The present invention relates to a burner in an air stream used for the direct heating of air or of combustion gas from turbines or engines and more particularly to the in-stream burner module the side-by-side juxtaposition of which on manifolds constitutes the in-stream burner. This type of burner uses as oxidant the turbine exhaust gases (TEG) or engine exhaust gases that have an oxygen concentration (in wet smoke) lower than the ambient air, a temperature higher than the ambient temperature and, generally, a speed on exiting the burner that is relatively low, and as fuel natural gas, shale gas, oil gas or gases coming from industrial processes.
In recent years, gas turbines and recovery boilers have evolved towards an increase in the energy efficiency of the combined cycles. Consequently, the turbine exhaust gases (TEG) are characterized by oxygen concentrations in wet smoke that are ever lower (between 9% and 13%) and having more variable and higher temperatures (between 350° C. and 700° C.).
Moreover, the evolution of the steam production cycles is behind the positioning of the burners on the downstream side of a first exchanger stage, which has the consequences of both:
The evolution of all these parameters makes the conditions for good combustion more difficult, and more particularly flame stability and control of carbon monoxide (CO) emissions.
On the other hand, controlling the flame length is a major stake since it makes it possible to control the downstream temperature profile at the same time as minimizing the length of the very costly trunking.
Known in-stream burners do not provide the mixing and the local pressure reduction necessary to control the carbon monoxide (CO) emissions and flame stability under these difficult conditions, notably at low TEG speeds.
The object of the invention is to propose a new in-stream burner module making it possible to address these problems and notably to achieve:
The burner module in an air stream in accordance with the invention therefore comprises a feed pipe of substantially circular cross section and having an axis, fuel injection orifices situated on the pipe and intended to produce a flame, oxidant injection orifices and fins, or caps, forming a so-called module or block structure, disposed symmetrically with respect to a plane P of flow of the fuel upstream of the burner module and laterally on the pipe on each side of the fuel injection orifices, it is wherein there are at least two fuel injection orifices in a section of the pipe and they have an axis that makes an angle α with the plane of flow P of the fuel. The gas is therefore injected at a plurality of orifices situated in at least two divergent planes. These two planes delimit a space with no input of fuel and with no input of oxidant, which encourages the internal recirculation of the combustion gases within the flame and brings a great part of the burnt gases toward the center. This also makes possible faster mixing of the gas with the TEG than a co-current flow. This angular injection and the induced recirculation simultaneously achieve flame stability, a short flame and recombustion of the CO by increasing the dwell time. It is possible to produce a burner comprising a plurality of burner modules or blocks with these features.
The angle α is advantageously between 10° and 30° inclusive.
In accordance with one particular embodiment, the injection orifices have a section of different size on each side of the plane P. The gas injection orifices of the same module are therefore symmetrically disposed relative to the flow plane P and can have sections and consequently gas flow rates that are different between the top and the bottom (if the plane P is horizontal).
In accordance with one particular feature, the two fuel injection orifices have an axis that crosses the axis of the pipe.
In accordance with another feature, at least two other secondary fuel injection orifices makes an angle ξ with the plane of flow of the fuel and the angle ξ is greater than the angle α. This makes possible staggered TEG arrival that favors recirculation and achieves an optimum fuel/oxidant ratio.
The secondary fuel injection orifices of angle ξ advantageously have a section representing 5% to 20% of the total section of the fuel injection orifices. This staggered injection of the gas with a staggering ratio of 5% to 20% achieves very low NOx emissions (low-NOx operation). This complementary injection is effected between the injection planes of the fuel orifices and the fins.
In accordance with one particular arrangement, it comprises fins making an angle β with the flow plane of the fuel such that the angle β is between 2α and 3α inclusive. This results in a large module (block) size that protects the flared development of the flame and the internal recirculation linked to the angular injection. This makes it possible to maintain a hot zone that limits the formation of CO. A high stabilization local pressure reduction is therefore created even during operation with low TEG speeds. At the same time, having the angle of the caps equal to two to three times the injection angle of the gas makes it possible to generate the spaces necessary for the correct introduction of the TEG and their mixing with the gas jets in the combustion zone and the development of the main vortices.
The fins advantageously have a section including oxidant injection openings. A staggered TEG arrival favors recirculation and achieves an optimum fuel/oxidant ratio, and is achieved thanks to the openings that are preferably in the form of slots and the number and the section of which are determined in such a manner as to produce a low % of the stoichiometric air flow rate (of the order of 5% to 25%).
In accordance with one particular feature, the openings have a section between 3% and 15% inclusive of the section of the fins. The flow section of these openings may vary as a function of the TEG oxygen and speed characteristics.
In accordance with another particular feature, the openings have a section of different size of each side of the plane P. The sections of these openings and consequently of the TEG flow rates through them can therefore be different between the top and the bottom.
In accordance with another feature, the openings include deflection elements making an angle θ with the plane P of flow of the fuel.
The angle θ is advantageously substantially equal to the angle α. The deflection elements confer on the passage openings an angle substantially identical to the injection angle of the gas.
The section of the openings advantageously increases with the distance between the orifices to optimize the progressive introduction of air into the flame and to reduce the formation of CO.
In accordance with one particular feature, it comprises a shield placed between the pipe and the flame, said shield having holes situated in line with the injection orifices. An inductive partial premixing of the gas jet with the oxidant at the level of the attachment shield. This accelerates TEG/gas mixing and improves flame stability. The section of the premixing orifice situated in the shield represents 15 to 40 times the section of the gas outlet orifice. The premixing orifice is situated at a distance from the gas orifice between 0.1 and 0.3 times inclusive the diameter of the tube.
The holes are advantageously situated on a wall of the shield that makes an angle δ relative to the axis of the injection orifices. This favors the aspiration of the oxidant by the gas jet.
The angle δ is advantageously substantially equal to 90°. This favors local turbulence and consequently flame stability despite the low oxygen, temperature and TEG speed levels.
In accordance with one particular feature, the burner module comprises baffles situated in an exterior part of the burner module and said baffles have a rim that has an angle equal to and opposite that of the deflection element situated farthest from the pipe. This special shape of the baffles or baffle ends makes it possible to produce a flow of the TEG around the modules that is parallel or nearly parallel to the plane of flow of the gas in order to limit the formation of CO by chilling effect. This shape is characterized by symmetry between the end of the modules and the end of the blocks.
The burner module advantageously has an area projected onto a plane perpendicular to the flow of the TEG between 0.1 m2/MW and 0.3 m2/MW inclusive. The size of the module is defined by its area projected onto a plane perpendicular to the flow of the TEG and this size is particularly advantageous for an upstream (wet smoke) oxygen concentration between 9% and 14% inclusive.
The combustion method in accordance with the invention comprising an in-stream burner module with at least one of the foregoing characteristics, such that the oxidant has an oxygen concentration less than 21%.
Premixing is advantageously effected in a space between the pipe and the shield.
The invention also concerns an in-stream burner consisting of modules having the foregoing features.
Two adjacent modules advantageously have injection orifices with sections of different size on each side of the plane P alternately. By alternating modules with the gas orifice sections increased on one side of the plane P (for example at the bottom) and modules with the gas orifice sections increased on the other side of the plane P (for example at the top), complementary turbulence is therefore created in the plane perpendicular to the flow plane P and parallel to the axis of the tube. This complementary turbulence accelerates the mixing of the gas with the TEG and reduces the flame lengths. The ratio of the sections between the orifices at the top and the orifices at the bottom may therefore vary between 0.25 and 4 and advantageously between 0.5 and 2.
Two adjacent modules advantageously have openings of different size on each side of the plane P alternately. By alternating modules with the gas orifice sections increased on one side of the plane P (for example at the bottom) and modules with the gas orifice sections increased on the other side of the plane P (for example at the top), complementary turbulence is therefore created in the plane perpendicular to the flow plane P and parallel to the axis of the tube. This complementary turbulence accelerates the mixing of the gas with the TEG and reduces the flame lengths. The ratio of the sections between the orifices at the top and the orifices at the bottom may therefore vary between 0.25 and 4 and advantageously between 0.5 and 2.
Other advantages may become further apparent to the person skilled in the art on reading the following examples, illustrated by the appended figures, provided by way of illustration.
The assemblies of in-stream burners that can be seen in
The pipe 2 is covered by a shield 5 pierced with holes 50 facing the orifices 20.
The fins 3 on one side are at a greater or lesser distance from the pipe 2. The fin 30 is the closest, the fin 31 is at an intermediate location and the fin 32 is disposed farthest to the outside i.e. farthest from the pipe 2. The fins 30, 31, 32 are separated from one another by openings 33. It is of course possible to have more than or less than three fins.
The operation of the burner module will now be explained.
The fuel 4 arrives via the pipe 2, it is injected into the combustion chamber 6 via the orifices 20. These orifices 20 are oriented with an angle α relative to the plane P of flow of the fuel. This angle makes it possible to delimit a space with no input of fuel and with no input of oxidant, which encourages internal recirculation of the combustion gases 4 inside the flame as shown in
In the embodiment illustrated by
In an embodiment illustrated by
As
Between the pipe 2 and the shield 5 circulate TEG (cf.
In accordance with a variant
Number | Date | Country | Kind |
---|---|---|---|
1451064 | Feb 2014 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/FR2015/050176 | 1/26/2015 | WO | 00 |