The disclosed embodiments generally pertain to a contouring tool. More specifically disclosed embodiments pertain to a contouring tool for a leading or trailing edge of an airfoil.
According to at least one embodiment, an in-situ airfoil contouring tool is provided. The tool provides a contouring, recontouring or reconditioning device for leading or trailing edges of airfoils used in a variety of industrial applications. The tool comprises a housing having an airfoil pathway. A grinding wheel disposed along the pathway has a desired profile shape of an airfoil edge. A guide bearing follows the edge of the airfoil and limits motion of the grinding wheel in a first dimension. An edge guide allows motion of the airfoil relative to the grinding wheel through a second dimension.
According to at least one exemplary embodiment, the contouring tool is a handheld device.
According to at least one exemplary embodiment, the contouring tool comprises a motor to drive the grinding wheel.
According to at least one exemplary embodiment at least one edge guide is moveable.
All of the above outlined features are to be understood as exemplary only and many more features and objectives of the invention may be gleaned from the disclosure herein. Therefore, no limiting interpretation of this summary is to be understood without further reading of the entire specification, claims, and drawings included herewith.
The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the contouring tool will be better understood by reference to the following description of embodiments taken in conjunction with the accompanying drawings, wherein:
Referring initially to
Referring initially to
The housing 14 includes a chuck access 16 wherein a chuck 18 is positioned. The chuck 18 provides a drive connection between the motor (not shown) and the drive shaft 42 of the grinding wheel, described further herein. The housing 14 includes an airfoil pathway 20 wherein various guides and the grinding structure are positioned. An airfoil 92 (
A clearance C is represented as a distance between guide bearings 50, 52. The guide bearings 50, 52 inhibit rocking or side-to-side motion of the edge 94 within the pathway 20 and additionally inhibit use of the tool with airfoil which are of too large a size for the tool 10. The guide bearings may be fixed, spring loaded or otherwise biased, adjustable or any combination thereof to accommodate multiple sizes and shapes of airfoils.
Referring now to
The grinding structure 40 may be formed of a tool steel or other high strength metal with a cubic boron nitride abrasive material. However, other materials may be utilized and the exemplary materials should not be considered limiting. The airfoils may be formed of titanium and alternatively may be formed of specialty alloys, such as an austenitic nickel-chromium-based alloy which is sold under the trade name INCONEL. Other non-metallic airfoils may be utilized with the tool and any reference to an airfoil should not be considered limited to metallc structures.
Moving to the right-hand side of the figure, the main drive shaft 42 is shown with broken line extending to the chuck 18. Adjacent the main shaft 42 is a first mounting plate 44 having apertures for multiple fasteners and shaft aperture allowing passage of the drive shaft 42. The mounting plate 44 includes aperture 46 for positioning of block 48 therethrough. The block 48 is a mount for the guide bearing 50. Adjacent the bearing block 48 is a second mounting plate 60. The second mounting plate 60 includes a block aperture corresponding in position to the aperture 46 and allowing a portion of the block 48 to pass therethrough so that the guide bearing 50 is exposed to pathway 20. Opposite a center spacer 62 are opposed third and fourth mounting plates 70, 72 and an opposed cover plate 74. These structures attach to the housing 14 and define the pathway 20.
The guide bearings 50, 52 are oriented so that pivot shafts 56, 58 are substantially transverse to the drive shaft 42 of the grinding wheel 40. The guide bearing 50, 52 position the airfoil laterally within the airfoil pathway 20 (
Referring above the center spacer 62 are airfoil edge guides 80, 82, for example leading edge guides. The airfoil edge guides 80, 82 allow motion in a direction which is generally transverse to the drive shaft 42 and travel along the edge of the airfoil 92. The guides 80, 82 have pivot axes which are parallel to the main drive shaft 42. Thus, the axes of the airfoil edge guide 80, 82 are parallel to the axis of the grinding wheel 40. The guides 80, 82 define two points along the airfoil edge of the airfoil 92 between which the grinding wheel 40 is contouring or recontouring at any moment during operation. Access to guide bearings 50, 52 limit motion in a first dimension and airfoil edge guides 80, 82 allow for motion in a second dimension generally perpendicular there the first dimension. One of the edge guides 80, 82 is designed to float or move to allow for some rocking motion of the grinding wheel 40 in the direction of the airfoil edge while moving along the edge 94 of the airfoil 92. However, such rocking motion is not considered to be limiting as both edge guides 80, 82 may be fixed and therefore inhibiting such rocking motion.
Referring now to
The exemplary airfoil 92 is shown with a camber or twist causing one side of the airfoil to appear wider than the other. As seen in this view, the guide bearing 50, 52 limit motion or pivoting at the edge 94 of the airfoil 92 so that the edge shape is not inappropriately ground in an undesired location of the airfoil 92.
As also shown in
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Following use of the exemplary embodied tool 10, and with reference to
While multiple inventive embodiments have been described and illustrated herein, those of ordinary skill in the art will readily envision a variety of other means and/or structures for performing the function and/or obtaining the results and/or one or more of the advantages described herein, and each of such variations and/or modifications is deemed to be within the scope of the invent of embodiments described herein. More generally, those skilled in the art will readily appreciate that all parameters, dimensions, materials, and configurations described herein are meant to be exemplary and that the actual parameters, dimensions, materials, and/or configurations will depend upon the specific application or applications for which the inventive teachings is/are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific inventive embodiments described herein. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, inventive embodiments may be practiced otherwise than as specifically described and claimed. Inventive embodiments of the present disclosure are directed to each individual feature, system, article, material, kit, and/or method described herein. In addition, any combination of two or more such features, systems, articles, materials, kits, and/or methods, if such features, systems, articles, materials, kits, and/or methods are not mutually inconsistent, is included within the inventive scope of the present disclosure.
Examples are used to disclose the embodiments, including the best mode, and also to enable any person skilled in the art to practice the apparatus and/or method, including making and using any devices or systems and performing any incorporated methods. These examples are not intended to be exhaustive or to limit the disclosure to the precise steps and/or forms disclosed, and many modifications and variations are possible in light of the above teaching. Features described herein may be combined in any combination. Steps of a method described herein may be performed in any sequence that is physically possible.
All definitions, as defined and used herein, should be understood to control over dictionary definitions, definitions in documents incorporated by reference, and/or ordinary meanings of the defined terms. The indefinite articles “a” and “an,” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one.” The phrase “and/or,” as used herein in the specification and in the claims, should be understood to mean “either or both” of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases.
It should also be understood that, unless clearly indicated to the contrary, in any methods claimed herein that include more than one step or act, the order of the steps or acts of the method is not necessarily limited to the order in which the steps or acts of the method are recited.
In the claims, as well as in the specification above, all transitional phrases such as “comprising,” “including,” “carrying,” “having,” “containing,” “involving,” “holding,” “composed of,” and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases “consisting of” and “consisting essentially of” shall be closed or semi-closed transitional phrases, respectively, as set forth in the United States Patent Office Manual of Patent Examining Procedures, Section 2111.03.
Number | Name | Date | Kind |
---|---|---|---|
2616231 | Murray | Nov 1952 | A |
2680392 | Gaved | Jun 1954 | A |
2735247 | Hohzhauzen et al. | Feb 1956 | A |
2905062 | Praeg | Sep 1959 | A |
2972840 | Ludwig | Feb 1961 | A |
2993312 | Holland et al. | Jul 1961 | A |
4001978 | Hales | Jan 1977 | A |
4639991 | Sharon | Feb 1987 | A |
4788797 | Kane et al. | Dec 1988 | A |
5251407 | Afshar | Oct 1993 | A |
5371977 | Liner | Dec 1994 | A |
5954464 | Dansereau et al. | Sep 1999 | A |
6106204 | Dansereau | Aug 2000 | A |
6183355 | Robinson | Feb 2001 | B1 |
6186867 | Dwyer | Feb 2001 | B1 |
6241595 | Skinner | Jun 2001 | B1 |
6302625 | Carey | Oct 2001 | B1 |
6709319 | Yan | Mar 2004 | B2 |
7766726 | Sherlock et al. | Aug 2010 | B2 |
20080045126 | Rieth | Feb 2008 | A1 |
20130225055 | Ng et al. | Aug 2013 | A1 |
20130295824 | Hasegawa | Nov 2013 | A1 |
Number | Date | Country |
---|---|---|
102011102543 | Nov 2012 | DE |
0514604 | Nov 1992 | EP |
Entry |
---|
Search Report and Written Opinion from corresponding PCT Application No. PCT/US2013/025255, dated Apr. 2, 2013. |
Number | Date | Country | |
---|---|---|---|
20130225055 A1 | Aug 2013 | US |