The disclosed embodiments relate to an in-situ foam core panel system and method of manufacturing of same.
Panels, especially load-bearing panels are used in many applications. For example, vehicle manufacturers attempt to reduce the weight of the vehicles in order to enhance the fuel economy of the vehicle. Often, the reduction in weight compromises component part strength as wall thickness of blowmolded, thermoformed, rotocasted, and rotomolded components is reduced in order to a component reduce weight. For example, load floor systems have a relatively long span that is unsupported across the inside of the vehicle, in order to provide load-bearing characteristics. At the same time, plastic processors are consolidating components in load floor systems in order to reduce further the load floor weight and the assembly labor costs. In certain instances, plastic processors have incorporated glass fiber reinforcements into the plastic material used to make load floors. But, these reinforcements and fillings may also render the load floor system component brittle and not suitable for all the characteristics of load floor systems designs. Recently, plastic processors have incorporated cone tack-offs to provide stiffening for vehicle load floor systems in order to compensate for component part strength reduction. But, cone tack-offs produce witness marks that damage aesthetic properties of a show surface. It is desirable to consolidate components in load floor systems while at the same time eliminating cone tack-offs.
In at least one embodiment, a panel system includes a first panel having a periphery. The panel includes a first plastic layer having a periphery and a second plastic layer opposed and spaced apart from the first layer. The second layer also has a periphery. The first and second layers define a first cavity therebetween. A first in-situ foam core is disposed in the cavity and has a thermal bond to the first and second plastic layers. The panel is capable of supporting 0.1 to 0.5 lbf/in2.
As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to scale; some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
Except where expressly indicated, all numerical quantities in the description and claims, indicated amounts of material or conditions of reaction and/or use are to be understood as modified by the word “about” in describing the broadest scope of the present invention. Practice within the numerical limits stated should be desired and independently embodied. Ranges of numerical limits may be independently selected from data provided in the tables and description. The description of the group or class of materials as suitable for the purpose in connection with the present invention implies that the mixtures of any two or more of the members of the group or classes are suitable. The description of constituents in chemical terms refers to the constituents at the time of addition to any combination specified in the description and does not necessarily preclude chemical interaction among constituents of the mixture once mixed. The first definition of an acronym or other abbreviation applies to all subsequent uses herein of the same abbreviation and applies mutatis mutandis to normal grammatical variations of the initially defined abbreviation. Unless expressly stated to the contrary, measurement of a property is determined by the same techniques previously or later referenced for the same property. Also, unless expressly stated to the contrary, percentage, “parts of,” and ratio values are by weight, and the term “polymer” includes “oligomer,” “co-polymer,” “terpolymer,” “pre-polymer,” and the like.
It is also to be understood that the invention is not limited to specific embodiments and methods described below, as specific composite components and/or conditions to make, of course, vary. Furthermore, the terminology used herein is used only for the purpose of describing particular embodiments of the present invention and is not intended to be limiting in any way.
It must also be noted that, as used in the specification and the pending claims, the singular form “a,” “an,” and “the,” comprise plural reference unless the context clearly indicates otherwise. For example, the reference to a component in the singular is intended to comprise a plurality of components.
Throughout this application, where publications are referenced, the disclosure of these publications in their entirety are hereby incorporated by reference into this application to more fully describe the state-of-art to which the invention pertains.
First layer 22 and includes a plurality of optional embossments 30. In at least one embodiment, a portion of embossments 30 closest to second layer 24 is separated from second layer 24 by a distance ranging from 0.5 inches to 4 inches. In at least one embodiment, a portion of embossments 30 closest to second layer 24 is separated from second layer 24 by a distance ranging from 1 inch to 4 inch. Such distances permit the free flow of pre-expanded beads into the narrowest gaps between first layer 22 second layer 24 in order to uniformly fill core 26 when the pre-expanded beads are expanded to fully-expanded beads 40 in an expansion step. In at least one embodiment, embossments 30 includes an injection port 32 into which a rotary cutter, a bead dispensing device, and a steam pin can be sequentially inserted when creating in-situ foam core 26.
The steps of expanding the pre-expanded beads 20 are illustrated by U.S. patent application Nos. 13/358181, 13/005190, and 12/913132 all of which are incorporated herein by reference.
In at least one embodiment, first and/or second layer 22 and 24, respectively, thickness may range from 0.02 inches to 0.5 inches. In another embodiment, the thickness of first and/or second layer 22 and 24, respectively, may range from 0.125 inches to 0.25 inches.
In at least one embodiment, in-situ foam core 26 thickness may range from 0.15 inches to 6 inches. In another embodiment, in-situ foam core 26 thickness may range from 0.2 inches to 4 inches. In another embodiment, in-situ foam core 26 thickness may range from 0.5 inches to 1 inch.
First and/or second layer 22 and 24, respectively, in at least one embodiment, are formed of a composition of any moldable composition. Non-limiting examples of the composition include, but is not limited to, a liquid silicone rubber, a synthetic rubber, a natural rubber, a liquid crystal polymer, a synthetic polymer resin, and a natural polymer resin. In another embodiment, first and/or second layer 22 and 24, respectively, are formed of a composition of a thermoplastic polymer, a thermoset polymer, or blends thereof having a viscosity ranging from 0.1 grams/10 min to 40 grams/10 min. The viscosity is measured according to ASTM D-1238 at 190° C. with a 2.16 kg weight. In yet another embodiment, first and/or second layer 22 and 24, respectively, are formed of a composition of a polyolefin including polypropylene and polyethylene having a viscosity ranging from 1 grams/10 min to 30 grams/10 min.
In-situ foam core 26, in at least one embodiment, is formed of a composition of any fluid-expandable material. Examples of fluid-expandable material include, but are not limited to, a polyolefin polymer composition, a biopolymer expandable bead, an alkenyl aromatic polymer or copolymer, a vinyl aromatic polymer resin composition, and a polystyrene polymer composition. In at least one embodiment, the polyolefin polymer composition includes polyolefin homopolymers, such as low-density, medium-density, and high-density polyethylenes, isotactic polypropylene, and polybutylene-1, and copolymers of ethylene or polypropylene with other: polymerized bull monomers such as ethylene-propylene copolymer, and ethylene-vinyl acetate copolymer, and ethylene-acrylic acid copolymer, and ethylene-ethyl acrylate copolymer, and ethylene-vinyl chloride copolymer. These polyolefin resins may be used alone or in combination. Preferably, expanded polyethylene (EPE) particles, cross-linked expanded polyethylene (xEPE) particles, polyphenyloxide (PPO) particles, biomaterial particles, such as polylactic acid (PLA), and polystyrene particles are used. In at least one embodiment, the polyolefin polymer is a homopolymer providing increased strength relative to a copolymer. It is also understood that some of the particles may be unexpanded, also known as pre-puff, partially and/or wholly pre-expanded without exceeding the scope or spirit of the contemplated embodiments.
Pre-expanded beads, in at least one embodiment, are the resultant bead after raw bead has undergone a first expansion step of a two-step expansion process for beads. During the first expansion step, raw bead is expanded to 3% to 95% of the fully expanded bead size. The fully expanded bead is the bead that forms in-situ foam core 26. In another embodiment, pre-expanded bead is result of the first expansion step where raw bead is expanded from 25% to 19% of the fully-expanded bead 40 size.
A fluid for the second expansion step of the two-step expansion process for beads causes the pre-expanded beads to expand completely to form the fully expanded beads. Examples of the fluid include, but is not limited to, steam and superheated steam.
Polyolefin beads and methods of manufacture of pre-expanded polyolefin beads suitable for making the illustrated embodiments are described in Japanese patents JP60090744, JP59210954, JP59155443, JP58213028, and U.S. Pat. No. 4,840,973 all of which are incorporated herein by reference. Non-limiting examples of expanded polyolefins are ARPLANK® and ARPRO® available from JSP, Inc. (Madison Heights, Mich.). The expanded polypropylene, such as the JSP ARPROTM EPP, has no external wall such as first and/or second layers 22 and 24, respectively.
In at least one embodiment, in-situ foam core 26 density, after expansion by steam such a such as in
Preferably, in at least one embodiment, steam-injected expanded polypropylene (EPP) has a density ranging from 1 lb/ft3 to 20 lbs/ft3. In yet another embodiment, steam-injected EPP may have a density ranging from 1.5 lbs/ft3 to 10 lbs/ft3. In yet another embodiment, steam-injected EPP may have a density ranging from 2 lbs/ft3 to 6 lbs/ft3. In yet another embodiment, steam-injected EPP may have a density ranging from 3 lbs/ft3 to 5 lbs/ft3.
In at least one embodiment, first and/or second layer 22 and 24, respectively, with a range of 0.025 inch thickness to 0.1 inch thickness is comprised of a metallocene polypropylene. Such a combination is found to improve adhesion between first and/or second layer 22 and 24, respectively, and in-situ foam core 26 formed of EPP.
In at least one embodiment, aesthetic layer 28 includes a textile layer such as a carpet layer. In another embodiment, aesthetic layer 28 includes a laminate layer. Non-limiting examples of the laminate layer include a hard wood floor layer, a composite laminate over a core, a resin layer, and a polyurethane coating, such as a truck bed liner.
In at least one embodiment, port 32 is not associated with any embossments of first layer 24, such as the embossment forming living hinge 18.
In
In
In
While
In at least one embodiment, load floor 12 is capable of supporting 0.1 to 0.5 lbf/in2 when in-situ foam core 80 ranges from 1 inch to 4 inches thick and has a density ranging from 1.5 lbs/ft3 to 6 lbs/ft3 and wall 82 ranges from 0.025 inch thickness to 0.1 inch thickness. In another embodiment, load floor 12 is capable of supporting 0.3 to 0.45 lbf/in2.
In at least a first aspect, load floor 12 includes load floor door 14 having living hinge 18, walls 82 and in-situ foam core 82 thermally bonded to walls 82. Wall 82 thickness ranges from 0.025 inches to 0.25 inches. In-situ foam core 80 density ranges from 1 lb/ft3 to 5 lbs/ft3. Associated with this first aspect, is capable of supporting 0.1 to 0.5 lbf/in2 when in-situ foam core 80 ranges from 1 inch to 4 inches thick and has a density ranging from lbs/ft3 to 6 lbs/ft3 and wall 82 ranges from 0.025 inch thickness to 0.1 inch thickness.
Turning now to
Vertical wall 100 includes a first skin 106 and second skin (not visible) 108 which forms a cavity 110 therebetween into which an in-situ foam core 112 has been injected and thermally bonded to skins 106 and 108.
Turning now to
Turning now to
Turning now to
Turning now to
Turning now to
Turning now to
Turning now to
Turning now to
Turning now to
Turning now to
Turning now to
While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention. Additionally, the features of various implementing embodiments may be combined to form further embodiments of the invention.
This application claims the benefit of U.S. Provisional Application No. 61/616,985 filed Mar. 28, 2012, the disclosure of which is incorporated in its entirety by reference herein.
Number | Date | Country | |
---|---|---|---|
61616985 | Mar 2012 | US |