The present disclosure relates to thin-film devices for generating a radiation spectrum and, in particular, to a method and apparatus for measuring a temperature corresponding to the radiation spectrum at the thin-film device.
In various optical systems, an optical signal is received from an object at an optical sensor and measurements of the optical signal are obtained at the optical sensor to determine a property of the object. In order to obtain accurate measurements, it is often necessary to calibrate the optical sensor using a known photon flux at one or more standard wavelengths. One method for providing a photon flux at a standard wavelength includes heating one or more blackbody radiators to selected temperatures and using an optical filter to select a calibration wavelength. However, the use of traditional blackbody sources to calibrate an optical sensor introduces size, weight, and power (SWaP) challenges. Thin film devices have been used to create blackbody radiation spectra while overcoming these challenges. These thin-film devices tend to have extended radiative surfaces, such as 10 centimeters (cm) by 10 cm. Effective calibration requires a temperature profile along the radiative surface that is uniform to within about 0.5 degrees kelvin. Therefore, it is desirable to measure temperature at the radiative surface. However, temperature sensors tend to alter local temperatures due to their thermal mass and conductivity, thereby affecting temperature uniformity across the radiative surface. The present disclosure provides a method and apparatus for measuring temperature of a thin-film blackbody source without substantially affecting the uniformity of the temperature at the radiative surface.
According to one embodiment of the present disclosure, a thin-film device for generating a blackbody spectrum is disclosed, the device including: a first layer configured to generate heat in response to an applied voltage; a second layer configured to generate the blackbody radiation spectrum in response to the heat from the first layer; and a thermocouple between the first layer and the second layer for measuring a temperature at the second layer.
According to another embodiment of the present disclosure, a method for generating a blackbody radiation spectrum is disclosed, the method including: providing a thin-film device having a first layer of material configured to generate heat in response to an applied voltage, a second layer of material configured to generate the blackbody radiation spectrum in response to the heat from the first layer, and a thermocouple between the first layer and the second layer for measuring a temperature at the second layer; supplying a current through the first layer to generate heat in the first layer; using the thermocouple layer to measure the temperature at the second layer; and controlling the current at the first layer to provide a selected temperature of the second layer for generating the blackbody radiation spectrum.
According to yet another embodiment, a device for measuring a temperature is disclosed, the device including: a thin film layer of carbon nanotube material including a main body for disposition at a first location having a first temperature and a carbon nanotube tail extending from the main body, wherein an end of the carbon nanotube tail distal from the main body is disposed at a second location having a second temperature to form a reference junction; and an electrode having a junction end coupled to the main body of the carbon nanotube material and a contact end away from the main body of the carbon nanotube material.
Additional features and advantages are realized through the techniques of the present disclosure. Other embodiments and aspects of the disclosure are described in detail herein and are considered a part of the claimed disclosure. For a better understanding of the disclosure with the advantages and the features, refer to the description and to the drawings.
The subject matter which is regarded as the disclosure is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The forgoing and other features, and advantages of the disclosure are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
A power supply 112 supplies a current to the thin-film device 104 to heat the radiative surface 110 to the selected temperature. A thermocouple 114 is coupled to the radiative surface 110 in order to measure a temperature at the radiative surface 110. In an exemplary embodiment, the thermocouple 114 measures the temperature at a location as close to the radiative surface 110 as possible.
The optical system 100 includes a controller 120 for controlling various operations of the radiation source 104. The controller 120 includes a processor 122 and a memory storage device 124. In various embodiments, the memory storage device 124 includes a non-transitory memory storage device such as a solid-state memory storage device. A set of programs 126 may be stored in the memory storage device 124 that, when accessed by the processor 122, implement a method for controlling the radiative source 104. In one aspect, the controller 120 receives a temperature measurement from the thermocouple 114 and alters an amount of current supplied by the power source 112 to the radiation source based on the temperature measurement.
The first carbon nanotube layer 202 includes carbon nanotubes that are oriented in the plane of the first carbon nanotube layer 202. A thermal spreading layer 206 is disposed on the top face 202a of the first carbon nanotube layer 202. The thermal spreading layer 206 spreads heat transversely through the x-y plane as the heat travels along the z-axis from the first carbon nanotube layer 202. A thermocouple layer 230 is disposed on a top face of the thermal spreading layer 206. A second layer 208 (also referred to herein as a “second carbon nanotube layer 208”) is adjoined to the thermocouple layer 230 so that the thermocouple layer 230 and the thermal spreading layer 206 are sandwiched between the first carbon nanotube layer 202 and the second carbon nanotube layer 208. The second carbon nanotube layer 208 includes a planar surface 214 that extends in the x-y plane and a plurality of carbon nanotubes 216 attached to a top of the planar surface 214 and oriented with their longitudinal axes aligned normal to the planar surface (i.e., oriented in the z-direction). In one embodiment, the planar surface 214 is a layer of alumina substrate (Al2O3). The second layer 208 forms the radiative surface 110 of
When voltage is applied to the first carbon nanotube layer 202, heat is generated which flows out of either a top face 202a of the first carbon nanotube layer 202 or a bottom face 202b of the first carbon nanotube layer 202. The heat flowing from the top face 202a is transmitted through the thermal spreading layer 206 and the thermocouple layer 230 to reach the second carbon nanotube layer 208. At the second carbon nanotube layer 208, the heat excites photons from the plurality of carbon nanotubes 216, which photons are emitted in the positive z-direction to generate a blackbody radiation spectrum.
The spatial distribution of heat generated by the first layer 202 tends to vary within the x-y plane. As the heat travels in the +z direction, the thermal spreading layer 206 reduces this variation of heat within the x-y plane so that by the time the heat reaches the second carbon nanotube layer 208, the heat is evenly distributed across the surface of the second carbon nanotube layer 208. The structure of the thermal spreading layer 206 is selected so as to reduce variation of heat in the x-y direction.
In one embodiment, the thermal spreading layer 206 includes a plurality of thermally conductive layers for spreading the heat transversely throughout the x-y plane, producing an even distribution of heat in the x-y plane. In one embodiment, the thermally conductive layers include graphene sheets. A graphene sheet is a highly thermally anisotropic material and is effective in spreading the heat transversely in the x-y plane. In one embodiment, the thermal spreading layer 206 includes at least a first graphene sheet 210a and a second graphene sheet 210b and corresponding adhesive layers 212a-212c. While two graphene sheets are shown in
The thin-film structure 200 further includes a reflector 220 disposed on the bottom face 202b of the first carbon nanotube layer 202. The reflector 220 is a metal layer that has low heat emittance so that very little heat escapes by radiation on the back side of the thin-film structure 200. In one embodiment, a graphene sheet 222 and adhesive layer 224 may be disposed between the first carbon nanotube layer 202 and the reflector 220.
The second carbon nanotube layer 204 includes a thin surface 310 (generally an alumina surface) and plurality of carbon nanotubes 312a-312m oriented so that the longitudinal axes of the plurality of carbon nanotubes 312a-312m are oriented substantially normal to the planar surface of the thin alumina surface 310. In general, photons excited at the second carbon nanotube layer 204 are emitted into the half-space above the second carbon nanotube layer 204, as indicated by emission arrow 315. In various embodiments, the temperature at the second carbon nanotube layer 204 has a spatial variation of less than 1.0 Kelvin across the surface of the second carbon nanotube layer 204. In another embodiment, the spatial variation is less than 0.5 Kelvin. In yet another embodiment, the spatial variation is less than 0.1 Kelvin. Thus, each of the plurality of carbon nanotubes 312a-312m at the second carbon nanotube layer 306 receives substantially a same amount of heat from the alumina surface 310.
The illustrative thermocouple 600 is a copper-CNT thermocouple. The copper-CNT thermocouple includes a carbon nanotube thin film 602 having a main body 604 and a CNT tail 606. The main body 604 has a length and width (x- and y-directions) that is the same length and width as the other layers of the thin-film device 104. The CNT tail 606 forms a strip of material that extends away from the main body 604. A copper electrode is attached to the CNT tail 606 at a location away from the main body 604, thereby forming a reference junction 608. A copper electrode 610 is attached to the main body 604 at a selected location. The thickness of the electrode 610 is about 1 mil and its cross-sectional area is small. Thus, the electrode 610 has little thermal mass so as not to disrupt the transverse temperature uniformity at the second layer. The copper electrode 610 includes a junction end 612 and a contact end 614 that is distal from the junction end 612. The junction end 612 is affixed to the main body 604. In one embodiment, the junction end 612 is affixed to the main body 604 via electroless deposition. The distal end of the CNT tail 606 (i.e., reference end 608) and the contact end 614 of the copper electrode 610 are substantially at ambient or room temperature. Meanwhile, the main body 604 of the CNT and the junction end 612 of the copper electrode 610 are at a temperature of the second layer 208 of the thin-film device 104. In various embodiments, the copper electrode 610 and the contact end 614 can be thermally and electrically insulated via an insulating material 620.
Temperature measurements can be obtained by placing a voltmeter 625 across the contact end 614 of the copper electrode 610 and the distal reference junction 608 of the CNT tail 606. Voltage measurements can be sent to the control system (120,
In one embodiment, a single copper electrode 610 is attached to the main body 604. However, any number of copper electrodes may be attached to the main body in various embodiments. As shown in
Therefore, in one aspect a thin-film device for generating a blackbody spectrum is disclosed, the device including: a first layer configured to generate heat in response to an applied voltage; a second layer configured to generate the blackbody radiation spectrum in response to the heat from the first layer; and a thermocouple between the first layer and the second layer for measuring a temperature at the second layer. In one embodiment, the thermocouple further includes a copper-carbon nanotube thermocouple layer. The copper-carbon nanotube thermocouple layer can include a carbon nanotube material having a main body proximate the second layer and a carbon nanotube tail and a copper electrode having a junction end affixed to the main body of the carbon nanotube material and a contact end distal from the main body of the carbon nanotube material. In one embodiment, the copper electrode includes a plurality of copper electrodes and each copper electrode includes a junction end affixed to the main body of the carbon nanotube material and a contact end distal from the main body of the carbon nanotube material, wherein the thermocouples measure temperatures at various locations of the second layer. In another embodiment, the thermocouple layer includes a strip of alumel deposited on the second layer and a strip of chromel deposited on the second layer and one end of the strip of alumel is in contact one end of the strip of chromel. In various embodiments, the thermocouple produces a local variation of the temperature at the second layer of less than about +−0.1 kelvin. A thermal spreading layer may be located between the first layer and the second layer so that the thermocouple is between the thermal spreading layer and the second layer. A voltmeter may be used to measure a voltage difference across the thermocouple to determine the temperature at the second layer. A controller may be used to control a current through the first layer in response to the determined temperature.
In another aspect, a method for generating a blackbody radiation spectrum is disclosed, the method including: providing a thin-film device having a first layer of material configured to generate heat in response to an applied voltage, a second layer of material configured to generate the blackbody radiation spectrum in response to the heat from the first layer, and a thermocouple between the first layer and the second layer for measuring a temperature at the second layer; supplying a current through the first layer to generate heat in the first layer; using the thermocouple layer to measure the temperature at the second layer; and controlling the current at the first layer to provide a selected temperature of the second layer for generating the blackbody radiation spectrum. In one embodiment, the thermocouple includes a copper-carbon nanotube thermocouple. The copper-carbon nanotube thermocouple includes carbon nanotube material forming a main body proximate the second layer and a carbon nanotube tail having an reference junction distal from the second layer and includes a copper electrode having a junction end affixed to the main body a contact end distal from the main body, and the temperature is related to a voltage difference between the reference junction of the carbon nanotube tail and the contact end of the copper electrode. In another embodiment, the thermocouple includes a strip of alumel deposited on the second layer and a strip of chromel deposited on the second layer, wherein an end of the strip of alumel is in contact with an end of the strip of chromel. The thermocouple is may be used to measure the temperature at the second layer while providing a local variation of the temperature at the second layer of less than about +−0.5 kelvin. In one embodiment, the second layer includes a planar surface and a plurality of carbon nanotubes, wherein a selected carbon nanotube has a longitudinal axis directed substantially normal to the planar surface and emits photons directed along the longitudinal axis in response to the heat from the first layer. A graphene stack may be used to spread the heat from the first layer transversely between the first layer and the thermocouple.
In yet another embodiment, a device for measuring a temperature is disclosed, the device including: a thin film layer of carbon nanotube material including a main body for disposition at a first location having a first temperature and a carbon nanotube tail extending from the main body, wherein an end of the carbon nanotube tail distal from the main body is disposed at a second location having a second temperature to form a reference junction; and an electrode having a junction end coupled to the main body of the carbon nanotube material and a contact end away from the main body of the carbon nanotube material. A temperature measurement is obtained at a coupling location of the junction end of the electrode and the main body of the carbon nanotube material. The electrode may include a plurality of electrodes, each having a junction end coupled to the main body of the carbon nanotube material and a contact end distal away from the main body. In one embodiment a width of the electrode is less than about 1 mil. The electrode may be affixed to the main body by either electrical deposition or electroless deposition.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one more other features, integers, steps, operations, element components, and/or groups thereof.
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present invention has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. The embodiment was chosen and described in order to best explain the principles of the invention and the practical application, and to enable others of ordinary skill in the art to understand the invention for exemplary embodiments with various modifications as are suited to the particular use contemplated.
While the exemplary embodiment to the invention had been described, it will be understood that those skilled in the art, both now and in the future, may make various improvements and enhancements which fall within the scope of the claims which follow. These claims should be construed to maintain the proper protection for the invention first described.
The present application is a divisional application of U.S. patent application Ser. No. 14/884,459 filed on Oct. 15, 2015, the contents of which are incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3006978 | McGrath et al. | Oct 1961 | A |
4378489 | Chabinsky et al. | Mar 1983 | A |
4440510 | Stein | Apr 1984 | A |
4647783 | Verona | Mar 1987 | A |
4750139 | Dils | Jun 1988 | A |
5265958 | Ludlow | Nov 1993 | A |
5560711 | Bu | Oct 1996 | A |
5690429 | Ng | Nov 1997 | A |
6004494 | Debe | Dec 1999 | A |
6072165 | Feldman | Jun 2000 | A |
7837382 | Yamada | Nov 2010 | B2 |
7866882 | Ko | Jan 2011 | B2 |
8033722 | Kulkarni et al. | Oct 2011 | B2 |
8568027 | Ivanov | Oct 2013 | B2 |
9086327 | Chow et al. | Jul 2015 | B2 |
9332593 | Keite-Telgenbuscher | May 2016 | B2 |
9722165 | Carr | Aug 2017 | B2 |
9917242 | Barnett | Mar 2018 | B2 |
10139287 | Chow | Nov 2018 | B2 |
20040136434 | Langley | Jul 2004 | A1 |
20040207845 | Opsal | Oct 2004 | A1 |
20050030628 | Wagner | Feb 2005 | A1 |
20060048809 | Onvural | Mar 2006 | A1 |
20060256833 | Jiang | Nov 2006 | A1 |
20070210265 | Haq et al. | Sep 2007 | A1 |
20080036356 | Ward | Feb 2008 | A1 |
20080074847 | Sueoka et al. | Mar 2008 | A1 |
20090152873 | Gangopadhyay | Jun 2009 | A1 |
20100059494 | Keite-Telgenbuescher | Mar 2010 | A1 |
20100108916 | Barker | May 2010 | A1 |
20100260229 | Grubb | Oct 2010 | A1 |
20100285210 | Choi | Nov 2010 | A1 |
20110051775 | Ivanov et al. | Mar 2011 | A1 |
20110103424 | Imholt | May 2011 | A1 |
20110125444 | Topham et al. | May 2011 | A1 |
20110163636 | Sirbuly | Jul 2011 | A1 |
20110186956 | Hiroshige | Aug 2011 | A1 |
20110298333 | Pilon | Dec 2011 | A1 |
20120073308 | Kim | Mar 2012 | A1 |
20120199689 | Burkland | Aug 2012 | A1 |
20130043390 | De Ruyter | Feb 2013 | A1 |
20130048884 | Fainchtein et al. | Feb 2013 | A1 |
20130087758 | Maki et al. | Apr 2013 | A1 |
20130153860 | Kim et al. | Jun 2013 | A1 |
20130220990 | Liu et al. | Aug 2013 | A1 |
20130329366 | Wang et al. | Dec 2013 | A1 |
20140023116 | Ivanov | Jan 2014 | A1 |
20140292357 | Chai | Oct 2014 | A1 |
20150076373 | Chow et al. | Mar 2015 | A1 |
20160211433 | Kano | Jul 2016 | A1 |
20160240762 | Carr | Aug 2016 | A1 |
20160305829 | Emadi | Oct 2016 | A1 |
20170327377 | Zhang | Nov 2017 | A1 |
Number | Date | Country |
---|---|---|
1632484 | Jun 2005 | CN |
1752724 | Mar 2006 | CN |
102122647 | Jul 2011 | CN |
2043406 | Apr 2009 | EP |
2451572 | Feb 2009 | GB |
H0729427 | Jun 1995 | JP |
H08054285 | Feb 1996 | JP |
2010192581 | Sep 2010 | JP |
2011064513 | Mar 2011 | JP |
2011103293 | May 2011 | JP |
2012154777 | Aug 2012 | JP |
2014204122 | Oct 2014 | JP |
2015070250 | Apr 2015 | JP |
20130106932 | Oct 2013 | KR |
2005026674 | Mar 2005 | WO |
2014176185 | Mar 2011 | WO |
2014186026 | Nov 2014 | WO |
2015050113 | Apr 2015 | WO |
Entry |
---|
Partial Supplementary European Search Report; EP Application No. 14797386.1; dated Jan. 9, 2017; pp. 1-8. |
Konz et al.; “Micromachined IR-source with excellent blackbody like behaviour”, Invited Paper, Proceedings of SPIE vol. 5836, Jul. 1, 2005, pp. 540-548. |
Orofeo et al., “Synthesis of Large Area, Homogeneous, Single Layer Graphene Films by Annealing Amorphous Carbon on Co and Ni”, Nano Res. 2011, 4(6): pp. 531-540. |
PCT International Search Report and Written Opinion; International Application No. PCT/US2015/060526; International Filing Date: Nov. 13, 2015; dated Mar. 7, 2016; pp. 1-15. |
PCT International Search Report and Written Opinion; International Application No: PCT/US2016/046961; International Filing Date: Aug. 15, 2016; dated Dec. 14, 2016; pp. 1-16. |
E. Pop, et al.; “Thermal properties of Graphene: Fundamentals and applications,” MRS Bulletin, Materials Research Society, vol. 37, Dec. 2012, pp. 1273-1281. |
International Search Report for International Application No. PCT/US2014/018928; International Filing Date Feb. 27, 2014; dated Aug. 11, 2014, pp. 1-7. |
Written Opinion for International Application No. PCT/US2014/018928; International Filing Date Feb. 27, 2014; dated Aug. 11, 2014, pp. 1-7. |
Number | Date | Country | |
---|---|---|---|
20190064006 A1 | Feb 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14884459 | Oct 2015 | US |
Child | 16170475 | US |