The present invention relates to methods and devices for in situ perforation of landfill gas wells.
The decomposition of waste in a landfill produces methane and other gaseous emissions. Landfill gas recovery wells are used to remove the gases from landfills. Removal of methane and other gases is both an environmental and a safety measure for preventing an accumulation of flammable gases. The gas wells typically consist of pipes made from PVC, high-density polyethylene (HDPE) and similar materials. The gas well's pipes are slotted or perforated to allow for recovery of the gases. However, over time the slots and perforations become clogged as a result of the formation of precipitates and biological films in the well. Consequently, the amount of gas recovered or produced from a well may decrease over time.
Another problem with the gas well piping is that it is often installed as the landfill lifts are created. Consequently, the top section of the pipe is not perforated because it must be extended over time as additional lifts are added to the landfill.
The current solution to these problems is to install a new gas well next to the existing, obsolete well. However, this is time consuming and expensive. Thus, a simple and inexpensive solution that allows retrofitting of an existing well to maintain the amount of gas produced over time is needed.
The present invention relates to perforating devices useful for perforating an in situ landfill gas well to increase gas recovery. The perforating device consists of at least one perforator with at least one cutting edge. The perforating device also has a cable for lowering and raising the perforating device in the gas well. The perforating device further features cutting edges in the form of a drilling system and/or rotator to allow perforation of the gas well. Finally, the diameter of the perforating device is less than the inner diameter of the gas well.
The present invention also relates to methods for in-situ perforation of a landfill gas well to increase gas recovery. A perforating device is lowered into the gas well to a predetermined depth from the landfill surface until the perforating device is adjacent to a portion of the gas well to be perforated. Next, the perforating device is activated at the predetermined depth to perforate a portion of the gas well. After perforating the gas well at one or more predetermined depths, the perforating device is removed from the gas well.
The invention provides a perforating device and method for perforating a landfill gas well in situ.
In another embodiment of the invention, perforating device 10 is a drilling system. The drilling system is hydraulically or pneumatically powered, and made from hardened steel or carbide. Preferably, the drilling system is hydraulic because a hydraulic drilling system can reduce the risks associated with the explosive nature of landfill gas. Furthermore, the drilling system may have adjustable settings. For example, the perforating device 10 may be configured to have four or six perforating drills, with each having a cutting edge 16 to perforate holes into the gas well's circumference. Adjustable settings allow a user of perforating device 10 to select a desired number of perforations to be perforated or drilled in gas well 12. The adjustable setting is chosen before perforating device 10 is lowered into gas well 12. The size of the drill bit used to perforate the well may be adjusted to adjust the size of the perforation in the gas well. Typically, a perforation will be approximately one half inch. However, the perforation size may vary in order to keep the perforation size smaller than the gas well's granular backfill material, thus preventing the backfill material from seeping through.
Another aspect of perforating device 10 is that it may be stabilizable. For example, perforating device 10 may have one or more retractable arms that extend outward to inner wall 28 of gas well 12. This enhances the stability of perforating device 10 while it perforates gas well 12 by maintaining the position of perforating device 10 in gas well 12. Moreover, stabilizing the perforating device 10 provides for easier removal of perforating device 10 from gas well 12.
The present invention also provides a method of in-situ perforation of a landfill gas well. The method begins by lowering the perforating device 10 into gas well 12. Gas well 12 generally should have a straight vertical orientation. However, often gas well 12 will not be vertical due to landfill forces that cause some misalignment. This misalignment typically results from extending gas wells to accommodate additional landfill lifts. This invention addresses this problem providing perforating device 10 with a short body, and a smaller diameter than the inner diameter 32 of the gas well. As a result, it is possible to lower the perforating device 10 to gas well depths beyond the misaligned areas. Perforating device 10 is lowered into gas well 12 to a predetermined depth 34 from landfill surface 30. At predetermined depth 34, perforating device 10 is adjacent to portion 26 of gas well 12. Perforating device lowering is done either manually or automatically. Manual lowering is accomplished by manually lowering perforating device 10 into gas well 12 with cable 20. Automatic lowering may be done with a power source, hydraulic or pneumatic, which may be used to power the lowering of perforating device 10 into gas well 12.
Once perforating device 10 is located at a predetermined depth 34 from landfill surface 30, perforating device 10 is activated. Perforating device 10 perforates portion 26 at predetermined depth 34, which is adjacent to perforating device 10. Perforation is accomplished by drilling or cutting system. Perforating device 10 may rotate vertically within gas well 12, thus perforating gas well 12 in an up and down manner.
The step of positioning perforating device 10 at predetermined depth 34 from landfill surface 30 and then perforating gas well 12 may be done once or it may be repeated a plurality of times at various predetermined depths from landfill surface 30. Perforations will be made each time the perforating device 10 is activated at the predetermined depth 34. Typically, the perforations are done in six-inch increments throughout the gas well 12. The ability to recover landfill gas is improved by maximizing the number of perforations in the gas well 12. Perforating the gas well too close to the landfill surface 30 can contribute to air infiltration. Thus, perforations should be made approximately twenty feet from the landfill surface 30. The steps of the present invention will be repeated until all desired portions of gas well 12 are perforated. After the gas well 12 is sufficiently perforated the perforating device is pulled from the gas well 12, and back to the landfill surface 30. The step of pulling perforating device 10 out of gas well 12 may be accomplished manually or automatically. In another embodiment, perforating device 10 is attached to a winch that powers pulling perforating device 10 out of gas well 12 and back to landfill surface 30.
Another embodiment of the method of this invention involves applying steps of the invention's method to a gas well that as become filled with water at the predetermined depth. In other words, the gas well contains water prior to lowering the perforating device into the gas well. The water in the gas well can prevent the extraction of gases from the gas well. The invention's method of perforating the gas well with a perforating device may be accomplished in a water filled portion of gas well 12 to create slots or perforations, for draining the water from the gas well. As a result, it becomes possible to recover gas from previously water filled gas wells.
The invention is now described in such full, clear, concise and exact terms as to enable any person skilled in the art to which it pertains, to make the same. It is to be understood that the foregoing describes preferred embodiments of the present invention and that modifications may be made therein without departing from the spirit or scope of the invention as set forth in the claims.
Number | Name | Date | Kind |
---|---|---|---|
4134453 | Love et al. | Jan 1979 | A |
5295763 | Stenborg et al. | Mar 1994 | A |
5458006 | Roqueta | Oct 1995 | A |
5616841 | Brookshire | Apr 1997 | A |
5701958 | Braziel | Dec 1997 | A |
6169962 | Brookshire et al. | Jan 2001 | B1 |
6505681 | Catanla et al. | Jan 2003 | B2 |
6742962 | Hater et al. | Jun 2004 | B2 |
Number | Date | Country | |
---|---|---|---|
20070062701 A1 | Mar 2007 | US |