The present disclosure relates to direct current (DC) plasma processing and, more particularly, relates to a modified direct current plasma apparatus and methods for improved coating results using direct current plasma processing.
This section provides background information related to the present disclosure which is not necessarily prior art. This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
In plasma spray processing, the material to be deposited (also known as feedstock)—typically as a powder, a liquid, a liquid suspension, or the like—is introduced into a plasma jet emanating from a plasma torch or gun. In the jet, where the temperature is on the order of 10,000 K, the material is melted and propelled towards a substrate. There, the molten/semi-molten droplets flatten, rapidly solidify and form a deposit and, if sufficient in number, a final layer. Commonly, the deposits remain adherent to the substrate as coatings, although free-standing parts can also be produced by removing the substrate. Direct current (DC) plasma processing and coating is often used in many industrial technology applications.
With particular reference to
Generally, the liquid droplets are typically of two types—namely, a first type where the liquid droplets contain very fine powders (or particles), which are presynthesized by another process into solid form being of submicron or nanometer size, suspended in a liquid carrier; and a second type where liquid droplets contain a chemical dissolved in a solvent, wherein the chemical eventually forms the final desired coating material.
In the first type, during deposition, the liquid droplets are entrained in the plasma jet 118, causing the liquid carrier to evaporate and the fine particles to melt. The entrained melted particles then impact on a target, thereby forming the coating. This approach is also known as “suspension approach”.
In the second type, as droplets travel in the plasma jet 118 a chemical reaction takes place along with the evaporation of the liquid solvent to form the desired solid particles which again melt and upon impact on the target form the coating. This approach is known as “solution approach”.
Generally speaking, the solid powder injection approach is used to form microcrystalline coatings, and both of the liquid approaches are used to form nanostructured coatings.
However, direct current plasma processing suffers from a number of disadvantages. For example, because of the radial injection method used in DC plasma processing, the precursor materials are typically exposed to different temperature history or profiles as they travel with the plasma jet. The core of the plasma jet is hotter than the outer boundaries or periphery of the plasma jet, such that the particles that get dragged into the center of the jet experience the maximum temperature. Similarly, the particles that travel along the periphery experience the lowest temperature. As seen in
Additionally, due to the radial injection orientation (see
Further, the interaction time of the particle (related to the amount of heat that can be absorbed by the particle) with the jet 118 is shorter due to external injection and, thus, very high melting point materials that must achieve a higher temperature before becoming molten can not be melted by external injection due to the reduced residence time in the jet 118. Similarly, in the case of liquid precursors, lack of appropriate heating leads to unconverted/unmelted material resulting in undesirable coating structures as illustrated in
Furthermore, the coatings typically achieved with conventional direct current plasma processing suffer from additional disadvantages in that as individual molten or semi-molten particles impact a target, they often retain their boundaries in the solidified structure, as illustrated in
Therefore, a need exists in the art for reliable ways to inject precursor material (either solid powder or liquid droplet or gaseous) axially within a jet 118 (i.e, in the same direction of the jet) to achieve improved coating results.
Accordingly, the present teachings provide a system for axial injection of a precursor in a modified direct current plasma apparatus. According to the principles of the present teachings, precursor can be injected through the cathode and/or through an axial injector sitting in front of the anode rather than radially injected as described in the prior art. The principles of these teachings have permitted formulation and the associated achievement of certain characteristics that have application in a wide variety of industries and products, such as battery manufacturing, solar cells, fuel cells, and many other areas.
Still further, according to the principles of the present teachings, in some embodiments, the modified direct current plasma apparatus can comprise a laser beam to provide an in-situ hybrid apparatus capable of producing a plurality of coating types. These in-situ modified coatings have particular utility in a wide variety of applications, such as optical, electrical, solar, biomedical, and fuel cells. Additionally, according to the principles of the present teachings, the in-situ hybrid apparatus can fabricate free standing objects comprising different materials such as optical lenses made using complex optical compounds and their combinations.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
a) is a schematic view illustrating a conventional direct current plasma system;
b) is a photograph of a conventional direct current plasma system during operation;
a)-(c) are schematic views of a laser and plasma hybrid system according to the principles of the present teachings;
a)-(l) are schematic views of modified direct current plasma apparatus and subcomponents according to the principles of the present teachings introducing precursor downstream of the anode;
a) is a schematic view of a direct current plasma apparatus;
b) is a photograph of the arc inside the direct current plasma apparatus with the cathode according to the principles of the current teachings;
a)-(b) are SEM images of a coating achievable using the direct current plasma apparatus of the present teachings;
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
Example embodiments will now be described more fully with reference to the accompanying drawings.
Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a”, “an” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
When an element or layer is referred to as being “on”, “engaged to”, “connected to” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to”, “directly connected to” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Spatially relative terms, such as “inner,” “outer,” “beneath”, “below”, “lower”, “above”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
According to the principles of the present teachings, improved methods of applying a coating to a target using a modified direct current plasma apparatus and method are provided having a wide variety of advantages. In some embodiments, precursor can be injected through the cathode (see
Still further, according to the principles of the present teachings, in some embodiments as illustrated in
With reference to
According to some embodiments of the present teachings, it has been found that axial injection of precursor 26 into plasma gas 20 upstream of a tip 28 of cathode 14 can significantly improve the coating achieved following a modified DC plasma process.
Briefly, by way of background, several systems have previously attempted to achieve this axial injection using a plurality of precursor outlets disposed in the cathode. However, no commercial system exists that employs this approach primarily because directly feeding a precursor through the cathode typically limits the life of the cathode. That is, as seen in
To overcome this problem, in some embodiments as illustrated in
Cathode 14, having the radially extending precursor outlet lines 30 ensures atomization of the liquid precursor stream. The perforated design further ensured stable gun voltage as well as improved cathode life. Further, because of the efficiency of delivering precursor 26 upstream of arc root 38, smaller, nano-sized particles contained in precursor 26 are more likely to be properly entrained in the flow of plasma gas 20 and, thus, are less likely to become deposited on cathode 14 or anode 16. Accordingly, smaller particles can be reliably and effectively synthesized/treated and deposited on a target without negatively affecting the useful life of cathode 14.
However, in some embodiments as illustrated in
Furthermore, according to the principles of the present teachings, precursor one 120 and precursor two 26 can independently be fed enabling functionally gradient coating deposition. The particle size, phase and density control as well as the efficiency can thus be substantially improved by this axial feeding of the liquid precursor. Using this approach, various nanomaterials, such as HAP/TiO2 composite, Nb/TaC composite, YSZ and V2O5, have been successfully synthesized for high temperature, energy and biomedical applications.
In some embodiments of the present teachings, direct current plasma apparatus 10 can comprise injection of a liquid-based precursor 26 downstream of anode 16. Specifically, using this approach, liquid precursor can be efficiently atomized into droplets inside direct current plasma apparatus 10. This capability has enabled the synthesis of many nanostructured materials resulting in improvements in terms of process control and coating quality.
In this way, as illustrated in
In some embodiment of the present teachings, the exit nozzle 48 comprises of plasma inlet 66, plasma outlet 67 and gaseous precursor inputs 68. The gaseous precursor input 68 can introduce gases such as acetylene to coat or dope the molten particles with a desired material prior to deposition. This particular approach is beneficial to battery manufacturing where carbon doping is required for enhancing the conductivity. The plasma outlet 67 can assume different cross sectional profiles such as cylindrical, elliptical and rectangular.
This design ensured the entrainment of all the liquid droplets in the plasma jet 24 leading to higher deposition efficiency and uniform particulate characteristics. Further, this design also enables embedment of nanoparticles into a bulk matrix resulting in a composite coating. The matrix material and the liquid precursor are independently fed enabling functionally gradient coating deposition. Using this approach, various nanomaterials, such as TiO2, YSZ, V2O5, LiFePO4, LiCoO2, LiCoNiMnO6, Eu-doped SrAl2O4, Dy-doped SrAl2O4, CdSe, CdS, ZnO, InO2 and InSnO2 have been successfully synthesized for high temperature, energy and biomedical applications.
In-Situ Plasma/Laser Hybrid Process
Typical plasma coatings made using powder or liquid precursors have a particulate structure as illustrated in
However, according to the principles of the present teachings, direct current plasma apparatus 10, as illustrated in
This has considerable advantages, including, specifically, that less laser energy is needed as the treatment is done while the plasma coating is hot and thin. Most importantly, brittle materials like ceramics can be fused into thick monolithic coatings (see
According to the principles of the present teachings, the direct current plasma apparatus 10, specifically having laser source 50, can be effectively used for the creation of solid oxide fuel cells. In this way, the anode, electrolyte and the cathode layers are deposited by the direct current plasma apparatus 10 using either solid precursor powders, liquid precursors, gaseous precursors, or a combination thereof. In-situ densification of the layers is achieved with the laser source 50 by remelting the plasma deposited material, especially in the electrolyte layer. By carefully varying the laser beam wavelength and power, one can grade the density (i.e. define a gradient) across the electrolyte and its interfaces to enhance thermal shock resistance. In some embodiments, direct current plasma apparatus 10 can further comprise the teachings set forth herein relating to cathode and anode variations.
The principles of the present disclosure are particularly useful in a wide variety of application and industries, which, by way of non-limiting example, are set forth below.
As illustrated in
There are many material chemistries being explored such as LiFePO4, LiCoO2 and Li[NixCo1-2xMnx]O2. According to the principles of the present teachings, liquid precursors (solutions, and suspensions in solutions) are introduced using direct current plasma system 10 to synthesize the desired material chemistry and structure and directly form the cathodic film in a unique manner. The process is generally set forth in
Direct achievement of the cathodic film from solution precursors using plasma beam as described here has never been achieved in the prior art. The direct synthesis approach gives the ability to adjust the chemistry of the compound in situ. These teachings are not limited to the above mentioned compounds and can be employed to many other material systems.
In some embodiment of the present teachings one can also manufacture nanoengineered electrode compounds in powder form to be used in the current industrial processes. Further, in some embodiment of the current teachings one can also achieve thermal treatment of these powders in flight using the direct current plasma apparatus 10.
As is generally known, silicon, in nano-particulate form or ultrafine pillar form (as shown in
However, the ability to deposit silicon coating by direct current plasma apparatus 10 on a metal conductor and subsequent treatment using laser source 50 to make nanostructured surfaces permits large area anodes to be produced in a simple and cost effective manner. In some embodiment of these current teachings one can use the modified direct current plasma apparatus 10 to deposit silicon coatings and a catalyst layer to achieve nanostructured surfaces by subsequent thermal treatment. In fact following this approach, many other compounds, such as transition metal compounds, can be formed which have wide ranging applications, such as sensors, reactors, and the like.
In some embodiment of these teachings a gaseous precursor containing silicon can be used to deposit nanoparticles onto a desired target to manufacture nanoparticulate based electrodes. Further, these nanoparticulates can be coated with carbon using appropriate gaseous precursors, such as acetylene, using the nozzle input 68.
Achieving a viable product for harnessing solar energy requires a balancing between creating efficient cells and at the same time reducing the manufacturing cost. While conventional polycrystalline cells are efficient, thin film amorphous solar cells have proven to be cost effective on the basis of overall price per watt. Polycrystalline cells are made by ingot casting and slicing the wafers. Amorphous thin film cells are made with chemical Vapor Deposition process.
However, according to the principles of the present teachings, a unique process using direct current plasma apparatus 10 is provided that uses benign precursors (powders (Si), liquids (ZnCl2, InCl3 and SnCl4), and gaseous (Silane) precursors) to achieve polycrystalline efficiency at thin film manufacturing cost. The proposed cells consist of multi-junction Si films with efficient back reflector and enhanced surface absorber (see
The principles of the present teachings are capable of achieving wafer grade efficiency at thin film manufacturing cost. Moreover, the plasma deposition process (deposition rate μm/sec) of the present teachings is much faster than thin film deposition (PECVD, deposition rate nm/min) processes. However, the inherent inter-droplet boundaries (
In some embodiments, the method can comprise:
Step 1: An oxide (SnO2, InSnO2, or ZnO) coating is deposited on Al or conductive plate (bottom electrode). This layer serves as the reflective as well as conductive layer and is obtained directly from powder or liquid precursor (nanoscale) using direct current plasma apparatus 10. The microstructure is laser treated to optimize reflectivity as well as conductivity.
Step 2: Using suitable precursors, separate n-type, i-type and p-type doped semiconducting (Si) thin films are deposited on the oxide coating. The coating microstructure is optimized by the laser for maximum current output. Further, the surface of the p-type layer can be engineered by the laser source 50 to maximize the surface area for light trapping.
Step 3: An oxide (ZnO2, or InSnO2) coating is deposited on the p-layer. This layer serves as the transparent as well as the conductive layer and is obtained directly from powder or liquid precursor as in Step 1. The microstructure is laser treated to enhance transparency as well as conductivity.
Step 4: Finally the top electrode is deposited by plasma using powder precursor of a conductive metal. The entire process is carried out in an inert/low pressure environment in a sequential manner. Thus, large area cells with high efficiency can be manufactured cost effectively.
Solid Oxide Fuel Cell (SOFC) manufacturing presents significant challenges due to the requirement of differential densities in the successive layers as well as thermal shock resistance. The anode and cathode layer of the SOFC need to be porous while the electrolyte layer needs to reach full density (see
According to the principles of the present teachings, the direct current plasma apparatus 10 using laser source 50 can provide unique advantage to engineer the microstructure as needed As described herein, each layer of the SOFC can be deposited and custom tailored using laser source 50 to achieve a desired densification. Further, one can also use precursors in the form suspended particles of YSZ in a solution consisting of chemicals which when plasma pyrolized form nanoparticles of YSZ. Such a methodology can improve the deposition rate considerably in comparison to deposition using precursors comprised of suspended YSZ particles in a carrier liquid. Such coatings have a wide variety of applications in the aerospace and medical industries.
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the invention, and all such modifications are intended to be included within the scope of the invention.
This application claims the benefit of U.S. Provisional Application No. 61/174,576, filed on May 1, 2009 and U.S. Provisional Application No. 61/233,863, filed on Aug. 14, 2009. The entire disclosures of each of the above applications are incorporated herein by reference.
This invention was made with government support under Grant No. N00244-07-P-0553 awarded by the U.S. Navy. The government has certain rights in the invention
Number | Date | Country | |
---|---|---|---|
61174576 | May 2009 | US | |
61233863 | Aug 2009 | US |