The present application relates to geomechanics, oil-gas well engineering and oil and gas extraction technology, and more particularly to an in-situ stress evaluation method based on wellbore mechanical instability collapse.
In-situ stress is a fundamental parameter for the design and implementation of deep underground engineering, especially in oil and gas drilling. Evaluation of deep in-situ stress is extremely important for borehole trajectory design, wellbore stability evaluation, well optimization, fracture stimulation, prediction of sand production and safe mining operation. At present, deep in-situ stress is evaluated mainly by drilling core stress test, stress analysis of mine data such as fracturing and drilling and in-situ stress profile logging calculation.
The traditional method requires calibration and constraint of stress from stress tests or mine data analysis to ensure a reliability of a logging in-situ stress calculation results. For large-scale stimulation, a method of analyzing in-situ stress by hydraulic fracturing data is difficult to satisfy needs of the evaluation of in-situ stress because of many factors affecting the data. Wellbore collapse and drilling induced fracture are another important information that can be used to evaluate the deep in-situ stress, but are mainly limited to the evaluation of deep in-situ stress. Mark D. Zoback proposed a theoretical model to calculate the in-situ stress based on borehole collapse. Whereas, due to non-homogeneity of deep formation rocks, irregularity of actual wellbore collapse, and unavailability of wellbore collapse related parameters, the theoretical model is still difficult to be effectively and practically applied to the calculation and evaluation of the deep in-situ stress. Therefore, this application provides an in-situ stress evaluation method based on wellbore mechanical instability collapse to overcome the existing problems.
Accordingly, an object of the present disclosure is to provide an in-situ stress evaluation method based on wellbore mechanical instability collapse. The method selects data of the wellbore mechanical instability collapse and classify the data to establish a stress critical equilibrium equation based on a strain coefficient and solve an overdetermined equation based on a critical collapse formation information restriction, so as to obtain a maximum horizontal principal stress and a minimum horizontal principal stress, thus provides a evaluation method for reasonableness of in-situ stress and a quantitative calculation and evaluation of the deep principal in-situ stress. It provides a basic parameters of deep formation mechanics necessary for deep underground engineering, especially oil-gas well engineering, oil and gas extraction engineering, etc.
Technical solutions of the disclosure are described as follows.
An in-situ stress evaluation method based on wellbore mechanical instability collapse, comprising:
(S1) selecting a wellbore section having a gentle stratigraphical structure based on a geological research result; and calculating a wellbore enlargement ratio based on caliper logging data as according to the following equation:
wherein CERi is a wellbore enlargement ratio of a depth point of an ith formation of the wellbore section; CALi is a caliper of the ith formation; and BITi is a bit size for the ith formation;
selecting a formation data point in which the wellbore mechanical instability collapse is distributed within ±15° of a minimum horizontal principal stress; and
classifying a depth formation data based on an obtained data and the wellbore enlargement ratio;
(S2) obtaining a deep in-situ horizontal in-situ stress according to a structural strain coefficient (εH1,εh2), expressed as:
and
in a cylindrical coordinate system, without considering a seepage effect of formation around a well, expressing a wellbore stress in terms of the structural strain coefficient (εH1,εh2) when a well round angle of the wellbore is 90° or 270°, expressed as:
(S3) establishing a structural strain coefficient equation based on a wellbore stress critical equilibrium condition; selecting a strength criterion of rock for determining a bottom collapse; inputting equations (5), (6) and (7) to the strength criterion to build a superdeterministic equation set of the structural strain coefficient (εH1,εh2), expressed as:
F
i(εH1,εh2)=0 (8)
wherein the function Fi(εH1,εh2) is determined by the strength criterion;
(S4) obtaining, by using a least squares method, a maximum horizontal structural strain coefficient and a minimum horizontal structural strain coefficient of the wellbore section to input to the equations (3) and (4), so as to obtain a maximum horizontal principal stress and the minimum horizontal principal stress of the wellbore section; and
(S5) inputting the maximum horizontal structural strain coefficient, the minimum horizontal structural strain coefficient and a corresponding parameter of a classified formation to equation (8) to obtain the Fi; subjecting the Fi to two types of computational discriminant; if none of the computational discriminant is met, reselecting a wellbore section of the wellbore and then proceeding to steps (S2)-(S5) until the two types of computational discriminant are met.
In some embodiments, in the step (S1), during selecting, a formation having high clay content such as mudstone and shale is removed; and a structural plane developing formation such as fracture, stratification and joint and a formation having a relatively fragmentized structure are removed according to a result of log interpretation of shaliness to prevent a hydration of the formation having high clay content and a wellbore collapse formation dominated by a structural plane.
In some embodiments, in the step (S1), the depth formation data is classified to: a S-type formation data, wherein a wellbore is stable, 0<CERi≤3%, an enlargement of a wellbore section is not obvious and a caliper of the wellbore section is regular; an A-type formation data, wherein a wellbore is in critical equilibrium and 3%<CERi≤7%; and a B-type formation data, wherein a wellbore is in collapse, CERi>7% and an enlargement of a wellbore section is obvious.
In some embodiments, in the step (S2), the εH1,εh2 of equations (2), (3) and (4) are the maximum horizontal structural strain coefficient and the minimum horizontal structural strain coefficient, respectively; DEP is a depth; Den is a formation density; E is an elastic modulus of formation; μ is a Poisson ratio; σV is a vertical principal stress; σH1(εH1,εh2) is the maximum horizontal principal stress when the structural strain coefficient is εH1; and σh2(εH1,εh2) is the minimum horizontal principal stress when the structural strain coefficient is εh2.
In some embodiments, Dmud of equations (5), (6) and (7) is a drilling fluid density; Pw is a drilling fluid column pressure; and Pw=∫0DEP Dmud(deP)ddep.
In some embodiments, in the step (S3), the strength criterion of rock is selected from Mohr-Coulomb criterion, Drucker-Prager criterion and Hoek-Brown criterion according to a mechanical property of formation and deformation characteristic to estimate a horizontal in-situ stress.
In some embodiments, in the step (S5) the two types of computational discriminant comprise a first computational discriminant and a second computational discriminant;
in the first computational discriminant, for a wellbore section of which an enlargement is obvious, a B-type formation data not involved in calculation is input to equation (8) to discriminate whether Fi(εH1,εh2)>0; and
in the second computational discriminant, for a wellbore section of which a caliper is regular and a wall is stable, a S-type formation data not involved in calculation is input to equation (8) to discriminate whether Fi(εH1,εh2)<0.
In some embodiments, if the first computational discriminant and the second computational discriminant are both met, a result of the structural strain coefficient and a result of an in-situ stress estimation are reasonable.
This application has the following beneficial effects.
By means of selecting and classifying the data of the wellbore mechanical instability collapse, the stress critical equilibrium equation based on the strain coefficient is built and the overdetermined equation based on a critical collapse formation information restriction is solved, so as to obtain a maximum horizontal principal stress and a minimum horizontal principal stress. As a result, an in-situ stress evaluation method and a quantitative calculation and evaluation of the deep principal in-situ stress are obtained, which provide a basic parameters of deep formation mechanics necessary for deep underground engineering, especially oil-gas well engineering, oil and gas extraction engineering, etc.
The disclosure will be clearly and completely described below with reference to the accompanying drawings and embodiments, and it should be understood that these embodiments are illustrative and are not intended to limit the disclosure.
Referring to
(S1) A wellbore section of a wellbore having a relatively gentle stratigraphical structure based on a geological research result is selected. A wellbore enlargement ratio based on caliper logging data is calculated as according to the following equation:
where CERi is a wellbore enlargement ratio of a depth point of an ith formation of the wellbore section; CALi is a caliper of the ith formation; and BITi is a bit size for the ith formation.
A formation data point is selected, in which the wellbore mechanical instability collapse is distributed within ±15° of a minimum horizontal principal stress. A depth formation data is classified based on an obtained data and the wellbore enlargement ratio.
The depth formation data is classified into three types.
(1) A S-type formation data of which a wellbore is stable, where 0<CERi≤3%, an enlargement of the wellbore section is not obvious and the caliper of the wellbore section is regular.
(2) An A-type formation data of which the wellbore is in critical equilibrium, where 3%<CERi≤7%.
(3) A B-type formation data of which the wellbore is in collapse, where CERi>7% and the enlargement of the wellbore section is obvious.
A formation data with a depth span of no more than 15 m in the A-type formation data is selected to be subjected to steps (S2)-(S5).
The wellbore section having a relatively gentle stratigraphical structure which is selected is shown in
During selecting, a formation having high clay content such as mudstone and shale is removed; and a structural plane developing formation such as fracture, stratification and joint and a formation having a relatively fragmentized structure are removed according to a result of log interpretation of shaliness to prevent a hydration of the formation having high clay content and a wellbore collapse formation dominated by a structural plane.
(S2) A deep in-situ horizontal in-situ stress is obtained according to a structural strain coefficient (εH1,εh2), expressed as follows.
The εH1,εh2 of equations (2), (3) and (4) are a maximum horizontal structural strain coefficient and a minimum horizontal structural strain coefficient, respectively. DEP is depth. Den is formation density. E is elastic modulus of formation. μ is poisson ratio. σV is vertical principal stress. σH1(εH1,εh2) is a maximum horizontal principal stress when the structural strain coefficient is εH1·σh2(εH1,εh2) is a minimum horizontal principal stress when the structural strain coefficient is εh2.
In a cylindrical coordinate system, without considering a seepage effect of formation around a well, a wellbore stress is expressed in terms of the structural strain coefficient (εH1,εh2) when a well round angle of the wellbore is 90° or 270°, expressed as follows.
Dmud of equations (5), (6) and (7) is a drilling fluid density; Pw is a drilling fluid column pressure; and Pw=∫0DEP Dmud(dep)ddep.
(S3) A structural strain coefficient equation is established based on a wellbore stress critical equilibrium condition. A strength criterion of rock is selected for determining a bottom collapse. The strength criterion of rock is selected from Mohr-Coulomb criterion, Drucker-Prager criterion and Hoek-Brown criterion according to a mechanical property of formation and deformation characteristic to estimate a horizontal in-situ stress. equations (5), (6) and (7) are input to the strength criterion to build a superdeterministic equation set of the structural strain coefficient (εH1,εh2), expressed as:
F
i(εH1,εh2)=0 (8)
where the function Fi(εH1,εh2) is determined by the strength criterion.
If the Mohr-Coulomb criterion is selected, the superdeterministic equation set of the structural strain coefficient (εH1,εh2) is expressed as:
Depi is a depth of a depth point of an ith formation of the wellbore section. Ei is an elastic modulus of the depth point of the ith formation. μi is a poisson ratio of the depth point of the ith formation. ai is a Biot's coefficient of the depth point of the ith formation. Ci is a cohesion of the depth point of the ith formation. φi is an angle of internal friction of the depth point of the ith formation. σVi is a vertical principal stress of the depth point of the ith formation. Ppi is a pore pressure coefficient of the depth point of the ith formation. Dmud
(S4) By using a least squares method, a maximum horizontal structural strain coefficient and a minimum horizontal structural strain coefficient of the wellbore section are obtained to input to the equations (3) and (4), so as to obtain the maximum horizontal principal stress and the minimum horizontal principal stress of the wellbore section.
equation (9) is expressed in a matrix as equation (10):
When K≥2, the maximum horizontal structural strain coefficient εH1 and the minimum horizontal structural strain coefficient εh2 can both be obtained. When K>2, equation (10) is a binary hyperdeterministic equation set, which usually subjected to an operation expressed as equation (11) to obtain the maximum horizontal structural strain coefficient εH1 and the minimum horizontal structural strain coefficient εh2.
A maximum horizontal structural strain coefficient εH1* and a minimum horizontal structural strain coefficient εh2* both obtained above are input to equations (3) and (4) to obtain the maximum horizontal principal stress and the minimum horizontal principal stress.
By means of the above-mentioned steps, the maximum horizontal structural strain coefficient εH1* is 1.31413×10−3 and the minimum horizontal structural strain coefficient εh2* is 0.30406×10−3. The maximum horizontal structural strain coefficient and the minimum horizontal structural strain coefficient are input to equations (3) and (4) to obtain the maximum horizontal principal stress and the minimum horizontal principal stress, results are shown in
(S5) The maximum horizontal structural strain coefficient εH1*, the minimum horizontal structural strain coefficient εh2* and a corresponding parameter of an A-type formation are input to equation (8) or (9) to obtain the Fi to be subjected to computational discriminant, expressed as follows.
A first computational discriminant is performed as follows. For a wellbore section of which an enlargement is obvious, the B-type formation data not involved in calculation is input to equation (8) or (9) to discriminate whether Fi(εH1,εh2)>0.
A second computational discriminant is performed as follows. For a wellbore section of which a caliper is regular and a wall is stable, the S-type formation data not involved in calculation is input to equation (8) or (9) to discriminate whether Fi(εH1,εh2)<0.
If the first computational discriminant and the second computational discriminant are both met, a result of the structural strain coefficient and a result of an in-situ stress estimation are reasonable.
If most of results fail to meet the first computational discriminant or the second computational discriminant, the result of the in-situ stress estimation is not reasonable. A wellbore section of the wellbore is re-selected to proceed to steps (S2)-(S5) until the first computational discriminant and the second computational discriminant are met, i.e., the result of the in-situ stress estimation is reasonable.
Based on the computational discriminant of the Fi, results of the first computational discriminant and the second computational discriminant are shown in
The in-situ stress evaluation method based on wellbore mechanical instability collapse selects data of the wellbore mechanical instability collapse and classify the data to establish a stress critical equilibrium equation based on a strain coefficient and solve an overdetermined equation based on a critical collapse formation information restriction, so as to obtain a maximum horizontal principal stress and a minimum horizontal principal stress, thus provides a method for evaluating reasonableness of in-situ stress and a quantitative calculation and evaluation of the deep principal in-situ stress. It provides a basic parameters of deep formation mechanics necessary for deep underground engineering, especially oil-gas well engineering, oil and gas extraction engineering, etc.
Described above are only some embodiments of the present disclosure, which are not intended to limit the disclosure. It should be understood that any variations and improvements made by those of ordinary skilled in the art without departing from the spirit of the disclosure shall fall within the scope of the disclosure defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
202110285745.7 | Mar 2021 | CN | national |
This application is a continuation of International Patent Application No. PCT/CN2021/125957, filed on Oct. 25, 2021, which claims the benefit of priority from Chinese Patent Application No. 202110285745.7, filed on Mar. 17, 2021. The content of the aforementioned applications, including any intervening amendments thereto, is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2021/125957 | Oct 2021 | US |
Child | 17848567 | US |