA
0.665871174
2.14E−08
0.000492243


668262
NA
−0.660872508
2.21E−08
0.000508344


645145
Benzeneamine, 4-[(9-acridinyl)thio]-
−0.651607005
2.28E−08
0.000524446


716172
NA
−0.651477457
2.30E−08
0.000529046


641056
NA
−0.698999248
2.32E−08
0.000533646


670328
NA
−0.660012895
2.34E−08
0.000538247


234214
2,5-Cyclohexadiene-1,4-dione, 2,3-dimethoxy-5-(2-
−0.651087393
2.36E−08
0.000542847



naphthalenylthio)-


637396
NA
−0.714931746
2.38E−08
0.000547448


621179
Spiro[3H-indole-3,2′-oxirane]-2-one, 3′-(4-
−0.659301397
2.45E−08
0.000563549



chlorophenylcarbonyl)-1,2-dihydro


697932
NA
−0.650458629
2.46E−08
0.000565849


654893
NA
−0.668313908
2.47E−08
0.000568149


670787
NA
−0.663498263
2.50E−08
0.00057505


38186
Mercury, (p-dioxane-2,5-
−0.687521186
2.51E−08
0.00057735



diyldimethylene)bis[(octanoyloxy)-


702131
NA
0.658900577
2.52E−08
0.00057965


666667
NA
−0.653058665
2.76E−08
0.000634855


660634
2-Chloro-3-(2-chloroethoxy)-naphthazarin
−0.666513015
2.78E−08
0.000639456


710404
NA
−0.648394613
2.81E−08
0.000646356


96914
Perfluorobenzophenone, Benzophenone, decafluoro
−0.648244928
2.84E−08
0.000653257


646159
NA
−0.660736906
3.00E−08
0.00069006


683922
NA
−0.647429956
3.00E−08
0.00069006


625350
Benzenepropanoic acid, .beta.(benzoylamino)-.alpha.-
0.647134169
3.06E−08
0.000703861



hydroxy-, (9,10-dihydro-9,10-dioxo-2-



anthracenyl)methyl ester (R*,R*)


630686
NA
−0.705364933
3.09E−08
0.000710762


671399
4-Imidazolidinethione, 2-imino-1,3-diphenyl-5-
−0.651168329
3.12E−08
0.000717662



(phenylimino)-


717903
NA
−0.64653219
3.18E−08
0.000731464


703770
C35H43N5O
−0.659692666
3.21E−08
0.000738364


689278
NA
−0.664139263
3.24E−08
0.000745265


687311
Acridine, 9-[5-(ethylthio)-1,3,4-thiadiazol-2-yl]-
−0.646190113
3.25E−08
0.000747565


626875
NA
−0.683431618
3.27E−08
0.000752165


695332
NA
0.688535748
3.27E−08
0.000752165


637397
NA
−0.688485111
3.28E−08
0.000754466


710268
NA
−0.650296004
3.30E−08
0.000759066


335789
3-Azabicyclo[3.2.1]nonane-3-carbothioic acid, [1-(6-
−0.650131035
3.33E−08
0.000765967



methyl-2-pyridinyl)ethylidene]hydrazide


699097
NA
−0.654577866
3.33E−08
0.000765967


682817
7,10:11,14-Dietheno-28H-23,27-nitrilo-22H-
0.645438569
3.41E−08
0.000784368



dibenzo[b,p] [l,18,5,14]dioxadiazacyclopentacosine



(1S,4R,5R,8R,12R,13S)-1,5-dimethyl-9-methylene-


724784
11,14,15,16-
−0.64968865
3.43E−08
0.000788969



tetraoxatetracyclo[10.3.1.04,13.08,13]hexadec-10-



yl]oxy}-3-hexenyl)oxy]-1,5,-dimethyl-9-methylene-



11,14,15,16-



tetraoxatetracyclo[10.3.1.04,13.08,13]hexadecane


208733
Ramentaceone, 7-Methyl juglon
−0.645205303
3.46E−08
0.000795869


145611
Rifamycin, 3-[(4-methyl-1-piperazinyl)methyl]-
−0.644493898
3.62E−08
0.000832672


638279
NA
−0.644241541
3.68E−08
0.000846474


616511
NA
0.652709332
3.76E−08
0.000864875


285166
Oxin, Tumex, 8-Quinolinol
−0.648187201
3.78E−08
0.000869476


692587
ethyl-8-(4-chlorophenyl)-4-methyl-2-oxo-6-(thiophen-
−0.652474948
3.81E−08
0.000876376



2-yl)-4a,7-dihydro-2H-chromene-3-carboxylate


688816
NA
0.647712652
3.89E−08
0.000894778


648148
NA
−0.643302083
3.91E−08
0.000899378


353896
1-Piperazinecarbothioic acid, 4-(2-pyridinyl)-, 2-[1-(1-
−0.647336089
3.99E−08
0.00091778



isoquinolinyl)ethyl]hydrazide


711592
NA
−0.647288928
4.00E−08
0.00092008


648147
NA
−0.642618951
4.09E−08
0.000940782


643134
NA
−0.684866713
4.13E−08
0.000949983


710440
NA
−0.665061886
4.13E−08
0.000949983


645147
NA
−0.70052814
4.21E−08
0.000968384


305821
NA
−0.655365182
4.23E−08
0.000972985


663290
2-chloro-3-N-(2′-(R)-hydroxymethylpyrrolidino)-
−0.641422442
4.41E−08
0.001014388



naphthazarine


321206
NA
−0.641268468
4.45E−08
0.001023589


658872
NA
−0.659045691
4.49E−08
0.00103279


710868
NA
−0.640735602
4.61E−08
0.001060392


667706
NA
−0.653714341
4.70E−08
0.001081094


668836
NA
0.667544405
4.78E−08
0.001099496


624158
Benzenesulfonothioic acid, 4-methyl-,2-butene-1,4-
−0.648882092
4.79E−08
0.001101796



diyl ester, (Z)-


382000
2-Propen-1-one, 2-[(dimethylamino)methyl]-1-(2,4-
−0.639745758
4.90E−08
0.001127098



dimethyl phenyl)-, hydrochloride


658441
2-Amino-5,8-dihydroxy-1,4-naphthoquinone
−0.643721217
5.02E−08
0.0011547


670813
NA
−0.638863346
5.18E−08
0.001191504


658143
2-(1-(4-(2-(2-
−0.643177834
5.19E−08
0.001193804



Hydroxyethoxy)ethyl)piperazino))naphthazarin


629874
Benzenamine, 4-ethoxy-N-[(4-quinolinyl)methylene]-
−0.643106263
5.22E−08
0.001200704


639981
NA
−0.643062432
5.23E−08
0.001203005


715648
NA
0.638615543
5.27E−08
0.001212205


696864
NA
−0.638534059
5.29E−08
0.001216806


269149
NOGARENE, U-52048
−0.642077218
5.56E−08
0.001278911


690137
NA
−0.690632487
5.57E−08
0.001281211


741338
12-Benzyl-5,12-dihydro-indeno[2′,1′:4,5]pyrrolo[3,2-
0.646486028
5.57E−08
0.001281211



c]chinolin-6,7-dione


710780
NA
−0.66496948
5.61E−08
0.001290412


645976
Carbamic acid, (7,9-dichloro-2,8-dioxo-1-
−0.646343591
5.62E−08
0.001292712



oxaspiro[4.5]deca-6,9-dien-3-yl)-, 1,1-dimethylethyl



ester


663291
2-chloro-3-N-(2′-(S)-hydroxymethylpyrrolidino)-
−0.637344623
5.70E−08
0.001311114



naphthazarine


720564
NA
0.669571194
5.71E−08
0.001313414


228155
NA
−0.637082487
5.80E−08
0.001334116


661734
NA
−0.637014058
5.82E−08
0.001338716


118343
RADICININ, Stemphylone
−0.694966578
5.96E−08
0.001370919


626110
NA
−0.689489477
5.97E−08
0.001373219


664717
NA
0.649840156
5.98E−08
0.00137552


744999
NA
−0.640362663
6.19E−08
0.001423824


683258
NA
−0.640201281
6.25E−08
0.001437625


672121
2-Hydroxyethylthio-3-methylnaphthoquinone
−0.640149159
6.27E−08
0.001442225


684991
NA
0.673006751
6.29E−08
0.001446826


639517
Cyclopentanone, 2-[(4-chlorophenyl)methylene]-5-[(4-
−0.635488873
6.40E−08
0.001472128



morpholinyl)methyl]-, hydrochloride


660637
NA
−0.653282184
6.43E−08
0.001479029


689871
NA
−0.657774765
6.51E−08
0.00149743


34821
2-Propen-1-one, 2-[(dimethylamino)methyl]-1-(2-nitro
−0.635020841
6.59E−08
0.001515832



phenyl)-, hydrochloride


615798
NA
−0.68239814
6.66E−08
0.001531933


639542
NA
−0.677194346
6.66E−08
0.001531933


639499
NA
−0.682372669
6.67E−08
0.001534233


176632
Stannane, trimethyl[(4-morpholinylthioxomethyl)thio]-
−0.703962025
6.86E−08
0.001577937


709970
NA
−0.638604849
6.91E−08
0.001589438


723740
Diethyl N-[-[(3-phenyl-5,7-diaminoquinoxalin-2-
−0.633951771
7.04E−08
0.001619341



yl)aminomethyl]benzoyl]-L-gluatamate


691220
NA
0.647134803
7.07E−08
0.001626241


335794
-Piperazinecarbothioic acid, 4-(2-pyridinyl)-, [1-(2-
−0.638169284
7.09E−08
0.001630842



pyridinyl)butylidene]hydrazide


687526
NA
−0.633790031
7.12E−08
0.001637742


680649
Benzoic acid, 4-[2-(3,6-dioxo-1,4-cyclohexadienyl)-
−0.642447826
7.15E−08
0.001644643



ethyl]-,methyl ester


678490
NA
−0.633670084
7.17E−08
0.001649243


694465
NA
−0.660753598
7.28E−08
0.001674546


625495
1-Piperidinecarbodithioic acid, antimony complex
−0.633116158
7.42E−08
0.001706748


634784
4-Piperidinone, 1-[3-(dimethylamino)-1-oxopropyl]-
−0.641843548
7.42E−08
0.001706748



3,5-bis(phenylmethylene)-, monohydrochloride


658365
NA
−0.650885946
7.45E−08
0.001713649


680553
2-Quinoxalinecarboxylic acid, 3-[(4-
0.632426704
7.74E−08
0.001780355



fluorophenyl)amino]-, ethyl ester


723552
NA
−0.632391437
7.76E−08
0.001784955


723548
NA
−0.631797495
8.04E−08
0.001849361


650745
NA
−0.679258766
8.07E−08
0.001856261


625501
Antimony, chlorobis(1-piperidinecarbodithioato-S,S′)-
−0.631326045
8.28E−08
0.001904566


660638
NA
−0.644161955
8.49E−08
0.00195287


740084
4-Carboxyl-benzo[b]thieno[17,16-d]-3-O-methyl-
−0.634602557
8.83E−08
0.002031077



estra-1,3,5(10),16-tetraen-3-ol


681757
NA
−0.638793028
8.95E−08
0.002058679


323241
3-Azabicyclo[3.2.2]nonane-3-carboselenoic acid, [1-
−0.638458248
9.13E−08
0.002100083



(2-pyridinyl)ethylidene]hydrazide


676429
NA
−0.62970674
9.14E−08
0.002102383


622700
Methanaminium, (2-oxo-1,3-
−0.629497914
9.26E−08
0.002129985



cyclohexanediyl)bis(methyl)bis [N,N,N-trimethyl-,



diiodide


715719
NA
0.647261212
9.29E−08
0.002136886


131238
NA
−0.629334364
9.35E−08
0.002150687


681104
1,4,7,10-Tetraazacyclododecane-1,7-
−0.629239243
9.41E−08
0.002164488



bis(methanephosphonicacid)


683326
NA
−0.633221885
9.60E−08
0.002208192


715436
NA
−0.628794739
9.66E−08
0.002221993


647472
NA
−0.676216898
9.69E−08
0.002228894


9358
PADA, Pyridine-2-azodimethylaniline
−0.632986428
9.74E−08
0.002240395


607320
NA
−0.628664501
9.74E−08
0.002240395


246981
NA
−0.632416098
1.01E−07
0.002323202


173905
Pentanamide, 2-(acetylamino)-N-[3-chloro-2-oxo-1-
−0.632082775
1.03E−07
0.002369206



(phenylmethyl)propyl]-4-methyl-


309909
NIMBOLIDE
−0.632098693
1.03E−07
0.002369206


668885
NA
0.636389583
1.03E−07
0.002369206


661224
NA
−0.627244847
1.06E−07
0.002438212


681271
1,3,6-Triphenyl-oxazolo(5,4-d)pyrimidin-2′,4(1H,3H)-
0.627333988
1.06E−07
0.002438212



dion


650792
1,4,7,10-Tetrathia-13-azacyclopentadecane, 13-[(4-
0.627185177
1.07E−07
0.002461214



methylphenyl)sulfonyl]-


705163
NA
−0.627092367
1.07E−07
0.002461214


637399
NA
−0.627006549
1.08E−07
0.002484216


640355
NA
−0.635693758
1.08E−07
0.002484216


668265
NA
−0.635694004
1.08E−07
0.002484216


678503
1-Cyclobuten-3-one, 4,4-dichloro-1-pentyl-
−0.626545825
1.11E−07
0.002553222


131233
Cyclopentanone, 2,5-bis[(dimethylamino)methyl]-,
−0.634927797
1.13E−07
0.002599226



dihydrochloride


656599
NA
−0.625789195
1.16E−07
0.002668232


641048
3,4′,4″,4″′-Tetrasulfonyl copper phthalocyanine, tetra
−0.629934123
1.17E−07
0.002691234



sodium salt


677168
NA
−0.625682634
1.17E−07
0.002691234


620514
1,4-Naphthalenedione, 7-(benzoyloxy)-5-methoxy-
−0.625235185
1.20E−07
0.00276024


645740
NA
0.683316612
1.21E−07
0.002783242


717896
NA
−0.625091031
1.21E−07
0.002783242


641395
1H-Benzo[a]carbazole-1,4(11H)-dione, 8-methoxy-
−0.628928325
1.24E−07
0.002852248


130789
NA
−0.624363897
1.26E−07
0.002898252


654379
ANTINEOPLASTIC-654379
−0.624401714
1.26E−07
0.002898252


677937
NA
−0.624385863
1.26E−07
0.002898252


630708
Azacridoguanidine
−0.68237738
1.27E−07
0.002921254


629974
7H-1,2,4-Triazolo[3,4-b][1,3,4]thiadiazine, 3-(4-
−0.624033257
1.29E−07
0.002967258



chlorophenyl)-6-(5-nitro-2-furanyl)-


709468
NA
−0.645997904
1.33E−07
0.003059266


637578
N-[3-(2-Pyridyl)isoquinolin-1-yl]-2-
−0.623083451
1.36E−07
0.003128272



pyridinecarboxamidine


622460
NA
−0.681190536
1.37E−07
0.003151274


637422
NA
0.665177697
1.37E−07
0.003151274


689185
NA
−0.640731926
1.37E−07
0.003151274


106360
NA
0.640669699
1.38E−07
0.003174276


705162
NA
−0.622909048
1.38E−07
0.003174276


678156
NA
−0.622706786
1.39E−07
0.003197278


723001
Diethyl-N[4-(3-thienylquinoxalyn-2-
0.635529616
1.42E−07
0.003266284



yl)oxiphenylacetyl]-L-glutamate


639543
Cyclopentanone, 2-[(4-chlorophenyl)aminomethyl]-5-
−0.62629817
1.45E−07
0.00333529



[(4-chlorophenyl)methylene]-


646160
NA
−0.635088883
1.46E−07
0.003358292


625511
NA
−0.663955843
1.47E−07
0.003381294


625496
NA
−0.69107229
1.48E−07
0.003404296


638302
NA
−0.663496442
1.51E−07
0.003473302


711861
NA
−0.634532398
1.51E−07
0.003473302


684703
5,8-Quinolinedione, 2-chloro-6-methoxy-4-methyl-7-
−0.621137739
1.53E−07
0.003519306



propyl-


292206
RUSTAIYAN A
−0.625160256
1.55E−07
0.00356531


668259
NA
−0.625120569
1.56E−07
0.003588312


668335
NA
−0.620852014
1.56E−07
0.003588312


691415
NA
0.620438655
1.59E−07
0.003657318


742801
3-amino-N-(4-butoxyphenyl)-1H-indazole-1-
−0.620330677
1.60E−07
0.00368032



carboxamide


684982
NA
0.63315698
1.64E−07
0.003772328


379546
NA
−0.619836469
1.65E−07
0.00379533


626162
Discorhabdin C•TFA
−0.619726061
1.66E−07
0.003818332


661440
5H-Benzocyclohepten-5-one, 6,7,8,9-tetrahydro-6-
−0.619691759
1.67E−07
0.003841334



[(dimethylamino)methyl]-, hydrochloride


701663
NA
−0.628204582
1.68E−07
0.003864336


657747
NA
−0.661425358
1.70E−07
0.00391034


659754
NA
0.628009274
1.70E−07
0.00391034


713309
NA
−0.656113103
1.73E−07
0.003979346


670341
NA
−0.631705072
1.78E−07
0.004094356


638241
NA
−0.618419911
1.79E−07
0.004117358


717518
NA
−0.618225576
1.81E−07
0.004163362


666388
NA
−0.618004813
1.84E−07
0.004232368


707827
NA
−0.622156899
1.85E−07
0.00425537


668261
NA
−0.621698553
1.90E−07
0.00437038


716688
NA
0.630514378
1.91E−07
0.004393382


710386
NA
−0.621128737
1.97E−07
0.004531394


711074
NA
−0.62545713
1.97E−07
0.004531394


92937
1H-Benzo[a]carbazole-1,4(11H)-dione, 11-methyl-
−0.620925096
1.99E−07
0.004577398


685016
NA
−0.625222241
2.00E−07
0.0046004


709438
NA
−0.620521121
2.04E−07
0.004692408


619042
Cyclohexanone, 2,6-bis[(dimethylamino)methyl]-,
−0.620080892
2.09E−07
0.004807418



dihydrochloride


669308
NA
0.628904571
2.10E−07
0.00483042


668264
NA
−0.619602527
2.15E−07
0.00494543


310365
Na
−0.615258346
2.16E−07
0.004968432


149286
1,4-Pentadien-3-one, 1,5-di-3-pyridyl-
−0.615162113
2.17E−07
0.004991434


94889
Gardenin, Flavone, 5-hydroxy-3′,4′,5′,6,7,8-
0.623612432
2.20E−07
0.00506044



hexamethoxy-


618770
Piperidin-4-ol, N-ethyl-N-methyl-3-(1-oxo-3-phenyl-
−0.623569755
2.20E−07
0.00506044



2-propen-1-yl)-4-(2-phenylethen-1-yl)-, (E,E)-,



bromide


709483
NA
−0.64685872
2.21E−07
0.005083442


382001
2-Propen-1-one, 2-[(dimethylamino)methyl]-1-(2,5-
−0.618951658
2.23E−07
0.005129446



dimethyl phenyl)-, hydrochloride


618315
1,4-Naphthalenedione, 5-methoxy-
−0.627510546
2.27E−07
0.005221454


715226
NA
−0.618650914
2.27E−07
0.005221454


684424
Methyl 4-[2-[4-bromo-2,5-
−0.614113457
2.30E−07
0.00529046



dihydroxyphenyl]ethyl]benzoate


640466
15-Ethoxynimbocinol
−0.671985843
2.32E−07
0.005336464


620358
Methyl 13-hydroxy-15-oxo-kaurenoate
−0.671890809
2.33E−07
0.005359466


736049
N-[2-(4-methoxyphenyl)-4-oxo-1,3-thiazolidin-3-yl]-
0.626940564
2.35E−07
0.00540547



N′-(2-methylimidazo[1,2-a]pyridin-3-yl)urea


620327
Carbonimidodithioic acid, [5-(4-nitrophenyl)-1,3,4-
0.617663697
2.40E−07
0.00552048



thiadiazol-2-yl]-, dimethyl ester


310342
Carbamimidothioic acid, [3-(4-chlorophenyl)-1,2,4-
−0.621895705
2.42E−07
0.005566484



oxadiazol-5-yl]methyl ester, monohydrochloride


711830
NA
−0.635491131
2.44E−07
0.005612488


714424
NA
−0.621691132
2.45E−07
0.00563549


252844
SHIKONIN, Tokyo Violet
−0.617302174
2.46E−07
0.005658492


668256
NA
−0.617296362
2.46E−07
0.005658492


659288
NA
−0.621378809
2.50E−07
0.0057505


711934
NA
−0.617018974
2.50E−07
0.0057505


672041
NA
−0.612352536
2.55E−07
0.00586551


712738
NA
−0.63466292
2.55E−07
0.00586551


668325
NA
−0.612238115
2.57E−07
0.005911514


682504
NA
0.612165578
2.58E−07
0.005934516


680551
NA
0.616154164
2.62E−07
0.006026524


690134
NA
0.611912293
2.62E−07
0.006026524


635449
Copper, chloro[2-[1-(2-pyridinyl)ethylidene][N,N-
−0.61593769
2.65E−07
0.00609553



dipropyl-hydrazinecarbothioamidato-N,N,S]-


674068
NA
−0.629093902
2.69E−07
0.006187538


710104
NA
−0.624561292
2.69E−07
0.006187538


718306
NA
0.633722289
2.69E−07
0.006187538


636878
3-Methoxy-2-phenoxy-2-phenylimidazo[1,2-
−0.65325807
2.71E−07
0.006233542



b]pyridazine


324979
Copper, chloro[hexahydro-1H-azepine-1-carbothioic
−0.619883076
2.72E−07
0.006256544



acid[1-(2-pyridinyl)ethylidene]hydrazidato]-, (SP-4-



3)-


709882
Cirensenoxide G, Pulsatilloside C
−0.611256814
2.72E−07
0.006256544


706192
NA
−0.611187257
2.73E−07
0.006279546


715472
NA
−0.615312348
2.75E−07
0.00632555


683260
NA
−0.61526749
2.76E−07
0.006348552


715556
NA
−0.624113833
2.76E−07
0.006348552


653624
NA
−0.663261204
2.79E−07
0.006417558


659554
6-Bromo-3-bromomethyl-3,7-dichloro-7-methyl-1-
−0.628244852
2.82E−07
0.006486564



octene


664303
Quinoline-2-ethanol, .alpha.,.alpha.-
−0.610594963
2.82E−07
0.006486564



bis(trifluoromethyl)-, acetate (ester)


692405
NA
−0.619044885
2.85E−07
0.00655557


669503
NA
−0.610360963
2.86E−07
0.006578572


709928
NA
0.623421018
2.87E−07
0.006601574


657030
NA
−0.610202701
2.88E−07
0.006624576


704212
NA
0.618889672
2.88E−07
0.006624576


640192
6-Phenylthio-7H-benzocycloheptene-1,4,7-trione
−0.618558464
2.93E−07
0.006739586


677640
NA
0.609916098
2.93E−07
0.006739586


679092
NA
0.609732962
2.96E−07
0.006808592


706160
NA
−0.641229625
3.03E−07
0.006969606


643726
NA
−0.667098829
3.05E−07
0.00701561


661581
2-Azabicyclo[16.3.1]docosane, geldanamycin deriv.
−0.609182881
3.06E−07
0.007038612


328416
Withaferin-A diacetate
−0.613290735
3.09E−07
0.007107618


686368
Quinazolin-4(3H)-one, 3-ethyl-2-[[[5-(phenylamino)-
0.613192938
3.10E−07
0.00713062



1,3,4-thiadiazol-2-yl]methyl]thio]-


697223
NA
−0.6408016
3.10E−07
0.00713062


687011
stereoisomer of 672120 (MW = 262)
−0.617184002
3.17E−07
0.007291634


744075
NA
−0.617186086
3.17E−07
0.007291634


36806
NA
−0.608429405
3.19E−07
0.007337638


269121
DALBERGIONE
−0.60840149
3.19E−07
0.007337638


620515
1,4-Naphthalenedione, 2-chloro-8-hydroxy-6-
−0.61252676
3.22E−07
0.007406644



methoxy-7-methyl-


3907
Benzoic acid, 2-hydroxy-, compd. with 8-quinolinol
−0.608205293
3.23E−07
0.007429646



(1:1)


747168
NA
−0.608190859
3.23E−07
0.007429646


645633
NA
−0.660474668
3.26E−07
0.007498652


690747
NA
−0.621016008
3.28E−07
0.007544656


71297
Dihydrotomatidine
−0.616518472
3.29E−07
0.007567658


659553
2,3,6-Tribromo-7-chloro-3,7-dimethyl-1-octene
−0.616495519
3.29E−07
0.007567658


711811
NA
−0.616452599
3.30E−07
0.00759066


704100
NA
−0.607555312
3.35E−07
0.00770567


668263
NA
−0.615548736
3.47E−07
0.007981694


641394
1H-Benzo[a]carbazole-1,4(11H)-dione, 11-phenyl-
−0.611142543
3.48E−07
0.008004696


703776
NA
−0.606842408
3.49E−07
0.008027698


687110
NA
−0.615350495
3.51E−07
0.008073702


634473
NA
0.648393156
3.55E−07
0.00816571


656433
Pyrimidine-5-carboxylic acid, hexahydro-4-oxo-1,3-
−0.628797162
3.55E−07
0.00816571



diphenyl-6-[2-[2-(piperidin-1-yl)ethyl]thio]-2-thioxo-,



ethyl ester


709516
NA
−0.610775393
3.55E−07
0.00816571


672042
NA
−0.606500222
3.56E−07
0.008188712


648150
NA
−0.606445169
3.57E−07
0.008211714


162062
Bicyclo[2.2.1]heptan-2-one, 3-[2-chloro-1-
−0.610584265
3.59E−07
0.008257718



(chlorodifluoromethyl)-2,2-difluoroethylidene]-


622150
Violacene-1
−0.663971691
3.62E−07
0.008326724


712682
NA
−0.62380367
3.62E−07
0.008326724


671363
2-Thiazolidinethione, 3-(4-fluorophenyl)-4,5-
−0.606104047
3.64E−07
0.008372728



bis(phenylimino)-


699428
NA
−0.61037114
3.64E−07
0.008372728


715748
NA
0.610004249
3.71E−07
0.008533742


678125
1H-indazole, 3-methoxy-1-[(2-
0.618682868
3.74E−07
0.008602748



methoxyphenyl)methyl]-5-nitro-


633207
NA
−0.65782208
3.77E−07
0.008671754


638265
NA
−0.647191416
3.80E−07
0.00874076


698148
NA
−0.605309413
3.80E−07
0.00874076


659390
NA
−0.605247653
3.81E−07
0.008763762


685918
NA
−0.609540666
3.81E−07
0.008763762


713690
NA
−0.64185064
3.85E−07
0.00885577


671379
NA
0.605056403
3.86E−07
0.008878772


302979
Shikoccin, Isodon Shikokianus compound A
−0.604920158
3.88E−07
0.008924776


686130
Acetamide, N-[6′-(diethylamino)-3-oxospiro-
−0.604880228
3.89E−07
0.008947778



[isobenzofuran-1(3H),9′-[9H]xanthen]-2′-yl]-N-



phenyl-


704565
NA
−0.609113351
3.90E−07
0.00897078


693813
NA
−0.608723565
3.99E−07
0.009177798


704970
NA
−0.641020396
4.03E−07
0.009269806


711824
NA
−0.612822741
4.04E−07
0.009292808


677268
NA
−0.651006745
4.09E−07
0.009407818


3927
Thiolutin, Acetopyrrothin
−0.603917571
4.11E−07
0.009453822


618560
NA
0.650868305
4.12E−07
0.009476824


712571
Artesunate, Dihydroqinghaosusuccinate
−0.626057056
4.13E−07
0.009499826


625814
NA
−0.656056228
4.15E−07
0.00954583


639387
NA
−0.667005018
4.16E−07
0.009568832


625502
4-Morpholinecarbodithioic acid, antimony complex
−0.603480214
4.21E−07
0.009683842


626161
2-Hydroxy discorhabdin D
−0.672112363
4.29E−07
0.009867858









Example 2
Gene Expression Data Reveal Common Pathways that Characterize the Unifocal Nature of Ovarian Cancer
Materials and Methods

Pelvic OVCA samples and matched, nonconfluent, extrapelvic implants were obtained from 30 patients who had provided written informed consent to the Moffitt Cancer Center Institutional Total Cancer Care (TCC) protocol, prior to undergoing primary cytoreductive surgery for advanced stage serous epithelial OVCA. The study was carried out with approval from the University of South Florida Institutional Review Board.


A pelvic sample was resected from the ovarian tissue, which, in the opinion of the surgeon, most likely represented the primary site in the pelvis. From each patient, a matched, nonconfluent extrapelvic implant was identified and collected. Samples were flash frozen in liquid nitrogen within 10 minutes of surgical resection and stored at −80° C. A histopathological review was performed to confirm the diagnosis, and samples were macrodissected to ensure greater than 70% tumor content. Total RNA and genomic DNA were extracted from each sample.


Normal ovarian surface epithelium (NOSE) samples were obtained from patients who had provided written informed consent to the TCC protocol and had undergone oophorectomy at the Moffitt Cancer Center for nonmalignant disease, not associated with the ovary. Immediately after surgical resection, the surface epithelium was gently scraped from the surface and immediately subjected to RNA isolation. To ensure sufficient quantities of RNA, NOSE RNA samples were pooled in groups of 3 or 4 to produce a minimum RNA quantity of 50 ng. As a result of such pooling, 49 normal ovaries were analyzed on 12 Affymetrix Gene-Chip assays (Santa Clara, Calif.).


Approximately 30 mg of tissue was used for each RNA and DNA extraction. Tissues were pulverized in BioPulverizer H tubes (Bio101) using a Mini-Beadbeater (Biospec Products, Bartlesville, Okla.). Total RNA was collected using the QIAGEN RNeasy minikit (Valencia, Calif.) according to the manufacturer's instructions. RNA quality was checked on an Agilent Bioanalyzer (Palo Alto, Calif.) to assess the quality of RNA via the 28S:18S ribosomal RNAs. Genomic DNA was isolated using the QIAGEN QIAamp® DNA minikit according to the manufacturer's instructions. For microarray analysis, 10 mg of total RNA was used to develop the targets for Affymetrix microarray analysis, and probes were prepared according to the manufacturer's instructions. Briefly, biotin-labeled complementary RNA was produced by in vitro transcription, fragmented, and hybridized to the customized human Affymetrix HuRSTA gene chips (HuRSTA-2a520709). Expression values were calculated using the robust multiarray average algorithm implemented in Bioconductor extensions to the R statistical programming environment.


A Student t test was used to identify differentially expressed genes in comparisons among NOSE, pelvic, and extrapelvic sample genomic data. For each comparison, the 12 NOSE samples were grouped together. Pelvic and extrapelvic genomic profiles were analyzed as groups (pelvic as one group, extrapelvic as another) and as individual pairs (comparisons of matched pelvic/extrapelvic pairs from the same patient). As such, the following comparisons were made: (1) grouped NOSE vs grouped pelvic implants, (2) grouped NOSE vs grouped extrapelvic implants, (3) grouped pelvic vs grouped extrapelvic implant, (4) grouped NOSE vs individual pelvic implants, (5) grouped NOSE vs individual extrapelvic implants, and (6) individual pelvic vs individual matched extrapelvic samples from the same patient. For each of the comparisons, differentially expressed genes were analyzed using MetaCore™ software (GeneGO, St Joseph, Mich.) to identify represented biological pathways.


Identified pathways were further evaluated for differential representation in 4 publically available gene expression datasets encompassing 389 patient samples including: (1) OVCA (n=12; 4 early- and 8 advanced-stage), GEO accession number GSE14407, U133Plus gene chip; (2) oral cancer (n=27; 22 primary lesions, 5 metastases), GEO accession GSE2280, U133A gene chip; (3) prostate cancer (n=271; 196 primary lesions, 75 metastases), GEO accession GSE6919, U95 gene chip; and (4) prostate cancer (n=79; 40 nonrecurrent, 39 recurrent lesions), GEO accession GSE25136, U133A gene chip (by Student t test, gene cutoff P<0.01).


Principal component analysis (PCA) was performed using Evince software. Logrank tests were used to test associations between pathway expression (using a median PCA score value cutoff) and overall survival within 9 publically available datasets comprising 1691 patient samples, including cancers of the ovary, which included 4 datasets (Australian dataset [n=218 GSE9891], 3 Moffitt Cancer Center (MCC) dataset [n=142], 4 MD Anderson dataset [n=53 GSE18520], and The Cancer Genome Atlas (TCGA) dataset [n=497]) as well as brain (n=182 GSE13041), 5 breast (n=187 GSE2990), colon (n=177 GSE17538), 6 lung (n=58 TCGA), and blood (leukemia, n=182 TCGA). All survival analyses were performed using the R program.


For sequence analysis of p53, exons 5-8 of p53 from primary lesions and distal metastases separated by noninvolved tissue were analyzed for primary sequence mutation patterns. Genomic DNA (100 ng) was used in PCR amplification reactions essentially as described previously (Leonard D G, et al. Clin Cancer Res 2002 8:973-85) using the following primers:











exon 5,



sense



(SEQ ID NO: 1)



5′-TTCCTCTTCCTACAGTACTC-3′,







antisense



(SEQ ID NO: 2)



5′-GCAACCAGCCCTGTCGTCTC-3′;







exon 6,



sense



(SEQ ID NO: 3)



5′-ACCATGAGCGCTGCTCAGAT-3′,







antisense



(SEQ ID NO: 4)



5′-AGTTGCAAACCAGACGTCAG-3′;







exon 7,



sense



(SEQ ID NO: 5)



5′-GTGTTGTCTCCTAGGTTCGC-3′,







antisense



(SEQ ID NO: 6)



5′-CAAGTGGCTCCTGACCTGGA-3′;



and







exon 8,



sense



(SEQ ID NO: 7)



5′-CCTATCCTGAGTAGTGGTAA-3′,







antisense



(SEQ ID NO: 8)



5′-TGAATCTGAGGCATAACTGC-3′.






Amplifications were performed using an Eppendorf Mastercycler® thermocycler in 50 mL reaction volumes (100 ng genomic DNA, 1 U Taq DNA polymerase [Invitrogen, Carlsbad, Calif.], 1.5 mM MgCl2, 0.2 mM deoxynucleotide triphosphates, and 0.2 mM primer mix) by standard protocols. Briefly, samples were held at 95° C. for 10 minutes followed by 30 cycles of the following: 95° C. for 50 seconds, annealing temperature at 56° C. or 60° C., depending on the primers, for 90 seconds, and an elongation step at 72° C. for 90 seconds. After cycling, samples were held at 72° C. for 10 minutes and cooled to 4° C. PCR products were purified using the Purelink® PCR purification kit (QIAGEN) and evaluated using 4% agarose gels. Sequencing was performed on an Applied Biosystem's AB3130 genetic analysis system using BigDye® 3.1 dye terminator chemistry (Applera, Applied Biosystems, Foster City, Calif.) according to the manufacturer's instructions. Comparative sequence analysis of p53 exons was performed using Lasergene® 8 software (DNAStar, Madison, Wis.).


The effects of pathway inhibition on OVCA cell metastatic properties were investigated using the in vitro scratch assay. HeyA8 OVCA cells were maintained in RPMI 1640 medium (Invitrogen) supplemented with 10% fetal bovine serum (FBS; Fisher Scientific, Pittsburgh, Pa.), 1% sodiumpyruvate, 1% penicillin/streptomycin (Cellgro, Manassas, Va.), and 1% nonessential amino acids (HyClone, Hudson, N.H.). Monolayers, 75-80% confluent, were cultured in serum-free media for 4 hours and then mechanically disrupted to create a wound using a 1 mL pipette tip. Culture plates were washed twice with serum-free media to remove floating cells and then incubated with media containing 10% FBS and either vehicle (dimethylsulfoxide [DMSO]) or drug. The DMSO concentration was maintained below 0.5% so as not to influence cell growth or migration. The underside of the culture plate by the wound area was marked with a Sharpie for reference, and wounds were imaged by phase-contrast microscopy on days 0, 1, and 2.


Results


Comparison of Overall Expression Patterns


PCA modeling was used to assess the overall similarities in gene expression among NOSE, pelvic, and extrapelvic samples. PCA generates a set of vectors (termed first principal component [PC1], second principal component [PC2], etc) that summarize the overall genome-wide expression patterns for a sample. Each principal component provides a summary measure for genes that share certain expression characteristics. Comparing PCA values enables a global assessment of how similar or different samples are at a genome-wide level. The 2 first principal components for all samples are shown in FIG. 1. PC1, which explained 35.4% of the variation, separated most of the NOSE samples from the primary pelvic and the extrapelvic samples.


Comparison of Pathway Expression in NOSE, Pelvic, and Extrapelvic OVCAs


Grouped comparisons of NOSE, pelvic, and extrapelvic genomic data was performed. At a significance of P<0.01 (Bonferroni adjusted), 970 probe sets representing 71 signaling pathways (P<0.05) were identified when the grouped NOSE expression data were compared with the grouped primary pelvic sample data, and 1075 probe sets representing 143 signaling pathways were identified when the grouped NOSE expression data were compared with the grouped extrapelvic implant expression data (Table 15). Importantly, the 60 of 71 signaling pathways (85%) present in primary pelvic samples were also represented in extrapelvic implants. At this level of significance, no probe sets were found to be differentially expressed between the grouped primary pelvic and extrapelvic samples.


When the grouped NOSE dataset was analyzed against the individual pelvic primary samples (n=30) and the individual extrapelvic implants (n=30), an average of 7392 and 7772 probe sets, respectively, demonstrated differential expression (greater than 2-fold). In contrast, an average of 1463 probe sets was differentially expressed between individual pelvic and matched extrapelvic implants from the same patient. Consistently, these data suggest significant similarity between the primary pelvic and matched extrapelvic implants (Table 10).









TABLE 10







Number of probe sets with greater than 2-fold change in expression











Normal ovary vs
Normal ovary vs
Pelvic primary vs


Sample
pelvic primary
extrapelvic implant
extrapelvic implant













1
6339
8137
2413


2
6562
7483
2813


3
6873
6608
3464


4
7049
7069
1032


5
8012
6834
1710


6
8052
7304
2446


7
8364
7951
335


8
6645
6886
6220


9
7229
7343
86


10
8469
7497
2048


11
8069
7980
2151


12
8321
8192
596


13
7944
7867
683


14
8080
8836
1135


15
7157
8225
1120


16
7249
7105
874


17
7171
7682
600


18
7424
7907
660


19
7754
8244
545


20
8342
8130
980


21
6790
8024
138


22
7341
7620
2020


23
6876
8007
925


24
6728
8127
3449


25
8144
7833
600


26
7717
7888
545


27
7539
6968
1630


28
6965
7629
620


29
6793
9087
850


30
5749
8706
1213


31
6304
6878
4084


Mean
7356
7743
1548









Mutational Analysis of p53


Exons 5-8 of the p53 gene were examined in primary pelvic and matched extrapelvic implants (Table 11). A total of 13 nucleotide mutations were found in 11 of 30 primary pelvic samples. A mutation in exon 5 was found in 1 primary pelvic, whereas 3 primary pelvic lesions had a mutation in exon 6, 7 pelvic lesions had a mutation in exon 7, and 2 pelvic lesions had a mutation in exon 8. The majority of identified mutations were missense (9 of 13); however, 1 sample showed a frame shift mutation resulting from a deletion in codon 151 of exon 5, 1 sample showed a nonsense mutation in codon 294 of exon 8, and 2 samples displayed silent mutations. In every case, the p53 mutation identified in the primary pelvic was also present in the matched extrapelvic implant.









TABLE 11





Primary sequence mutations in p53 exons 5-8






















p53 mutation in primary






ovarian cancer

















Primary


Amino acid


Histological type
Grade
Stage
site
Exon
Codon
change





Serous adenocarcinoma
High
3C
Rt ovary
WT
WT
WT





Serous adenocarcinoma
High
4
Rt ovary
6
220,
Tyr to Cys







TAT to TGT







7
225,
Val to Val







GTT to GTG






Serous adenocarcinoma
High
3C
Lt ovary
WT
WT
WT





Serous adenocarcinoma
High
3C
Rt ovary
8
294,
Glu to STOP







GAG to TAG






Serous adenocarcinoma
High
3C
Lt ovary
WT
WT
WT





Adenocarcinoma with
High
4
Lt ovary
WT
WT
WT


papillary features











Adenocarcinoma with
High
3C
Lt ovary
7
248,
Arg to Gln


papillary features




CGG to CAG






Serous adenocarcinoma
High
3C
Rt ovary
7
248,
Arg to Gln







CGG to CAG






Serous adenocarcinoma
High
4
Rt ovary
WT
WT
WT





Adenocarcinoma
High
3C
Rt ovary
WT
WT
WT





Adenocarcinoma with
Not
3C
Lt ovary
WT
WT
WT


papillary features
given










Serous adenocarcinoma
High
3C
Lt ovary
WT
WT
WT





Adenocarcinoma with
High
2B
Rt ovary
6
220,
Tyr to Cys


papillary features




TAT to TGT






Clear cell carcinoma
High
3C
Lt ovary
WT
WT
WT





Adenocarcinoma with
High
3C
Lt ovary
7
245,
Gly to Asp


papillary features




GGC to GAC






Adenocarcinoma with
High
3C
Rt ovary
7
248,
Arg to Gln


papillary features




CGG to CAG






Adenocarcinoma
High
3C
Lt ovary
WT
WT
WT





Serous adenocarcinoma
High
3C
Rt ovary
WT
WT
WT





Serous adenocarcinoma
High
3C
Rt ovary
WT
WT
WT





Serous adenocarcinoma
High
4
Rt ovary
WT
WT
WT





Adenocarcinoma
High
2C
Rt ovary
WT
WT
WT





Adenocarcinoma
High
3C
Rt ovary
WT
WT
WT





Adenocarcinoma with
High
4
Rt ovary
WT
WT
WT


papillary features











Serous adenocarcinoma
High
3C
Rt ovary
7
234,
Tyr to Cys







TAC to TGC






Serous adenocarcinoma
High
3C
Rt, Lt ovary
WT
WT
WT





Adenocarcinoma
High
3C
Rt ovary
5
151,
Pro to frame







CCC to {hacek over ( )}CC
shift





Adenocarcinoma
High
3B
Rt, Lt ovary
WT
WT
WT





Serous adenocarcinoma
Moderate
3C
Rt ovary
WT
WT
WT





Serous adenocarcinoma
High
3C
Rt, Lt ovary
8
282,
Asp to Trp







CGG to TGG






Clear cell carcinoma
High
3C
Lt ovary
6
213,
Arg to Arg







CGA to CGG







7
245,
Gly to Asp







GGC to GAC


















p53 mutation in






extrapelvic implants

















Extrapelvic


Amino acid


Histological type
Grade
Stage
site
Exon
Codon
change





Serous adenocarcinoma
High
3C
Omentum
WT
WT
WT





Serous adenocarcinoma
High
4

6
220,
Tyr to Cys







TAT to TGT







7
225,
Val to Val







GTT to GTG






Serous adenocarcinoma
High
3C
Omentum
WT
WT
WT





Serous adenocarcinoma
High
3C
Soft tissue,
8
294,
Glu to STOP





pelvis

GAG to TAG






Serous adenocarcinoma
High
3C
Omentum
WT
WT
WT





Adenocarcinoma with
High
4
Omentum
WT
WT
WT


papillary features











Adenocarcinoma with
High
3C
Omentum
7
248,
Arg to Gln


papillary features




CGG to CAG






Serous adenocarcinoma
High
3C
Omentum
7
248,
Arg to Gln







CGG to CAG






Serous adenocarcinoma
High
4
Colon
WT
WT
WT





Adenocarcinoma
High
3C
Omentum
WT
WT
WT





Adenocarcinoma with
Not
3C
Omentum
WT
WT
WT


papillary features
given










Serous adenocarcinoma
High
3C
Omentum
WT
WT
WT





Adenocarcinoma with
High
2B
Cul-de-sac
6
220,
Tyr to Cys


papillary features




TAT to TGT






Clear cell carcinoma
High
3C
Omentum
WT
WT
WT





Adenocarcinoma with
High
3C
Omentum
7
245,
Gly to Asp


papillary features




GGC to GAC






Adenocarcinoma with
High
3C
Omentum
7
248,
Arg to Gln


papillary features




CGG to CAG






Adenocarcinoma
High
3C
Colon
WT
WT
WT





Serous adenocarcinoma
High
3C
Omentum
WT
WT
WT





Serous adenocarcinoma
High
3C
Omentum
WT
WT
WT





Serous adenocarcinoma
High
4
Omentum
WT
WT
WT





Adenocarcinoma
High
2C
Omentum
WT
WT
WT





Adenocarcinoma
High
3C
Omentum
WT
WT
WT





Adenocarcinoma with
High
4
Omentum
WT
WT
WT


papillary features











Serous adenocarcinoma
High
3C
Omentum
7
234,
Tyr to Cys







TAC to TGC






Serous adenocarcinoma
High
3C
Omentum
WT
WT
WT





Adenocarcinoma
High
3C
Omentum
5
151,
Pro to frame







CCC to {hacek over ( )}CC
shift





Adenocarcinoma
High
3B
Omentum
WT
WT
WT





Serous adenocarcinoma
Moderate
3C
Soft tissue
WT
WT
WT





(periaortic)








Serous adenocarcinoma
High
3C
Omentum
8
282,
Asp to Trp







CGG to TGG






Clear cell carcinoma
High
3C
Omentum
6
213,
Arg to Arg







CGA to CGG







7
245,
Gly to Asp







GGC to GAC









Pathways Associated with Metastasis Influence Clinical Outcome


Experiments were conducted to identify pathways present in extrapelvic samples that were not present in pelvic samples (termed candidate metastasis pathways [CMPs]). 2 statistical approaches were adopted: comparisons of data grouped together and individual patient-matched samples. Five CMPs demonstrated differential expression using both approaches; that is, they were present in extrapelvic samples but not in pelvic samples when data were compared both in grouped analyses (81 total pathways; Table 12) and in 15 or more of 30 (50%) of the patients for whom individual comparisons were made between matched pelvic and extrapelvic samples (24 pathways total; Table 13).









TABLE 12







Grouped analysis: pathways unique to grouped NOSE vs grouped extrapelvic implants












FDR less




Pathway name
than 0.05?
P value














1
Immune response, immunological synapse formation
Yes
9.08E−05


2
Apoptosis and survival, role of IAP proteins in apoptosis
Yes
3.69E−04


3
Oxidative stress, angiotensin II-induced production of ROS
Yes
7.31E−04


4
Development, mu-type opioid receptor signaling via beta-arrestin
Yes
8.11E−04


5
Development, activation of ERK by kappa-type opioid receptor
Yes
8.54E−04


6
Immune response, histamine signaling in dendritic cells
Yes
9.43E−04


7
Glutathione metabolism/rodent version
No
3.01E−02


8
Signal transduction, JNK pathway
Yes
1.96E−03


9
Immune response, delta-type opioid receptor signaling in T cells
Yes
1.99E−03


10
Immune response, NF-AT signaling and leukocyte interactions
No
3.15E−03


11
Immune response, IL-15 signaling
No
4.02E−03


12
Chemotaxis, inhibitory action of lipoxins on IL-8- and leukotriene B4-
No
5.31E−03



induced neutrophil migration


13
Immune response, PGE2 common pathways
No
5.84E−03


14
Immune response, IFN alpha/beta signaling pathway
No
6.44E−03


15
Apoptosis and survival, apoptotic activin A signaling
No
7.47E−03


16
Cytoskeleton remodeling, TGF, WNT and cytoskeletal remodeling
No
8.71E−03


17
Inhibitory action of lipoxins on neutrophil migration
No
9.13E−03


18
Immune response, CCR5 signaling in macrophages and T lymphocytes
No
9.92E−03


19
Immune response, neurotensin-induced activation of IL-8 in
No
1.02E−02



colonocytes


20
Neurophysiological process, HTR1A receptor signaling in neuronal
No
1.02E−02



cells


21
Regulation of lipid metabolism, G-alpha(q) regulation of lipid
No
1.08E−02



metabolism


22
Apoptosis and survival, FAS signaling cascades
No
1.12E−02


23
Development, angiotensin signaling via PYK2
No
1.12E−02


24
G-protein signaling, RhoB regulation pathway
No
1.31E−02


25
Development, ligand-independent activation of ESR1 and ESR2
No
1.36E−02


26
Immune response, PGE2 signaling in immune response
No
1.36E−02


27
Development, gastrin in cell growth and proliferation
No
1.36E−02


28
Cell adhesion, chemokines, and adhesion
No
1.41E−02


29
Development, G-CSF-induced myeloid differentiation
No
1.43E−02


30
Development, G proteins mediated regulation MAPK-ERK signaling
No
1.48E−02


31
Transcription, transcription factor Tubby signaling pathways
No
1.56E−02


32
Development, beta-adrenergic receptors regulation of ERK
No
1.62E−02


33
Immune response, Fc gamma R-mediated phagocytosis in macrophages
No
1.62E−02


34
Cell adhesion, integrin-mediated cell adhesion, and migration
No
1.76E−02


35
Signal transduction, ERK1/2 signaling pathway
No
1.79E−02


36
Development, A3 receptor signaling
No
1.91E−02


37
Development, G-CSF signaling
No
1.91E−02


38
Development, angiotensin activation of ERK
No
1.98E−02


39
Apoptosis and survival, caspase cascade
No
1.98E−02


40
Cell adhesion, IL-8-dependent cell migration and adhesion
No
1.98E−02


41
Neurophysiological process, corticoliberin signaling via CRHR1
No
2.07E−02


42
Protein folding, membrane trafficking, and signal transduction of G-
No
2.11E−02



alpha (i) heterotrimeric G protein


43
G protein signaling, G protein beta/gamma signaling cascades
No
2.19E−02


44
Immune response, role of the membrane attack complex in cell survival
No
2.19E−02


45
G protein signaling, G protein alpha-q signaling cascades
No
2.19E−02


46
Signal transduction, activation of PKC via G protein coupled receptor
No
2.41E−02


47
Development, FGF family signaling
No
2.41E−02


48
G protein signaling, proinsulin C-peptide signaling
No
2.41E−02


49
Immune response, antiviral actions of interferons
No
2.41E−02


50
Development, EPO-induced Jak-STAT pathway
No
2.42E−02


51
Immune response, inflammasome in inflammatory response
No
2.42E−02


52
Immune response, oncostatin M signaling via MAPK in mouse cells
No
2.42E−02


53
G protein signaling, S1P2 receptor signaling
No
2.42E−02


54
Cell cycle, influence of Ras and Rho proteins on G1/S transition
No
2.60E−02


55
Immune response, IL-9 signaling pathway
No
2.65E−02


56
G protein signaling, Rac2 regulation pathway
No
2.65E−02


57
Immune response, TLR signaling pathways
No
2.79E−02


58
Immune response, oncostatin M signaling via MAPK in human cells
No
2.90E−02


59
Development, S1P4 receptor signaling pathway
No
3.13E−02


60
Immune response, MIF-mediated glucocorticoid regulation
No
3.13E−02


61
Immune response, role of integrins in NK cells cytotoxicity
No
3.16E−02


62
Immune response, human NKG2D signaling
No
3.16E−02


63
Cell adhesion, integrin inside-out signaling
No
3.20E−02


64
G protein signaling, regulation of p38 and JNK signaling mediated by G
No
3.44E−02



proteins


65
Apoptosis and survival, ceramide signaling pathway
No
3.73E−02


66
Immune response, Th1 and Th2 cell differentiation
No
3.73E−02


67
Development, dopamine D2 receptor transactivation of EGFR
No
3.93E−02


68
Development, VEGF family signaling
No
4.04E−02


69
Neurophysiological process, NMDA-dependent postsynaptic long-term
No
4.15E−02



potentiation in CA1 hippocampal neurons


70
Serotonin modulation of dopamine release in nicotine addiction
No
4.35E−02


71
Apoptosis and survival, lymphotoxin-beta receptor signaling
No
4.35E−02


72
Immune response, murine NKG2D signaling
No
4.35E−02


73
Development, angiotensin signaling via beta-arrestin
No
4.37E−02


74
Development, alpha-2 adrenergic receptor activation of ERK
No
4.67E−02


75
Development, ACM2 and ACM4 activation of ERK
No
4.68E−02


76
Signal transduction, AKT signaling
No
4.68E−02


77
Immune response, IL-7 signaling in B lymphocytes
No
4.68E−02


78
Development, S1P3 receptor signaling pathway
No
4.68E−02


79
Signal transduction, AKT signaling
No
4.68E−02


80
Immune response, HTR2A-induced activation of cPLA2
No
4.68E−02


81
G protein signaling, Ras family GTPases in kinase cascades (scheme)
No
4.83E−02





ACM, muscarinic acetylcholine receptor; CCR, chemokine receptor; cPLA, cytosolic phospholipase A; CRHR, corticotropin releasing hormone receptor; EGFR, epithelial growth factor receptor; EPO, erythropoietin; ERK, extracellularly regulated kinase; ESR1, estrogen receptor-[alpha] gene; ESR2, estrogen receptor-[beta] gene; FAS, fatty acid synthase; FDR, false discovery rate; FGF, fibroblast growth factor; G-CSF, granulocyte colony-stimulating factor; GTP, guanosine triphosphate; HTR, hydroxytryptane receptor; IAP, integrin-associated protein; IL, interleukin; IFN, interferon; Jak, Janus kinase; JNK, c-Jun N-terminal kinase; MAPK, mitogen-activated protein kinase; MIF, migration inhibitor factor; NF-AT, nuclear factor of activated T cells; NK, natural killer; NMDA, N-methyl-Daspartate; NOSE, normal ovarian surface epithelium; PG, prostaglandin; PKC, protein kinase C; PYK, proline-rich tyrosine kinase; ROS, reactive oxygen species; S1P, sphingosine 1-phosphate; STAT, signal transducer and activator of transcription; VEGF, vascular endothelial growth factor.













TABLE 13







Individual primary pelvic (n = 30) vs extrapelvic implant (n = 30)











Common to



Pathway name
number pairs













1
Cell adhesion, ECM remodeling
27


2
CXC chemokine receptor family
25


3
Cell adhesion, cell matrix glycoconjugates
23


4
Cell adhesion, chemokines and adhesion
23


5
Development, regulation of EMT
23


6
Development, Hedgehog, and PTH signaling pathways
20



in bone and cartilage development


7
Role of diethylhexyl phthalate and tributyltin in
20



fat cell differentiation


8
Development, beta-adrenergic receptors signaling
18



via cAMP


9
Immune response, IL-17 signaling pathways
18


10
Protein folding, membrane trafficking, and signal
18



transduction of G-alpha (i) heterotrimeric G protein


11
Cardiac hypertrophy, NF-AT signaling in cardiac
17



hypertrophy


12
Cell adhesion, plasmin signaling
17


13
Development, TGF-betaedependent induction of EMT
17



via SMADs


14
Development, WNT signaling pathway, part 2
17


15
Immune response, histamine H1 receptor signaling
17



in immune response


16
Cytoskeleton remodeling, TGF, WNT, and
16



cytoskeletal remodeling


17
Development, role of activin A in cell differentiation
16



and proliferation


18
Development, TGF-betaedependent induction of EMT
16



via MAPK


19
Immune response, HMGB1/RAGE signaling pathway
16


20
PGE2 pathways in cancer
16


21
Chemotaxis, leukocyte chemotaxis
15


22
Immune response, histamine signaling in dendritic
15



cells


23
Immune response, MIF-mediated glucocorticoid
15



regulation


24
Immune response, TLR signaling pathways
15





Pathways are common to more than 15 paired samples. cAMP, cyclic adenosine diphosphate; ECM, extracellular matrix; EMT, epithelial-to-mesenchymal transition; HMGB, high mobility group protein B; IL, interleukin; MAPK, mitogen-activated protein kinase; MIF, migration inhibitor factor; NF-AT, nuclear factor of activated T cells; PG, prostaglandin; PTH, parathyroid hormone; RAGE, receptor for advanced glycation end products; SMAD, phosphorylated mothers against decapentaplegic.






These 5 CMPs included the following: (1) chemokines and cell adhesion (chemokines/cell adhesion pathway), (2) transforming growth factor (TGF)-beta and cytoskeletal remodeling (TGF-WNT/cytoskeleton remodeling pathway), (3) histamine signaling in dendritic cells and immune response (histamine signaling/immune response pathway), (4) Toll-like receptor (TLR) signaling pathways and immune response (TLR pathway), and (5) protein folding, membrane trafficking, and signal transduction of G-alpha (i) heterotrimeric G-protein (G-alpha pathway).


To further explore the validity of these 5 CMPs, each were evaluated in 4 publically available external gene expression datasets from primary or early-stage cancers vs metastatic/advanced or recurrent cancer. Pathways associated with metastatic, advanced-stage, or recurrent disease included the following: (1) TGF-WNT/cytoskeleton remodeling pathway (P<0.0001) and chemokines/cell adhesion pathway (P<0.001) for ovarian cancer (GSE14407); (2) TGF-WNT/cytoskeleton remodeling (P<0.001) for oral cavity (GSE2280); and (3) TGF-WNT/cytoskeleton remodeling (GSE6919; P<0.001), chemokines/cell adhesion (GSE6919; P<0.001), histamine signaling/immune response (GSE6919; P=0.016), TGF-WNT/cytoskeleton remodeling (GSE6919; P<0.001), and chemokines/cell adhesion (GSE6919; P<0.001) for prostate cancer. Based on their representation in the external datasets, TGF-WNT/cytoskeleton remodeling, chemokines/cell adhesion, and histamine signaling/immune response pathways were defined as metastasis pathways from the initial list of 5 CMPs.


To further explore the clinical relevance of the 3 metastasis pathways, associations (log-rank P values) were evaluated between pathway expression (quantified by PCA modeling) and overall survival in 1691 patients from a series of 9 external clinicogenomic datasets. Genes included in the PC1 signature scores for the TGF-WNT/cytoskeleton remodeling, chemokines/cell adhesion, and histamine signaling/immune response pathways are listed in Table 14.









TABLE 14







Genes used for PCA modeling from the TGF-WNT/cytoskeleton


remodeling, chemokines/cell adhesion, and histamine


signaling/immune response pathways.











Histamine-


TGF-WNT
Chemokines
Dendritic















ACTA1
LRP5
TSC2
ACTA1
HRAS
ADCY1


ACTA2
MAP2K1
VAV1
ACTA2
IL8
ADCY2


ACTB
MAP2K2
VCL
ACTB
ILK
ADCY3


ACTC1
MAP2K3
VEGFA
ACTC1
ITGA11
ADCY4


ACTG1
MAP3K11
VTN
ACTG1
ITGA3
ADCY5


ACTG2
MAP3K7
WASL
ACTG2
ITGA6
ADCY6


ACTN1
MAPK1
WIF1
ACTN1
ITGA8
ADCY7


ACTN2
MAPK11
WNT1
ACTN2
ITGAV
ADCY8


ACTN3
MAPK12
WNT10A
ACTN3
ITGB1
ADCY9


ACTN4
MAPK13
WNT10B
ACTN4
ITGB4
CCL2


ACTR2
MAPK14
WNT11
ACTR2
JUN
CCL5


ACTR3
MAPK3
WNT16
ACTR3
KDR
CD86


ACTR3B
MDM2
WNT2
ACTR3B
LAMA1
CREB1


AKT1
MKNK1
WNT2B
AKT1
LAMA4
CREM


AKT2
MMP13
WNT3
AKT2
LAMB1
MAPK3


AKT3
MMP7
WNT3A
AKT3
LAMC1
MAPK1


ARPC1A
MTOR
WNT4
ARPC1A
LEF1
GNAI1


ARPC1B
MYC
WNT5A
ARPC1B
LIMK1
GNAI2


ARPC2
MYL1
WNT5B
ARPC2
LIMK2
GNAI3


ARPC3
MYL12A
WNT6
ARPC3
MAP2K1
GNAO1


ARPC4
MYL12B
WNT7A
ARPC4
MAP2K2
GNAZ


ARPC5
MYL2
WNT7B
ARPC5
MAPK1
GNA11


AXIN1
MYL3
WNT8A
BCAR1
MAPK3
GNAQ


AXIN2
MYL4
WNT8B
BRAF
MMP1
GNAS


BCAR1
MYL5
WNT9A
CAV1
MMP13
GNB1


CASP9
MYL6
WNT9B
CAV2
MMP2
GNB2


CAV1
MYL6B
XIAP
CCL2
MSN
GNB3


CCND1
MYL7
ZFYVE9
CCR1
MYC
GNB4


CDC42
MYL9

CD44
NFKB1
GNB5


CDKN1A
MYLK

CD47
NFKB2
GNG10


CDKN2B
MYLK2

CDC42
PAK1
GNG11


CFL1
MYLK3

CFL1
PIK3CA
GNG12


CFL2
MYLPF

CFL2
PIK3CB
GNG13


CHUK
NCL

COL1A1
PIK3CD
GNG2


COL4A1
NLK

COL1A2
PIK3CG
GNG3


COL4A2
PAK1

COL4A1
PIK3R1
GNG4


COL4A3
PIK3CA

COL4A2
PIK3R2
GNG5


COL4A4
PIK3CB

COL4A3
PIK3R3
GNG7


COL4A5
PIK3CD

COL4A4
PIK3R5
GNG8


COL4A6
PIK3R1

COL4A5
PIP5K1C
GNGT1


CRK
PIK3R2

COL4A6
PLAT
GNGT2


CSNK2A1
PIK3R3

CRK
PLAU
HRH1


CSNK2A2
PLAT

CTNNB1
PLAUR
HRH2


CSNK2B
PLAU

CXCL1
PLG
HRH3


CTNNB1
PLAUR

CXCL5
PTEN
HRH4


DOCK1
PLG

CXCL6
PTK2
IL1B


DSTN
PPARD

CXCR1
PXN
IL10


DVL1
PPP1CB

CXCR2
RAC1
IL12A


DVL2
PPP1R12A

DBN1
RAF1
IL12B


DVL3
PTK2

DOCK1
RAP1A
IL23A


EIF4E
PXN

FLNA
RAP1GAP
IL6


EIF4EBP1
RAC1

FLOT2
REL
IL8


FN1
RAF1

FN1
RELA
ITPR1


FOXO3
RHEB

GNAI1
RELB
ITPR2


FRAT1
RHOA

GNAI2
RHOA
ITPR3


FZD1
ROCK1

GNAI3
ROCK1
IRF8


FZD10
ROCK2

GNAO1
ROCK2
MAP2K1


FZD2
RPS6KA5

GNAZ
SDC2
MAP2K2


FZD3
SERPINE1

GNB1
SERPINE1
CCL3


FZD4
SERPING1

GNB2
SERPINE2
CCL4


FZD5
SHC1

GNB3
SHC1
NFATC2


FZD6
SMAD2

GNB4
SOS1
NFATC1


FZD7
SMAD3

GNB5
SOS2
PRKACA


FZD8
SOS1

GNG10
SRC
PRKACB


FZD9
SOS2

GNG11
TCF7
PRKACG


GRB2
SP1

GNG12
TCF7L1
PRKAR1A


GSK3B
SRC

GNG13
TCF7L2
PRKAR1B


HRAS
TAB1

GNG2
THBS1
PRKAR2A


ILK
TCF7

GNG3
TLN1
PRKAR2B


JUN
TCF7L1

GNG4
TLN2
PRKCA


KDR
TCF7L2

GNG5
TRIO
PLCB1


LAMA1
TGFB1

GNG7
VAV1
PLCB2


LAMB1
TGFBR1

GNG8
VCL
PLCB3


LAMC1
TGFBR2

GNGT1
VEGFA
PLCB4


LEF1
TLN1

GNGT2
VTN
RELA


LIMK1
TLN2

GRB2
WASL
TNF


LIMK2
TP53

GSK3B
ZYX
RAF1
















TABLE 15







Grouped NOSE expression data compared with


grouped extrapelvic implant expression data









probe set id
geneName
direction













merck2-NM_001013631_x_at
HNRNPCL1

down


merck-CR600442_x_at
HMGB1

down


merck-ENST00000361494_x_at
hCG_22804

down


merck2-BC051276_a_at
SFRS3

down


merck2-AK223241_at
7-Sep

down


merck-BC007887_at
PGM5P2

down


merck-BC013923_a_at
SOX2

down


merck-ENST00000342143_a_at
SFRS3

down


merck2-BP213746_at
TMEM165

down


merck-NM_005594_s_at
NACA

down


merck2-ENST00000253490_at
FAM153B

down


merck-XM_930195_x_at
hCG_18290

down


merck2-AJ890082_at
HSP90AA1

down


merck-NM_013269_x_at
CLEC2D

down


merck-ENST00000273666_at
STXBP5L

down


merck2-AA025385_x_at
RPL23

down


merck2-DA736876_at
FXYD6

down


merck2-AJ890082_x_at
HSP90AA1

down


merck2-DB236550_at
EEF1A1

down


merck-L18960_s_at
EIF1AX

down


merck-BC085006_x_at
EMID2

down


merck-XM_941738_x_at
hCG_1992539

down


merck2-NM_005602.3_at
CLDN11

down


merck-NM_001004738_at
OR5L1

down


merck-NM_001427_at
EN2

down


merck-NM_174889_at
NDUFAF2

down


merck-BC022082_at
C8orf68

down


merck-ENST00000358870_s_at
ANKRD20B

down


merck2-NM_001077358_at
PDE11A

down


merck2-NM_001090027_x_at
hCG_18290

down


merck-XM_930633_x_at
hCG_39912

down


merck-BG501012_at
NUDT22

down


merck-ENST00000318825_s_at
AAK1

down


merck-NM_031157_x_at
HNRNPA1

down


merck-NM_020697_s_at
KCNS2

down


merck-AF305825_at
GLYAT

down


merck-DB201122_at
STK33

down


merck-NM_016188_at
ACTL6B

down


merck2-BM468600_at
PCNP

down


merck-DR002919_at
C3orf58

down


merck-X96656_s_at
SNORD57

down


merck-XM_934781_x_at
hCG_2004593

down


merck-AJ315536_at
LY6G6D

down


merck-NM_001017963_s_at
HSP90AA1

down


merck-hsa-mir-199a-2_at
MIRN199A2

down


merck-NM_022658_at
HOXC8

down


merck2-NM_133464_at
ZNF483

down


merck2-AA722645_at
SOX2

down


merck-ENST00000304700_x_at
RPL9

down


merck-AK025453_a_at
PROX1

down


merck-NM_138290_a_at
RUNDC3B

down


merck-AK122845_a_at
GABRG1

down


merck-ENST00000382988_at
RP11-408E5.4

down


merck-BC027917_s_at
DEFA3

down


merck2-BI115886_at
HSPG2

down


merck-AI391567_at
HIC1

down


merck-NM_177980_s_at
CDH26

down


merck-AF170294_x_at
PTMAP7

down


merck2-N29174_at
DIMT1L

down


merck-H67948_s_at
ZNF335

down


merck2-CR626168_at
RWDD4A

down


merck2-NM_199425_at
VSX1

down


merck-AK094250_at
WIPF3

down


merck-ENST00000334363_s_at
TXNRD2

down


merck-NM_032144_s_at
RAB6C

down


merck-NM_001018069_at
SERBP1

down


merck-AL133024_a_at
MYT1L

down


merck-DA812943_at
ING1

down


merck-BC096084_a_at
BMP6

down


merck-NM_080746_at
RPL10L

down


merck-ENST00000362017_at
C1orf68

down


merck-BC101970_s_at
SERF1B

down


merck2-CB054424_at
C1QL1

down


merck2-NM_152460_at
C17orf77

down


merck-NM_053002_at
MED12L

down


merck2-AI968309_at
ANKRD55

down


merck2-NM_025013_x_at
ZC3H7B

down


merck-ENST00000373592_at
ECEL1P2

down


merck-BC035157_s_at
ATRNL1

down


merck-AB002438_at
SEMA6A

down


merck2-AK002147_at
COMMD10

down


merck-NM_000870_at
HTR4

down


merck-ENST00000367877_at
FMO9P

down


merck2-DB066901_at
NUDT4

down


merck-NM_005556_s_at
KRT7

up


merck2-BC018764_at
KIAA1217

up


merck-NM_032323_at
TMEM79

up


merck-NM_139204_s_at
EPS8L1

up


merck2-NM_032405_at
TMPRSS3

up


merck-NM_032405_at
TMPRSS3

up


merck2-BM975589_at
KIAA1217

up


merck2-AI582818_at
SYT17

up


merck2-ENST00000376317_at
PRICKLE3

up


merck-NM_024690_at
MUC16

up


merck-NM_006103_at
WFDC2

up


merck-NM_014398_at
LAMP3

up


merck-NM_003044_at
SLC6A12

up


merck2-CX871277_a_at
QRICH1

up


merck-NM_014265_at
ADAM28

up


merck-DA804924_a_at
PTPN1

up


merck-NM_020805_at
KLHL14

up


merck-NM_021136_at
RTN1

up


merck-NM_024626_at
VTCN1

up


merck-NM_017821_at
RHBDL2

up


merck2-AK027845_at
ZNF682

up


merck-NM_004947_at
DOCK3

up


merck-NM_002423_at
MMP7

up


merck2-AK075533_at
C1QTNF3

up


merck-NM_001031615_at
ALDH3B2

up


merck2-DQ893132_at
MMP7

up


merck-NM_130446_at
KLHL6

up


merck-NM_018088_x_at
FAM90A1

up


merck-NM_177964_at
LYPD6B

up


merck-ENST00000285013_a_at
SLFN13

up


merck2-NM_032405_a_at
TMPRSS3

up


merck-NM_006586_at
CNPY3

up


merck-BC001060_a_at
PAX8

up


merck-NM_153255_at
MCM9

up


merck-NM_144505_s_at
KLK8

up


merck-NM_138804_at
C2orf65

up


merck-NM_002534_a_at
OAS1

up


merck-NM_014474_at
SMPDL3B

up


merck2-NM_144507_a_at
KLK8

up


merck-NM_005447_at
RASSF9

up


merck-BC050704_s_at
DCDC2

up


merck-NM_019043_at
APBB1IP

up


merck-ENST00000382056_a_at
C1QTNF3

up


merck-NM_001013622_at
FAM53A

up


merck-NM_004112_at
FGF11

up


merck-NM_153338_at
GGT6

up


merck-NM_005560_s_at
LAMA5

up


merck-NM_002885_at
RAP1GAP

up


merck-NM_000804_at
FOLR3

up


merck2-AI695443_at
LPCAT3

up


merck-CD359695_a_at
ATRN

up


merck-NM_172341_at
PSENEN

up


merck2-AL570385_at
ELL

up


merck-NM_172374_at
IL4I1

up


merck-NM_001692_at
ATP6V1B1

up


merck2-NM_198586_at
NHLRC1

up


merck-NM_000493_at
COL10A1

up


merck-AK055763_a_at
RASSF4

up


merck-NM_003480_at
MFAP5

up


merck-NM_013992_at
PAX8

up


merck2-AF109683_a_at
LAIR1

up


merck2-AL531282_at
NUCB1

up


merck-NM_000616_at
CD4

up


merck-NM_199161_s_at
SAA1

up


merck-NM_013404_at
MSLN

up


merck2-NM_031460_at
KCNK17

up


merck-AW016260_s_at
SLC2A9

up


merck-NM_005046_s_at
KLK7

up


merck-NM_033635_at
SCAND2

up


merck-U52696_a_at
ATF6B

up


merck-NM_001852_at
COL9A2

up


merck-NM_152517_s_at
TTC30B

up


merck2-BQ188534_at
MTF1

up


merck-DB058745_a_at
SMARCA4

up


merck2-NM_172208_at
TAPBP

up


merck-NM_016725_s_at
FOLR1

up


merck2-AI813450_at
CDH6

up


merck-AK056597_s_at
OTUD4

up


merck2-BU676864_at
KIAA0226

up


merck2-NM_001009568_at
SMPDL3B

up


merck-NM_024508_at
ZBED2

up


merck-NM_198586_at
NHLRC1

up


merck-NM_174959_s_at
SVOPL

up


merck-NM_001024941_at
TRIM17

up


merck-NM_005940_s_at
MMP11

up


merck2-NM_024022_at
TMPRSS3

up


merck-CR602026_a_at
ZNRF1

up


merck-NM_000540_at
RYR1

up


merck-AB051390_a_at
SPON1

up


merck2-NM_013372_at
GREM1

up


merck-NM_001005336_s_at
DNM1

up


merck-NM_005668_at
ST8SIA4

up


merck2-XM_209144_a_at
LYPD5

up


merck-NM_006509_at
RELB

up


merck-NM_000379_s_at
XDH

up


merck2-AK095290_at
CP

up


merck-NM_022162_at
NOD2

up


merck-NM_017450_at
BAIAP2

up


merck2-NM_005060_at
RORC

up


merck-NM_032383_at
HPS3

up


merck2-NM_024592_at
SRD5A3

up


merck2-F10838_at
PRR4

up


merck2-BQ217998_a_at
ANKLE2

up


merck-CB529328_s_at
GBP4

up


merck-NM_206818_s_at
OSCAR

up


merck2-AK125566_at
FAM53A

up


merck2-AL534327_at
BCAM

up


merck-NM_052813_s_at
CARD9

up


merck2-AK025905_at
SOX17

up


merck-BC049195_a_at
ELL

up


merck-NM_032534_at
KRBA1

up


merck2-BU608654_at
ATP6V1B1

up


merck2-DA404651_at
ZNF490

up


merck2-XM_092778_at
TTLL9

up


merck-NM_005951_x_at
MT1H

up


merck-NM_000941_at
POR

up


merck-NM_003041_at
SLC5A2

up


merck-DA736753_a_at
BAT2D1

up


merck-NM_031310_at
PLVAP

up


merck-XM_945048_s_at
C1orf186

up


merck2-NM_014395_at
DAPP1

up


merck2-NM_005409_at
CXCL11

up


merck-NM_001039477_s_at
C1orf38

up


merck2-BE676460_at
C11orf80

up


merck-NM_001878_at
CRABP2

up


merck-ENST00000373692_a_at
PTGS1

up


merck2-BC029840_at
PTGS1

up


merck-NM_080669_a_at
SLC46A1

up


merck-AB209742_at
PARP9

up


merck2-DA944610_at
ACOX1

up


merck2-U04343_at
CD86

up


merck-NM_020370_at
GPR84

up


merck-BC003072_at
RET

up


merck2-CR983377_at
ZFR

up


merck2-DA944610_x_at
ACOX1

up


merck-BX365476_s_at
TMPRSS3

up


merck-NM_000734_at
CD247

up


merck2-AK223068_at
SECTM1

up


merck-NM_000424_at
KRT5

up


merck-ENST00000354705_a_at
PTPRF

up


merck-NM_144657_at
HDX

up


merck-AK056035_a_at
SMG7

up


merck-CA776036_s_at
EWSR1

up


merck-BC000801_at
CFLAR

up


merck2-M19922_at
FBP1

up


merck-NM_024501_at
HOXD1

up


merck-NM_024817_at
THSD4

up


merck-NM_001018072_at
BTBD11

up


merck-NM_001572_at
IRF7

up


merck-NM_001012642_at
GRAMD2

up


merck-NM_004712_at
HGS

up


merck2-NM_016816_at
OAS1

up


merck-NM_001039659_s_at
IL18BP

up


merck-NM_022054_at
KCNK13

up


merck-DB370515_s_at
ADD2

up


merck-NM_004950_at
EPYC

up


merck-AL832920_a_at
KIAA1618

up


merck-NM_000096_s_at
CP

up


merck-NM_201630_at
LRRN2

up


merck-AK056725_s_at
ACVRL1

up


merck2-NM_017670_at
OTUB1

up


merck-NM_015645_at
C1QTNF5

up


merck-NM_173660_at
DOK7

up


merck-NM_024572_s_at
GALNT14

up


merck-NM_001517_s_at
GTF2H4

up


merck-NM_173831_s_at
ZNF707

up


merck-NM_145313_at
RASGEF1A

up


merck-NM_004204_at
PIGQ

up


merck-BX416440_a_at
CLSTN1

up


merck2-NM_182573_at
LYPD5

up


merck-NM_001017403_at
LGR6

up


merck-NM_016523_at
KLRF1

up


merck-NR_002598_x_at
SNORD87

up


merck-BC110351_a_at
KCNAB2

up


merck-NM_152455_a_at
ZSCAN29

up


merck-NM_016932_at
SIX2

up


merck-ENST00000297255_a_at
SLC2A4RG

up


merck-AX746945_at
ZFP62

up


merck-BC025758_a_at
C2orf60

up


merck-NM_001025598_at
ARHGAP30

up


merck-NM_001040195_at
AGTRAP

up


merck-NM_002341_a_at
LTB

up


merck2-X89426_at
ESM1

up


merck-NM_002336_a_at
LRP6

up


merck-NM_022750_s_at
PARP12

up


merck-R16349_a_at
ZNF229

up


merck-AK095741_a_at
GREM1

up


merck2-BC013183_at
HLA-DOA

up


merck-NM_144654_s_at
C9orf116

up


merck-NM_002416_at
CXCL9

up


merck-NM_005409_at
CXCL11

up


merck2-NM_000483_at
APOC2

up


merck2-BM749573_at
NUCKS1

up


merck2-AK074669_at
SLAMF8

up


merck-ENST00000379821_a_at
ST8SIA4

up


merck-NM_004669_s_at
CLIC3

up


merck-NM_002155_a_at
HSPA6

up


merck-AK222903_a_at
EPS8L2

up


merck-NM_031430_at
RILP

up


merck-NM_017923_a_at

1-Mar
up


merck-NM_015964_at
TPPP3

up


merck-NM_020791_at
TAOK1

up


merck-NM_015687_at
FILIP1

up


merck-BY794952_s_at
TBCCD1

up


merck-NM_024898_s_at
DENND1C

up


merck-NM_017777_at
MKS1

up


merck2-L32185_at
SLC11A1

up


merck-BC000585_s_at
SLCO3A1

up


merck2-BM922028_at
NLRC5

up


merck2-CB321657_at
CP

up


merck-AI911220_s_at
SNTB2

up


merck-NM_001037333_at
CYFIP2

up


merck-AF013249_a_at
LAIR1

up


merck2-AF137334_at
ADAM28

up


merck-NM_153380_at
ZNF41

up


merck-NM_001040118_at
ARAP1

up


merck-ENST00000379284_at
GFOD1

up


merck-BM549103_a_at
RUFY1

up


merck-AA588208_x_at
FAM91A2

up


merck-NM_002996_at
CX3CL1

up


merck-NM_020386_at
HRASLS

up


merck2-BC016799_at
WDR52

up


merck-AK127015_at
ZNF682

up


merck-X99662_x_at
SH3GLP3

up


merck-NM_001040002_s_at
MEOX1

up


merck-NM_022367_at
SEMA4A

up


merck-NM_001038707_at
CDC42SE1

up


merck-CR984784_s_at
LPAR5

up


merck-NM_152586_s_at
USP54

up


merck-NM_022047_at
DEF6

up


merck2-AK090924_at
COL8A2

up


merck-NM_007079_at
PTP4A3

up


merck-NM_031913_at
FAM62C

up


merck-AF533017_a_at
DUSP18

up


merck-XM_374817_s_at
FAM22B

up


merck-AY346375_a_at
ZNF562

up


merck2-AA378704_x_at
THRAP3

up


merck2-U07225_at
P2RY2

up


merck-AK023772_s_at
THSD4

up


merck-NM_002661_at
PLCG2

up


merck-NM_030630_s_at
C17orf28

up


merck-NM_178033_at
CYP4X1

up


merck-NM_030758_at
OSBP2

up


merck-AL832845_at
LRRC55

up


merck-NM_005581_at
BCAM

up


merck-NM_001007253_s_at
ERV3

up


merck-CV815243_at
KIAA1217

up


merck-NM_032836_at
FIZ1

up


merck-AK074030_a_at
RNF213

up


merck-T86498_a_at
ZNF490

up


merck-NM_173557_at
RNF152

up


merck-NM_022454_at
SOX17

up


merck2-BI597924_at
C13orf15

up


merck-NM_030818_s_at
CCDC130

up


merck-NM_152658_s_at
THAP8

up


merck2-AA902118_at
ICA1

up


merck-BC063568_a_at
UPK1B

up


merck-NM_152709_at
STOX1

up


merck-NM_032819_at
ZNF341

up


merck-NM_001007544_at
C1orf186

up


merck-NM_001567_s_at
INPPL1

up


merck2-ENST00000329309_x_at
PSPH

up


merck-NM_023072_at
ZSWIM4

up


merck-XM_044166_at
MEX3A

up


merck2-BC009489_a_at

9-Mar
up


merck2-BQ441731_at
C10orf57

up


merck-NM_002121_a_at
HLA-DPB1

up


merck-NM_002740_s_at
PRKCI

up


merck2-ENST00000373857_at
PTAFR

up


merck-AK056667_a_at
NSD1

up


merck-BC018000_a_at
PUS7L

up


merck-NM_000121_a_at
EPOR

up


merck-NM_018990_at
SASH3

up


merck-AK123810_at
LCA5L

up


merck2-AK056742_at
WNT2

up


merck-NM_000889_at
ITGB7

up


merck-AK090439_s_at
NLRC5

up


merck-NM_030974_at
SHARPIN

up


merck2-BQ441731_x_at
C10orf57

up


merck-NM_153256_at
C10orf47

up


merck-ENST00000024061_at
SLC45A4

up


merck-AV727105_a_at
CD47

up


merck-NM_002673_at
PLXNB1

up


merck-NM_012252_at
TFEC

up


merck2-AK023066_a_at
CNNM2

up


merck2-BQ934363_at
AKAP13

up


merck-NM_002030_s_at
FPR3

up


merck-NM_021163_at
RBAK

up


merck-NM_006795_at
EHD1

up


merck-NM_000246_a_at
CIITA

up


merck2-AY358143_at
THSD4

up


merck-NM_001242_at
CD27

up


merck-NM_004072_at
CMKLR1

up


merck-NM_031303_at
KATNAL2

up


merck2-ENST00000377918_at
PCDH17

up


merck-NM_017514_at
PLXNA3

up


merck-NM_173527_at
REM2

up


merck-BC071862_at
JRK

up


merck-CD367611_x_at
CFLAR

up


merck2-NM_133169_a_at
OSCAR

up


merck-NM_018009_at
TAPBPL

up


merck-BC049838_a_at
PDCD11

up


merck-DA711453_s_at
BRD9

up


merck-NM_001002235_s_at
SERPINA1

up


merck-BC056142_at
NFE2L3

up


merck2-BM975589_a_at
KIAA1217

up


merck-NM_152600_at
ZNF579

up


merck-NM_001665_at
RHOG

up


merck-BQ061913_a_at
UBE3B

up


merck2-AF318331_a_at
EPS8L2

up


merck-BG699859_s_at
RHOF

up


merck-NM_003978_at
PSTPIP1

up


merck2-BU601868_at
C2orf60

up


merck2-CD642566_at
NKTR

up


merck2-AI332306_at
MEX3D

up


merck2-NM_000698_at
ALOX5

up


merck-NM_000206_at
IL2RG

up


merck-NM_000063_a_at
C2

up


merck2-AW438675_at
UQCRC2

up


merck-NM_021195_at
CLDN6

up


merck-ENST00000375217_a_at
UBR4

up


merck-NM_022455_at
NSD1

up


merck-NM_001008409_s_at
TTLL9

up


merck-CR620615_s_at
ZNF276

up


merck2-NM_000424_at
KRT5

up


merck-AF186252_a_at
SULT1C2

up


merck-NM_020205_a_at
OTUD7B

up


merck-BX537522_at
ENTPD1

up


merck-ENST00000261758_at
MESDC2

up


merck-NM_017949_s_at
CUEDC1

up


merck-NM_006747_at
SIPA1

up


merck2-BF062856_at
PCGF3

up


merck2-NM_001031801_at
LIMK2

up


merck-NM_145013_at
C11orf45

up


merck-AK223243_a_at
SDC4

up


merck-NM_004378_at
CRABP1

up


merck-L25259_s_at
CD86

up


merck-BC034949_a_at
EMR2

up


merck-NM_022369_s_at
STRA6

up


merck-NM_138499_s_at
PWWP2B

up


merck-NM_001014986_s_at
FOLH1

up


merck2-AW131251_at
HSPA6

up


merck-BC065717_a_at
VTCN1

up


merck-NM_001039382_at
C8orf77

up


merck-NM_173530_at
ZNF610

up


merck-AB208946_a_at
ALOX5

up


merck-AL832285_s_at
GBP5

up


merck-AA489463_a_at
SLIT2

up


merck-NM_003727_at
DNAH17

up


merck-NM_181484_s_at
ZGPAT

up


merck-NM_022107_a_at
GPSM3

up


merck-NM_020832_at
ZNF687

up


merck-NM_207354_at
ANKRD13D

up


merck-NM_001039575_s_at
NSUN5B

up


merck2-NM_002535_at
OAS2

up


merck-NM_015507_at
EGFL6

up


merck2-AA278673_at
TLR7

up


merck2-BX647274_at
CDK3

up


merck-BM545167_s_at
GNMT

up


merck-NM_001125_at
ADPRH

up


merck2-N98426_x_at
C1orf56

up


merck2-AI949164_at
EPB41L4A

up


merck-ENST00000256367_at
TTC9

up


merck2-BF220289_at
GRN

up


merck2-NM_005554_at
KRT6A

up


merck-ENST00000185206_a_at
CLIC5

up


merck2-DR980584_x_at
C9orf129

up


merck2-BC104753_at
NFATC1

up


merck-NM_004220_s_at
ZNF213

up


merck2-BC009721_at
CLEC16A

up


merck2-BG741360_at
KIAA0317

up


merck-NM_032265_at
ZMYND15

up


merck-NM_002120_at
HLA-DOB

up


merck-CN429612_a_at
AMOT

up


merck2-NM_016931_at
NOX4

up


merck2-NM_206818_a_at
OSCAR

up


merck-AK094136_a_at
ZNF827

up


merck2-BC043612_at
ZSCAN29

up


merck-NM_033015_s_at
FASTK

up


merck-BC065279_a_at
IWS1

up


merck-NM_000095_s_at
COMP

up


merck2-BC034321_at
ALDH5A1

up


merck-NM_005612_s_at
REST

up


merck-NM_001248_at
ENTPD3

up


merck-BC032361_a_at
KIAA0040

up


merck-CR974666_a_at
C4orf8

up


merck2-DA167870_at
ST8SIA4

up


merck2-AI654093_a_at
FUT8

up


merck-BM980789_s_at
LAMC2

up


merck2-NM_001080496_at
RGP1

up


merck-NM_001033046_at
C17orf62

up


merck-NM_004715_at
CTDP1

up


merck2-BX117586_at
YPEL1

up


merck-ENST00000344771_at
SRCAP

up


merck-BC064360_a_at
FBXL11

up


merck2-DB166146_at
LRRFIP1

up


merck-NM_001001575_s_at
PDE9A

up


merck-ENST00000343933_at
CORO2A

up


merck-NM_022141_at
PARVG

up


merck-NM_003120_at
SPI1

up


merck-NM_025080_s_at
ASRGL1

up


merck-NM_000952_at
PTAFR

up


merck-BC008046_at
FBXO46

up


merck-NM_004032_at
DDO

up


merck-NM_006419_at
CXCL13

up


merck-NM_004783_at
TAOK2

up


merck2-NM_001001290_at
SLC2A9

up


merck-NM_017594_at
DIRAS2

up


merck2-NM_021089_at
ZNF8

up


merck-NM_020649_at
CBX8

up


merck-NM_001120_at
MFSD10

up


merck-NM_016558_s_at
SCAND1

up


merck-NM_001776_s_at
ENTPD1

up


merck-NM_203304_at
MEX3D

up


merck-NM_032107_s_at
L3MBTL

up


merck-NM_014385_at
SIGLEC7

up


merck-NM_012335_at
MYO1F

up


merck-NM_006635_s_at
ZNF460

up


merck-NM_006553_at
SLMO1

up


merck2-BE676460_x_at
C11orf80

up


merck-AU151088_s_at
CDH6

up


merck2-BX647968_at
ENPP5

up


merck-N78414_a_at
PCDH17

up


merck-BC048303_a_at
YPEL1

up


merck-NM_032792_at
ZBTB45

up


merck2-BC018532_at
FAM129A

up


merck2-NM_006615_at
CAPN9

up


merck2-NM_022572_a_at
PNKD

up


merck-NM_001040003_s_at
NCF1

up


merck2-BU158667_a_at
TTC7A

up


merck-NM_016428_at
ABI3

up


merck2-BC051719_a_at
B3GALT6

up


merck2-X74818_at
AHNAK

up


merck-NM_005341_at
ZBTB48

up


merck-NM_006725_at
CD6

up


merck2-Z29328_a_at
UBE2H

up


merck-NM_080591_s_at
PTGS1

up


merck-BC047782_at
CDK3

up


merck-AK127884_s_at
ZBTB7B

up


merck-NM_005337_at
NCKAP1L

up


merck-NM_014002_at
IKBKE

up


merck-AL560976_at
TMEM127

up


merck-BC046218_a_at
TNRC6B

up


merck-NM_006019_s_at
TCIRG1

up


merck-NM_004416_at
DTX1

up


merck-NM_015202_at
KIAA0556

up


merck-ENST00000245530_at
PADI2

up


merck2-NM_020914_at
RNF213

up


merck-NM_020461_s_at
TUBGCP6

up


merck-BC013572_a_at
KRAS

up


merck-NM_018489_a_at
ASH1L

up


merck-AK022734_a_at
KIAA0319L

up


merck-NM_006574_at
CSPG5

up


merck-ENST00000269336_at
CCDC40

up


merck-NM_001008701_at
LPHN1

up


merck-NM_207392_at
KRTDAP

up


merck-NM_024781_at
CCDC102B

up


merck-NM_005044_at
PRKX

up


merck-NM_024893_at
C20orf39

up


merck2-AK074082_at
RGL3

up


merck-NM_000569_at
FCGR3A

up


merck-NM_005048_at
PTH2R

up


merck2-NM_015967_at
PTPN22

up


merck-NM_004321_at
KIF1A

up


merck-AY523970_s_at
TAP1

up


merck-NM_003764_at
STX11

up


merck-BU853952_s_at
C19orf2

up


merck-NM_019100_at
DMAP1

up


merck2-BC018764_a_at
KIAA1217

up


merck-AV734165_a_at
RLF

up


merck-NM_022358_at
KCNK15

up


merck-NM_024070_at
PVRIG

up


merck-BC064906_a_at
KIF1A

up


merck-NM_001023561_at
ZNF749

up


merck-NM_024042_at
METRN

up


merck-NM_001033678_s_at
TRPT1

up


merck2-AI638649_at
GALNT12

up


merck-NM_138330_x_at
ZNF675

up


merck-AK056696_s_at
ZNF606

up


merck2-BC017758_at
CYP4B1

up


merck-BX640973_at
SLC45A3

up


merck-NM_003862_at
FGF18

up


merck-ENST00000354353_at
KCNMA1

up


merck2-AK094636_at
ABCB8

up


merck2-DB109470_at
NKTR

up


merck-G65633_at
TMEM178

up


merck-M74447_a_at
TAP2

up


merck2-ENST00000357769_a_at
THSD4

up


merck-NM_031924_at
RSPH3

up


merck2-AY346375_x_at
ZNF562

up


merck-BC037558_s_at
EPS15L1

up


merck-AL697853_a_at
CDH6

up


merck-NM_181724_at
TMEM119

up


merck-BP224564_a_at
YY1

up


merck2-AA379112_at
SLAMF8

up


merck-NM_001004323_at
C7orf61

up


merck-AK128366_a_at
MGAT4A

up


merck-NM_024706_s_at
ZNF668

up


merck-NM_001061_at
TEXAS1

up


merck-ENST00000314566_a_at
AMFR

up


merck-NM_014699_at
ZNF646

up


merck2-BC065270_a_at
APOC2

up


merck-NM_014421_at
DKK2

up


merck2-NM_018438_at
FBXO6

up


merck-NM_015327_at
SMG5

up


merck2-AL157446_at
PDPK1

up


merck-NM_021070_at
LTBP3

up


merck-BE350121_s_at
CPXM1

up


merck-ENST00000315425_at
TMEM185B

up


merck-NM_001003940_s_at
BMF

up


merck-NM_000779_at
CYP4B1

up


merck-NM_003789_at
TRADD

up


merck-BC012924_a_at
DAPP1

up


merck2-DQ894918_at
TRIM38

up


merck-AK023131_at
XPR1

up


merck2-CA308455_at
HLA-DPA1

up


merck-AK092738_at
PSMB9

up


merck2-CA423142_a_at
MLLT4

up


merck2-AY090771_at
NADK

up


merck-NM_001035223_s_at
RGL3

up


merck-NM_002180_s_at
IGHMBP2

up


merck-BC020195_s_at
CCDC123

up


merck-NM_007261_at
CD300A

up


merck-NM_174912_at
FAAH2

up


merck2-AI933294_at
NDUFV3

up


merck-NM_023078_at
PYCRL

up


merck2-AB004574_at
DNASE2

up


merck2-NM_001002235_at
SERPINA1

up


merck2-CA306000_s_at
GBP1

up


merck-ENST00000376863_a_at
CLDN10

up


merck2-BC098388_at
SLIT3

up


merck-NM_175924_at
ILDR1

up


merck-NM_198963_at
DHX57

up


merck2-AF239923_at
RHOF

up


merck-NM_020766_at
PCDH19

up


merck2-BC030293_at
RHBDD1

up


merck2-NM_004145_at
MYO9B

up


merck-NM_003782_a_at
B3GALT4

up


merck2-NM_017565_at
FAM20A

up


merck-NM_021143_at
ZNF20

up


merck-AK096371_at
TADA2L

up


merck-BX640620_x_at
IGHM

up


merck2-AM182326_at
WDR45L

up


merck-NM_018259_a_at
TTC17

up


merck-BF222904_a_at
CTTNBP2NL

up


merck-ENST00000356331_s_at
SH3BP2

up


merck-NM_145307_at
RTKN2

up


merck2-CD518083_at
PLEKHB1

up


merck-NM_025257_a_at
SLC44A4

up


merck2-AK125659_a_at
TLR2

up


merck-NM_005101_at
ISG15

up


merck-NM_198282_at
TMEM173

up


merck-AM055744_at
SNORA45

up


merck-NM_144686_at
TMC4

up


merck-NM_020857_at
VPS18

up


merck2-AI554920_x_at
KRAS

up


merck2-BC033795_at
TTC30B

up


merck2-ENST00000367021_at
IRF6

up


merck2-DQ893538_at
CCNK

up


merck-BC036797_a_at
ADRBK2

up


merck-NM_000101_a_at
CYBA

up


merck2-BC130484_at
GUCY1A2

up


merck2-NM_130771_a_at
OSCAR

up


merck-NM_024083_at
ASPSCR1

up


merck-NM_012308_at
FBXL11

up


merck-AK098833_s_at
MIAT

up


merck-NM_002151_at
HPN

up


merck-NM_017582_at
UBE2Q1

up


merck2-BC126219_at
SAFB

up


merck-AK074341_a_at
RAB11FIP4

up


merck-NM_021089_at
ZNF8

up


merck2-NM_014734_at
KIAA0247

up


merck-NM_014371_s_at
AKAP8L

up


merck-NM_003880_s_at
WISP3

up


merck-BX103595_at
ITPR2

up


merck-AA131524_at
SLAMF1

up


merck-NM_052942_a_at
GBP5

up


merck-NM_171998_at
RAB39B

up


merck-NM_005148_at
UNC119

up


merck-NM_000733_at
CD3E

up


merck-BM973820_s_at
SCO2

up


merck-BM512211_a_at
MSR1

up


merck2-AK222711_a_at
SMAP1

up


merck-NM_005135_at
SLC12A6

up


merck2-DT217746_at
ASRGL1

up


merck2-BX647344_at
AVIL

up


merck2-AI554920_at
KRAS

up


merck-NM_138413_s_at
C10orf65

up


merck-NM_002145_at
HOXB2

up


merck-CB851948_a_at
WDR52

up


merck-G36759_at
GREM1

up


merck-NM_000577_s_at
IL1RN

up


merck2-AF088037_at
ARHGEF19

up


merck2-AF275269_at
NANOS1

up


merck-BC047016_a_at
FCHSD1

up


merck-NM_199121_s_at
VWA1

up


merck-G36510_at
ZNF606

up


merck-CR610337_at
WNT2

up


merck-BX362459_a_at
EFHD2

up


merck-NM_138278_at
BNIPL

up


merck-BC033756_a_at
TLR2

up


merck-NM_013441_a_at
RCAN3

up


merck-AI871635_at
PTAFR

up


merck2-NM_015623_a_at
TANC2

up


merck-BC026930_a_at
TRIM38

up


merck-NM_004259_s_at
RECQL5

up


merck-NM_003162_at
STRN

up


merck-NM_177999_at
ASB6

up


merck-NM_207336_s_at
ZNF467

up


merck-NM_005244_at
EYA2

up


merck-NM_006228_at
PNOC

up


merck-NM_152321_at
ERP27

up


merck2-BM674826_a_at
PAK1

up


merck2-BF940370_x_at
YY1

up


merck-NM_001089_at
ABCA3

up


merck-NM_001004309_at
ZNF774

up


merck-ENST00000357997_a_at
ANKLE2

up


merck2-AB265810_at
RNF31

up


merck-NM_012320_at
PLA2G15

up


merck2-CB851649_at
EFCAB2

up


merck2-NM_001100812_a_at
CXCL16

up


merck-NM_003355_at
UCP2

up


merck2-DA908268_at
NUB1

up


merck-NM_002284_at
KRT86

up


merck-NM_018421_s_at
TBC1D2

up


merck2-BG680883_at
LAMC2

up


merck-BC047950_a_at
TTC9

up


merck-NM_199173_s_at
BGLAP

up


merck-U65533_a_at
UPF1

up


merck-BC035724_a_at
NAB1

up


merck-NM_021251_s_at
CAPN10

up


merck2-BX647929_at
ZNF786

up


merck-NM_017586_at
C9orf7

up


merck-NM_021168_at
RAB40C

up


merck2-BC070107_at
SLC12A6

up


merck2-AA148931_at
FAM124A

up


merck-NM_021990_s_at
GABRE

up


merck2-BM793951_a_at
TTC39A

up


merck-NM_015356_at
SCRIB

up


merck-AK023842_a_at
BAZ2A

up


merck-NM_002111_at
HTT

up


merck-NM_177533_s_at
NUDT14

up


merck2-BI823414_at
SLC45A4

up


merck-AY005981_at

6-Sep
up


merck-NM_138957_at
MAPK1

up


merck-NM_031498_at
GNGT2

up


merck-NM_177422_at
EIF2C3

up


merck2-NM_000487_at
ARSA

up


merck-NM_000483_at
APOC2

up


merck-NM_005181_at
CA3

up


merck-NM_032809_s_at
FAM73B

up


merck-NM_004424_at
E4F1

up


merck-NM_018196_a_at
TMLHE

up


merck2-NM_020630_at
RET

up


merck-NM_024944_s_at
CHODL

up


merck-NM_001191_at
BCL2L1

up


merck-BE736140_a_at
FBXO18

up


merck2-AF091091_at
PGLS

up


merck-NM_016524_at
SYT17

up


merck-NM_001040070_x_at
IGHG1

up


merck-ENST00000359488_x_at
IGKC

up


merck2-BX439965_at
CARM1

up


merck2-EL947810_at
DHRS4

up


merck-NM_024771_at
NAT11

up


merck-NM_017488_at
ADD2

up


merck-NM_000578_at
SLC11A1

up


merck2-CD703280_at
IGKC

up


merck-NM_153345_at
TMEM139

up


merck-ENST00000335350_at
UNC5B

up


merck-NM_005942_s_at
MOCS1

up


merck-NM_020410_s_at
ATP13A1

up


merck2-DA593521_at
DSP

up


merck-NM_004131_at
GZMB

up


merck-NM_000152_at
GAA

up


merck2-NM_005811_at
GDF11

up


merck-CR597929_a_at
ARFIP2

up


merck-NM_012240_at
SIRT4

up


merck2-AI016654_at
TTC9

up


merck-BI195427_a_at
TP53I3

up


merck-NM_015488_s_at
PNKD

up


merck-AB014515_a_at
N4BP1

up


merck2-BC019883_at
CLEC2D

up


merck2-NM_198445_at
RINL

up


merck2-NM_001230_at
CASP10

up


merck-NM_001112_at
ADARB1

up


merck-NM_178865_at
SERINC2

up


merck-NM_020753_s_at
CASKIN2

up


merck-NM_000594_a_at
TNF

up


merck2-AL049464_at
THSD4

up


merck-NM_005202_s_at
COL8A2

up


merck-NM_024493_s_at
ZKSCAN3

up


merck-NM_000507_at
FBP1

up


merck-NM_017935_at
BANK1

up


merck2-NM_000101_at
CYBA

up


merck-NM_015916_at
CALHM2

up


merck-NM_014146_s_at
LAT2

up


merck-NM_014347_at
ZNF324

up


merck-NM_003391_a_at
WNT2

up


merck-CR622847_a_at
C10orf57

up


merck2-DA497750_x_at
ZNF33A

up


merck-AW770542_a_at
EIF5B

up


merck2-BX327781_at
MPP7

up


merck-NM_012152_at
LPAR3

up


merck-ENST00000317318_a_at
RFX7

up


merck-AK127358_a_at
RNF213

up


merck2-AK126729_at
NDRG4

up


merck-NM_052988_s_at
CDK10

up


merck2-BG616989_a_at
SERPINA1

up


merck2-AK125566_x_at
FAM53A

up


merck-NM_033196_a_at
ZNF682

up


merck-AF068836_a_at
CYTIP

up


merck-AF132599_a_at
KLF13

up


merck-NM_024554_at
PGBD5

up


merck2-BG826377_a_at
PREX1

up


merck2-AL834491_at
FAM59A

up


merck-NM_007046_at
EMILIN1

up


merck2-BC075858_at
PLEKHG2

up


merck-NM_080862_at
SPSB4

up


merck-NM_005630_at
SLCO2A1

up


merck-ENST00000367555_at
NPL

up


merck2-CR601707_at
AQP5

up


merck-AF019226_at
RAB3D

up


merck-NM_203434_s_at
IER5L

up


merck-NM_004946_at
DOCK2

up


merck-NM_015478_at
L3MBTL

up


merck-NM_030895_at
ZNF696

up


merck-NM_001025604_s_at
ARRDC2

up


merck2-BX456521_x_at
IKZF2

up


merck-NM_032532_at
FNDC1

up


merck-NM_144631_s_at
ZNF513

up


merck-AF124491_a_at
GIT2

up


merck-AB208925_s_at
PCDHA4

up


merck-NM_181050_at
AXIN1

up


merck-NM_153341_at
RNF19B

up


merck-BM562015_a_at
TBXAS1

up


merck-NM_001565_at
CXCL10

up


merck2-AI380393_at
MMS19

up


merck-NM_033238_at
PML

up


merck-AK094195_a_at
MAP3K12

up


merck-BX364147_a_at
NADK

up


merck-NM_182647_at
OPRL1

up


merck-BC035599_at
C2CD3

up


merck2-AF118887_at
VAV3

up


merck-NM_003965_s_at
CCRL2

up


merck2-AK057931_at
RSPH3

up


merck2-AL133043_at
DCDC2

up


merck-NM_016151_s_at
TAOK2

up


merck2-NM_080657_at
RSAD2

up


merck-NM_005132_at
REC8

up


merck2-AI431558_x_at
MFI2

up


merck-BC023558_a_at
SPOCK2

up


merck-NM_000639_at
FASLG

up


merck2-BQ893829_at
NAGLU

up


merck2-XM_374898_at
PCNXL3

up


merck-NM_014405_at
CACNG4

up


merck-AK098385_s_at
RTN4

up


merck-CR936744_at
HOMER2

up


merck-BC039860_at
CHD6

up


merck-NM_024650_at
C11orf80

up


merck-AF061935_a_at
VPRBP

up


merck2-AL832190_at
COG2

up


merck2-BI519527_at
IKZF1

up


merck2-AL515469_s_at
NANS

up


merck-BC065197_at
PUS10

up


merck2-BC041388_at
ZNF553

up


merck-NM_03205 l_s_at
PATZ1

up


merck2-ENST00000368925_at
DDO

up


merck-NM_005892_at
FMNL1

up


merck-NM_016830_s_at
VAMP1

up


merck-BU542820_at
GALNT6

up


merck-CR992676_s_at
ZC3H11A

up


merck-BC050321_a_at
TBC1D1

up


merck-NM_001039468_s_at
MARK2

up


merck2-AI971668_a_at
SMAD6

up


merck-NM_030792_s_at
GDPD5

up


merck2-BU622650_a_at
BHLHB3

up


merck-NM_005949_s_at
MT1F

up


merck2-ENST00000366969_at
VASH2

up


merck-NM_152225_s_at
PPEF1

up


merck-NM_152511_at
DUSP18

up


merck-NM_080605_at
B3GALT6

up


merck2-XM_001133198_x_at
FCGR1A

up


merck-NM_001610_at
ACP2

up


merck-NM_032782_at
HAVCR2

up


merck-NM_001004431_at
METRNL

up


merck-AF143684_s_at
MYO9B

up


merck-X96660_s_at
RAB26

up


merck-NM_024909_a_at
C6orf134

up


merck-NM_018245_at
OGDHL

up


merck2-BM561748_at
GZMB

up


merck2-ENST00000360922_at
C1orf56

up


merck-ENST00000361686_at
ST6GAL2

up


merck-ENST00000355436_at
ZNF252

up


merck-NM_012427_at
KLK5

up


merck-BC009714_a_at
RAB39B

up


merck-NM_003834_at
RGS11

up


merck-NM_002986_s_at
CCL11

up


merck-BQ420304_a_at
SETD1B

up


merck-NM_015925_at
LSR

up


merck2-AL136709_at
ABI3

up


merck-NM_178181_a_at
CDCP1

up


merck-BC094869_x_at
hCG_20426

up


merck-NM_021209_s_at
NLRC4

up


merck-NM_019601_at
SUSD2

up


merck-AX747748_s_at
IGHA1

up


merck2-AU120661_at
ARHGEF3

up


merck-NM_003986_at
BBOX1

up


merck-ENST00000310260_a_at
VANGL1

up


merck-NM_145214_at
TRIM11

up


merck-NM_006768_at
BRAP

up


merck2-NM_018986_at
SH3TC1

up


merck-NM_015568_at
PPP1R16B

up


merck-NM_017636_s_at
TRPM4

up


merck-AB209400_at
UQCC

up


merck-NM_012396_at
PHLDA3

up


merck-NM_014807_s_at
C2CD2L

up


merck-NM_207362_at
C2orf55

up


merck-BC028212_at
PIK3R5

up


merck-BC033255_x_at
IL8RBP

up


merck-NM_032034_at
SLC4A11

up


merck-AW072050_a_at
MYO9B

up


merck-BC034402_a_at
RBM47

up


merck-BC020867_at
SLC6A13

up


merck2-R42193_a_at
NDRG4

up


merck-NM_022744_at
C16orf58

up


merck-X96653_s_at
SNORD54

up


merck-NM_015039_at
NMNAT2

up


merck-NM_013447_at
EMR2

up


merck2-XM_001128702_at
SGPP2

up


merck-NM_023930_at
KCTD14

up


merck-NM_006277_s_at
ITSN2

up


merck-NM_018936_at
PCDHB2

up


merck-NM_002407_at
SCGB2A1

up


merck-NM_016929_at
CLIC5

up


merck2-BC084547_at
NCKAP1L

up


merck-AK097258_s_at
DOK3

up


merck-ENST00000325348_s_at
C8orf30A

up


merck-NM_005978_at
S100A2

up


merck-NM_145000_at
RANBP3L

up


merck-NM_001782_at
CD72

up


merck2-CB055265_at
CD81

up


merck2-NM_002917_at
RFNG

up


merck2-BX647769_at
ANKRD36

up


merck-NM_005950_s_at
MT1G

up


merck-NM_018226_at
RNPEPL1

up


merck-BC070352_x_at
IGLV3-21

up


merck2-BU564645_at
STAG2

up


merck-NM_152386_a_at
SGPP2

up


merck-NR_002736_s_at
RAB26

up


merck2-CR976782_at
AHNAK

up


merck2-BC009851_at
IGHM

up


merck2-NM_033130_at
SIGLEC10

up


merck-NM_003914_at
CCNA1

up


merck-AK095776_a_at
THRB

up


merck-NM_005562_at
LAMC2

up


merck2-NM_198490_at
RAB43

up


merck-NM_031244_at
SIRT5

up


merck-AK023855_at
PAX8

up


merck-XM_936535_at
NDOR1

up


merck-NM_024947_at
PHC3

up


merck-ENST00000260257_at
FDXACB1

up


merck-NM_015481_s_at
ZNF385A

up


merck-NM_080616_a_at
C20orf112

up


merck-ENST00000375678_s_at
C20orf112

up


merck2-W94916_at
CTDSPL

up


merck2-BF914623_at
CFLAR

up


merck-NM_016356_at
DCDC2

up


merck2-NM_182756_at
SPDYA

up


merck-NM_005241_a_at
EVI1

up


merck-CN335383_a_at
TBC1D1

up


merck2-DC428989_at
HNRNPK

up


merck2-NM_212479_at
ZMYND11

up


merck2-ENST00000376573_at
PIP4K2A

up


merck-NM_032207_at
C19orf44

up


merck-NM_007121_at
NR1H2

up


merck-NM_020944_at
GBA2

up


merck-ENST00000372765_a_at
CAMK2G

up


merck2-BC002829_at
S100A2

up


merck-NM_002769_s_at
PRSS1

up


merck-NM_001040424_at
PRDM15

up


merck-AF390894_a_at
SLAMF7

up


merck-BC013107_at
WDR42A

up


merck2-DB293898_a_at
BAZ2A

up


merck-ENST00000361975_a_at
SETD2

up


merck2-BM838001_at
RAB8A

up


merck-NM_004409_s_at
DMPK

up


merck-NM_001683_a_at
ATP2B2

up


merck-AK097071_s_at
IGHM

up


merck-NM_021228_at
SCAF1

up


merck2-BX648451_at
KIAA1217

up


merck-BCl11487_a_at
TTC7A

up


merck-BC029891_a_at
TFEC

up


merck-NM_015852_at
ZNF117

up


merck-NM_017865_s_at
ZNF692

up


merck-BC014211_x_at
TCEA2

up


merck-G30809_at
ARF5

up


merck2-BU634330_at
NCK1

up


merck-NM_152604_s_at
ZNF383

up


merck-BG677853_a_at
LAMC2

up


merck-NM_133178_at
PTPRU

up


merck-NM_153022_s_at
C12orf59

up


merck-NM_014270_at
SLC7A9

up


merck-BP195474_a_at
SPOCK2

up


merck-NM_005512_at
LRRC32

up


merck2-CN429342_at
RERE

up


merck2-DQ892684_at
ITGB2

up


merck-NM_005248_s_at
FGR

up


merck-NM_019110_s_at
ZKSCAN4

up


merck-NM_007188_at
ABCB8

up


merck-AF043143_s_at
IL1RN

up


merck-NM_019092_s_at
FAM63B

up


merck-NM_007181_at
MAP4K1

up


merck-ENST00000367602_at
QSOX1

up


merck2-AJ012501_at
STX11

up


merck-ENST00000375799_at
PLEKHM2

up


merck-NM_148966_at
TNFRSF25

up


merck-NM_014211_at
GABRP

up


merck-NM_006147_at
IRF6

up


merck2-NM_015474_at
SAMHD1

up


merck-NM_000647_s_at
CCR2

up


merck2-NM_002020_at
FLT4

up


merck-ENST00000377746_at
SLC45A4

up


merck2-AK025676_a_at
RNF213

up


merck2-BY795924_at
AKAP8L

up


merck-NM_182557_s_at
BCL9L

up


merck-NM_032663_a_at
USP30

up


merck-NM_033204_at
ZNF101

up


merck-NM_001009941_a_at
ANKRD16

up


merck2-AY312431_at
SGMS1

up


merck-ENST00000313975_s_at
CSNK1G2

up


merck2-AI918932_s_at
ENTPD1

up


merck-NM_001001430_s_at
TNNT2

up


merck-CD672190_a_at
PLCE1

up


merck-NM_007162_s_at
TFEB

up


merck2-NM_015488_a_at
PNKD

up


merck-AK027045_at
ZBTB3

up


merck-AK095013_at
SLC8A1

up


merck2-NM_172231_x_at
SF4

up


merck-NM_001488_s_at
TADA2L

up


merck-NR_002437_s_at
SNORD54

up


merck-NM_017576_at
KIF27

up


merck-L43092_x_at
IGLV3-19

up


merck2-DA660473_at
BIRC2

up


merck-NM_152609_s_at
C1orf71

up


merck-AK127693_s_at
PLCB1

up


merck-NM_024886_at
C10orf95

up


merck-NM_004362_at
CLGN

up


merck2-NM_001045556_at
SLA

up


merck-CR591922_a_at
FCGR1A

up


merck-BC002976_s_at
CYB561

up


merck-AI218739_at
CCDC123

up


merck-NM_018950_x_at
HLA-F

up


merck2-BC009418_at
CHODL

up


merck-NM_018423_at
STYK1

up


merck-BC050449_a_at
ARFGEF2

up


merck-NM_138352_a_at
SAMD1

up


merck-NM_000216_at
KAL1

up


merck2-DQ892100_a_at
CLGN

up


merck-AY260572_a_at
FLVCR2

up


merck2-NM_023930_at
KCTD14

up


merck-NM_022147_at
RTP4

up


merck-NM_024015_at
HOXB4

up


merck2-AB208798_at
PSD4

up


merck-NM_001454_at
FOXJ1

up


merck-DA674734_a_at
VCL

up


merck2-EL734573_a_at
TRAF3IP1

up


merck-NM_016464_at
TMEM138

up


merck2-NM_018179_at
ATF7IP

up


merck-NM_022872_at
IFI6

up


merck-ENST00000299927_a_at
ZNF592

up


merck-NM_015650_a_at
TRAF3IP1

up


merck-AK090648_x_at
ZNF273

up


merck-NM_003064_at
SLPI

up


merck2-AL541942_x_at
NOTCH3

up


merck-NM_001040031_at
CD37

up


merck2-NM_014687_at
KIAA0226

up


merck-NM_018089_at
ANKZF1

up


merck-NM_033104_a_at
STON2

up


merck-NM_005258_at
GCHFR

up


merck-NM_004838_at
HOMER3

up


merck-NM_019085_at
FBXL19

up


merck2-DA731322_at
RBAK

up


merck-NM_025231_at
ZSCAN16

up


merck-NM_017434_at
DUOX1

up


merck-NM_002251_at
KCNS1

up


merck2-ENST00000358605_at
REST

up


merck-CR602154_s_at
RNASEH2C

up


merck-NM_001024593_at
ZMYND17

up


merck-NM_001017981_at
RNF215

up


merck-NM_003042_at
SLC6A1

up


merck-U37283_s_at
MFAP5

up









Expression of the TGF-WNT/cytoskeleton remodeling pathway was associated with survival from OVCA (n=218, P=0.006, FIG. 2A), colon cancer (n=177, P=0.004, FIG. 2B), and leukemia (n=182, P=0.047, FIG. 2C). The chemokines/cell adhesion pathway was associated with survival from colon cancer (n=177, P=0.005, FIG. 3), and the histamine signaling/immune response pathway was associated with survival from OVCA (n=142, P<0.001, FIG. 4A) and colon cancer (n=177, P=0.02, FIG. 4B).


Inhibition of the TGF-WNT/Cytoskeleton Remodeling Pathway Prevents Cell Migration


In light of the TFG-WNT/cytoskeleton remodeling pathway expression associations and its influence on metastatic activity in other cancer types, functional studies were performed to evaluate the effect of this pathway on OVCA cellular metastatic characteristics, specifically the influence of inhibition of this pathway using artesunate (Akhmetshina A, et al. Nat Commun 2012 3:735; Li P C, et al. Cancer Res 2008 68:4347-51) on OVCA cell migratory ability. Inhibition of TGF-WNT signaling using 25 mM or 50 mM artesunate decreased HeyA8 OVCA cell proliferation by approximately 42% and 64%, respectively, and impaired the ability of the cells to migrate into the denuded area (FIG. 5). In contrast, cells cultured in media containing DMSO vehicle completely filled in the gap within 2 days (FIG. 5).


Comments


The above findings indicate that advanced-stage OVCA has a unifocal origin in the pelvis. Disclosed are pathways associated with metastasis of OVCA as well as metastasis/recurrence and overall survival from multiple human cancers. These functional studies suggest that such pathways represent appealing therapeutic targets for patients with metastatic disease.


The p53 gene is known to be mutated in 30-80% of OVCAs (Okamoto A, et al. Cancer Res 1991 51:5171-6; Salani R, et al. Int J Gynecol Cancer 2008 18:487-91). Because there is a strong selection for these mutations to be distributed over the conserved regions of the gene, the sequence of p53, exons 5-8 was compared. Of 30 primary pelvic lesions tested, 11 (37%) containing DNA mutations. In every case, the matched extrapelvic implant contained an identical mutation. Subsequently, analysis of allele loss on chromosome 17 in 16 OVCA samples revealed identical patterns of allelic deletions in all samples resected from the same patient, irrespective of the collection site (Tsao S W, et al. Gynecol Oncol 1993; 48:5-10). In 4 of 16 informative samples, the analysis of the hypoxanthine phosphoribosyl transferase gene showed that the same parental allele was methylated in samples collected from the primary and metastatic sites (Tsao S W, et al. Gynecol Oncol 1993 48:5-10).


The data generated here support a unifocal origin of advanced-stage OVCA. Moreover, 3 pathways (TGF-WNT/cytoskeleton remodeling, chemokines/cell adhesion, and histamine signaling/immune response) were identified that are not only associated with advanced, metastatic, or recurrent disease but also with overall survival from a range of cancers.


Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of skill in the art to which the disclosed invention belongs. Publications cited herein and the materials for which they are cited are specifically incorporated by reference.


Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.

Claims
  • 1. An in silico method to identify therapeutic agents to treat cancer, comprising: (a) evaluating gene expression datasets to identify genes differentially expressed in cancer and/or metastatic cells,(b) identifying molecular pathways represented by the differentially expressed genes,(c) evaluating the molecular pathways for associations with metastasis and/or cancer survival as an indication of biological relevance, and(d) identifying agents or drugs that have activity against the pathways associated with metastasis and/or cancer survival.
  • 2. The method of claim 1, wherein step (a) comprises identifying genes whose expression is increased or decreased in the cancer cells by at least 100%.
  • 3. The method of claim 1, wherein the genes are identified with a False Discovery Rate (FDR) less than 0.05.
  • 4. The method of claim 1, wherein step (b) comprises the use of principal component analysis (PCA) to summate the expression of each molecular pathway in cancer survival datasets into a single numeric value.
  • 5. The method of claim 1, wherein the cancer is an epithelial cancer.
  • 6. The method of claim 5, wherein the cancer is ovarian cancer.
  • 7. The method of claim 1, wherein the molecular pathways are selected from the group consisting of TGF-WNT/cytoskeleton remodeling pathway, WNT2 pathway, integrin pathway, chemokines/cell adhesion pathway, and histamine signaling/immune response pathway.
  • 8. The method of claim 1, wherein step (d) comprises in silico screening of a database of candidate agents catalogued by molecular pathway activity.
  • 9. The method of claim 1, wherein step (d) comprises repurposing a drug not previously used to treat cancer.
  • 10. A in silico method for selecting cancer treatment regimen for a subject, comprising: (a) assaying an RNA sample from a tumor biopsy of the subject to identify genes differentially expressed compared to a control;(b) identifying molecular pathways represented by the differentially expressed genes,(c) generating a score that summarizes the overall gene expression of one or molecular pathways comprising differentially expressed genes; and(d) selecting a cancer treatment regimen for the subject based on the molecular pathways associated with the subject's cancer.
  • 11. The method of claim 10, wherein step (a) comprises identifying genes whose expression is increased or decreased in the cancer by at least 100% compared to the control.
  • 12. The method of claim 10, wherein the genes are identified with a False Discovery Rate (FDR) less than 0.05.
  • 13. The method of claim 10, wherein step (c) comprises the use of principal component analysis (PCA) to summate the expression of the one or more molecular pathways into a single numeric value.
  • 14. The method of claim 10, wherein the cancer is ovarian cancer.
  • 15. The method of claim 10, wherein the one or more molecular pathways are selected from the group consisting of TGF-WNT/cytoskeleton remodeling pathway, WNT2 pathway, integrin pathway, chemokines/cell adhesion pathway, and histamine signaling/immune response pathway.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims benefit of U.S. Provisional Application No. 61/721,754, filed Nov. 2, 2012, which is hereby incorporated herein by reference in its entirety.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with Government Support under Grant No. CA76292 awarded by the National Institutes of Health. The Government has certain rights in the invention.

PCT Information
Filing Document Filing Date Country Kind
PCT/US13/68338 11/4/2013 WO 00
Provisional Applications (1)
Number Date Country
61721754 Nov 2012 US