The present disclosure relates to an in-tire electric device including a bracket fixed to a tire wheel and an electric circuit unit detachably held by the bracket.
As an in-tire electric device of this type, an in-tire electric device is known in which a bracket is fixed to a tire wheel by a belt wound around a rim of the tire wheel, and an electric circuit unit elastically deforms and engages an engaging portion provided on the bracket.
Patent Literature 1: US 2014/0007666 A, FIG. 3, paragraph [0029]
However, the above-mentioned conventional in-tire electric device has had a problem in that increasing a force with which the electric circuit unit is held by the bracket increases resilient force of the engaging portion when attaching the electric circuit unit to the bracket, and makes it difficult to attach the bracket to the electric circuit unit. The present disclosure therefore provides an in-tire electric device in which an electric circuit unit can be easily attached to a bracket and a force with which the electric circuit unit is held by the bracket has been increased than before.
An in-tire electric device according to one aspect of the invention made to solve the above-mentioned problem includes a bracket fixed to an outer peripheral surface of a rim of a tire wheel by a belt wound around the outer peripheral surface of the rim and an electric circuit unit detachably held by the bracket, the in-tire electric device including: an engagement protrusion and an engagement hole that are provided on the electric circuit unit and the bracket and engage with each other in such a way as to restrict, through a two-step operation in which the electric circuit unit is moved in a first direction with respect to the bracket and then moved or rotated in a second direction intersecting the first direction, all movements and rotations except for a reverse of the second direction; a retainer that is mounted on the bracket from a direction intersecting the second direction and faces the electric circuit unit in the second direction to restrict the electric circuit unit from moving in the second direction; and retainer locking portions that are formed on the bracket and the retainer and engage with each other by elastic deformation of one of the retainer locking portions to lock the retainer to the bracket.
An in-tire electric device 101 of a first embodiment of the present disclosure will be described below with reference to
The electric circuit unit 50A contains an electric circuit 110 illustrated in
Furthermore, a vehicle body 120 is provided with a signal processing circuit 121 corresponding to the electric circuit unit 50A. Wireless communication is performed between a wireless circuit 122 connected to the signal processing circuit 121 and the wireless circuit 114 of the electric circuit unit 50A so that detection results of the pressure sensor 111, the acceleration sensor 112, and the temperature sensor 113 are taken into the signal processing circuit 121. Then, the signal processing circuit 121 monitors the state of the tire 99 on the basis of the detection results of the pressure sensor 111 and the temperature sensor 113, and monitors the condition of a road surface on the basis of the detection result of the acceleration sensor 112, for example.
The electric circuit 110 in the electric circuit unit 50A is not limited to the above-mentioned configuration as long as the electric circuit 110 is arranged and used in the tire 99. For example, the electric circuit 110 may include only any one or two of the pressure sensor 111, the acceleration sensor 112, and the temperature sensor 113, or may include a sensor other than those. Furthermore, the detection result of the acceleration sensor 112 may be used, for example, to determine whether the vehicle is moving or not.
The electric circuit unit 50A houses the above-mentioned electric circuit 110 in a housing 54 illustrated in
A first engagement protrusion 51 and a second engagement protrusion 52 protrude in opposite directions from both end surfaces of the housing 54 in the longitudinal direction. The first engagement protrusion 51 forms a rectangular cross section being flat in the vertical direction and extends in a direction perpendicular to the vertical direction. Furthermore, a locking ridge 51A protrudes from an edge on the tip side of an upper surface 51J of the first engagement protrusion 51, and a corner between a lower surface 51N of the first engagement protrusion 51 and a tip surface is round-chamfered and has an arc surface 51E.
On the other hand, the second engagement protrusion 52 has a shape obtained by removing the locking ridge 51A and the arc surface 51E from the first engagement protrusion 51, and extends coaxially with the first engagement protrusion 51. Furthermore, on the both end surfaces of the housing 54 in the longitudinal direction, rectangular protrusions 54T protrude one from a position directly below the first engagement protrusion 51 and one from a position directly below the second engagement protrusion 52 (only the rectangular protrusion 54T below the second engagement protrusion 52 is illustrated in
The bracket 10A has a structure in which both ends of a strip-shaped sheet metal are bent with respect to an intermediate portion between the both ends so as to face each other. Then, the intermediate portion of the strip-shaped sheet metal constitutes a base portion 14, and the both ends constitute a first facing support portion 11 and a second facing support portion 12 that are erected upward from the base portion 14.
The base portion 14 is curved so as to bulge upward in an arc shape. Furthermore, the first facing support portion 11 and the second facing support portion 12 are parallel to each other and face each other. Moreover, at a base end portion of each of the first facing support portion 11 and the second facing support portion 12, a slit 11S is formed in a central portion in the width direction thereof. Specifically, the slit 115 is formed in a state in which, in the entire portion except for both ends of each of the first facing support portion 11 and the second facing support portion 12 in the width direction, the entire arc surface at an inner corner between the base portion 14 and each of the first facing support portion 11 and the second facing support portion 12 has been removed. Then, as illustrated in
As illustrated in
Both ends of the rim facing surface 14A in the longitudinal direction constitute a pair of rim contact portions 15. Since the radius of curvature R1 of the rim facing surface 14A of the bracket 10A is smaller than the radius of curvature R2 of the outer peripheral surface 96A of the rim 96, the pair of rim contact portions 15 come into contact with two points in the circumferential direction of the outer peripheral surface 96A of the rim 96 so that the portion between the both ends of the rim facing surface 14A is spaced apart from the outer peripheral surface 96A of the rim 96.
As illustrated in
The second engagement hole 22 is formed at substantially the center of the second facing support portion 12 in the width direction from an upper end of the second facing support portion 12 to substantially the center in the height direction, and the upper end constitutes a protrusion receiving port 22A. Furthermore, a middle portion of the second engagement hole 22 in the height direction constitutes a retainer receiving portion 22B that widens in a stepped manner, and the second engagement hole 22, except for the retainer receiving portion 22B, has the same width as the first engagement hole 21. Furthermore, a protrusion receiving portion 22C under the retainer receiving portion 22B in the second engagement hole 22 has a height and a width of just a right size for the second engagement protrusion 52 to fit in.
A pair of locking holes 23 are formed on both sides of the second engagement hole 22 in the second facing support portion 12. Each locking hole 23 forms a vertically long rectangle, an inner upper surface of each locking hole 23 is arranged flush with an inner upper surface of the retainer receiving portion 22B, and an inner lower surface of each locking hole 23 is located below an inner lower surface of the retainer receiving portion 22B.
The electric circuit unit 50A is received between the first facing support portion 11 and the second facing support portion 12 of the bracket 10A as described below. That is, the electric circuit unit 50A is arranged to have an inclined posture in which the first engagement protrusion 51 and the second engagement protrusion 52 are aligned in a first direction inclined with respect to the direction in which the first facing support portion 11 and the second facing support portion 12 face each other, and then the electric circuit unit 50A is moved in the first direction so that the first engagement protrusion 51 is inserted into the first engagement hole 21 from the locking ridge 51A side.
Then, the electric circuit unit 50A is rotated in a second direction, which is downward, with the first engagement protrusion 51 as a fulcrum so that the second engagement protrusion 52 is inserted into the second engagement hole 22 from above, and thus the second engagement protrusion 52 is received by the protrusion receiving portion 22C at a lower end of the second engagement hole 22. Then, below the first engagement protrusion 51 and the second engagement protrusion 52, the tip surfaces of the rectangular protrusions 54T become adjacent to the first facing support portion 11 and the second facing support portion 12. In this way, the electric circuit unit 50A is attached to the bracket 10A through a two-step operation and brought into a state in which all movements and rotations other than the reverse of the second direction (that is, other than an upward rotation) are restricted. In this state, a retainer main body 71 described later of the retainer 70A is inserted into the retainer receiving portion 22B in the second engagement hole 22 from a direction intersecting the second direction, and the electric circuit unit 50A is restricted from the reverse of the second direction.
The retainer 70A is, for example, a resin injection-molded product, and has the retainer main body 71 of a flat rectangular parallelepiped that perfectly fits in the retainer receiving portion 22B. A structure of the retainer 70A will be described below in detail with reference to
From rear end edges of both side surfaces of the retainer main body 71, a pair of lock arms 72 jut laterally then bend at a right angle and extend frontward. Furthermore, a tip portion of each of the lock arms 72 has a locking projection 73 that is arrowhead-shaped and protrudes toward the retainer main body 71. Moreover, upper surfaces of the pair of lock arms 72 are arranged flush with the upper surface of the retainer main body 71, and lower surfaces of the pair of lock arms 72 are located below the lower surface of the retainer main body 71 and connected to the stopper protrusions 74.
The retainer main body 71 is pushed into the retainer receiving portion 22B in the second engagement hole 22 of the second facing support portion 12, and the pair of lock arms 72 are pushed into the pair of locking holes 23 of the second facing support portions 12, and thus the retainer 70A is mounted on the bracket 10A as illustrated in
This concludes the description of the configuration of the in-tire electric device 101 of the present embodiment. Next, the operation and effect of the in-tire electric device 101 will be described. The belt 90 is passed through a pair of the slits 11S of the bracket 10A as illustrated in
Furthermore, when the belt 90 is tightened, the base portion 14 of the bracket 10A sags and the first facing support portion 11 and the second facing support portion 12 tilt toward each other as illustrated in
As in the bracket 10A of the present embodiment, the entire rim facing surface 14A of the base portion 14 may be brought into contact with the outer peripheral surface 96A of the rim 96, or, for example, a protrusion protruding downward from the base portion 14 may be brought into contact with the outer peripheral surface 96A of the rim 96. Furthermore, the entire base portion 14 may be pressed by the belt 90 as in the bracket 10A of the present embodiment, or, for example, a protrusion protruding upward from the base portion 14 may be pressed by the belt 90.
Furthermore, in the in-tire electric device 101 of the present embodiment, as described above, the electric circuit unit 50A is attached through two-step operation including an operation of moving the electric circuit unit 50A in the first direction with respect to the bracket 10A and an operation of rotating the electric circuit unit 50A in the second direction so that all movements and rotations except for the reverse of the second direction are restricted. Then, the retainer 70A is mounted on the bracket 10A from the direction intersecting the second direction so that the electric circuit unit 50A is restricted from moving in the second direction. In this way, the electric circuit unit 50A is held by the bracket 10A through an operation including a plurality of steps in different operation directions. It is therefore possible to allow the electric circuit unit 50A to be strongly held by the bracket 10A even in a case where a portion for locking the retainer 70A to the bracket 10A (lock arms 72) has a small elastic force and elastically deforms easily in the last step of operation. That is, according to the in-tire electric device 101 of the present embodiment, the electric circuit unit 50A can be easily attached to the bracket 10A, and the force with which the electric circuit unit 50A is held by the bracket 10A can be increased than before.
Hereinafter, an in-tire electric device 102 of a second embodiment of the present disclosure will be described with reference to
Each of the engagement protrusions 61 has a lower end portion wider than a base end portion 61A. Specifically, the base end portions 61A of the engagement protrusions 61 have a rectangular plane cross-sectional shape that is long in a direction perpendicular to the direction in which the pair of support protrusions 60 are aligned, and lower end portions of the engagement protrusions 61 jut toward both sides and constitute foot portions 61B having a rectangular plane cross-sectional shape that is longer and thinner than the rectangular plane cross-sectional shape of the base end portions 61A.
A bracket 10B of the present embodiment is a resin injection-molded product, and extends in a circumferential direction of an outer peripheral surface 96A of a rim 96. Furthermore, the entire upper surface of the bracket 10B is flat except for both ends, and a pair of pedestal protrusions 24 protrude from the both ends. On the other hand, as illustrated in
Specifically, as illustrated in
As illustrated in
As illustrated in
Furthermore, a pair of slits 24S are formed in intermediate portions of the pair of end walls 16T in the vertical direction. Then, a belt 90 that has been passed through the pair of slits 24S is wound around the outer peripheral surface of the rim 96, and the bracket 10B is fixed to the rim 96 in a state where the rim contact portions 17 is pressed against the outer peripheral surface 96A of the rim 96 as illustrated in
As illustrated in
Then, after a two-step operation of moving the electric circuit unit 50B in a first direction (downward) so that a pair of the engagement protrusions 61 of the electric circuit unit 50B are inserted into the wide portion 25A or the wide portion 25C of the first engagement hole 26 and the wide portion 25A of the second engagement hole 28, and then moving the electric circuit unit 50B in a second direction perpendicular to the first direction so that the base end portions 61A of the pair of the engagement protrusions 61 are received by the narrow portion 25B of the first engagement hole 26 and the narrow portion 25B of the second engagement hole 28, a lower surface of the electric circuit unit 50B comes into contact with an upper surface of the top plate portion 16K of the base portion 16 as illustrated in
As illustrated in
The retainer 70B is pushed from above into the wide portion 25A of the second engagement hole 28. Then, inclined surfaces of the locking protrusions 78 of the pair of lock arms 76 come into sliding contact with an opening edge of a wide portion 25A, and the lock arms 76 are elastically deformed. When the locking piece 77 at the upper end of each lock arm 76 comes into contact with the opening edge on an upper surface of the wide portion 25A as illustrated in
This concludes the description of the configuration of the in-tire electric device 102 of the present embodiment. Next, the operation and effect of the in-tire electric device 102 will be described. As in the case of the bracket 10A of the first embodiment, the bracket 10B of the in-tire electric device 102 of the present embodiment also has the rim contact portions 17 that come into contact with two points in the circumferential direction of the outer peripheral surface 96A of the rim 96. This stabilizes the bracket 10B on the outer peripheral surface 96A of the rim 96. Furthermore, in the bracket 10B of the present embodiment, when the belt 90 is passed through the pair of slits 24S, the portion between the pair of slits 24S faces the outer peripheral surface 96A of the rim 96 interposing the belt 90 therebetween, and is unaffected by a load due to tightening of the belt 90. Thus, durability is improved.
Furthermore, in the in-tire electric device 102 of the present embodiment, as in the case of the above-mentioned in-tire electric device 102 of the first embodiment, the two-step operation for attaching the electric circuit unit 50B to the bracket 10B is performed, and then the operation of mounting the retainer 70B is performed so that the electric circuit unit 50B is held by the bracket 10B. This allows the electric circuit unit 50B to be easily attached to the bracket 10B, and the force with which the electric circuit unit 50B is held by the bracket 10B can be increased than before. Moreover, in the in-tire electric device 102 of the present embodiment, the electric circuit unit 50B can be engaged with the first engagement hole 26 and the second engagement hole 28 of the bracket 10B without distinction between the pair of the engagement protrusions 61, and this is highly convenient.
Hereinafter, an in-tire electric device 103 of a third embodiment of the present disclosure will be described with reference to
The L-shaped engagement protrusion 62 has a structure in which a lower end portion of a vertical side portion 62A extending in the vertical direction is bent at a right angle and constitutes a bent engagement piece 62B. Then, an upper end portion of the vertical side portion 62A is connected to one end surface of a housing 54 in the longitudinal direction, and the bent engagement piece 62B protrudes toward a side away from the housing 54.
A bracket 10C of the present embodiment includes a first engagement hole 27 having a shape different from that of the first engagement hole 26 of the bracket 10B of the second embodiment. The first engagement hole 27 includes a side surface opening portion 27B that opens on a side surface, of one of the pair of pedestal protrusions 24, facing the other of the pair of pedestal protrusions 24 and a base surface opening portion 27A that opens on an upper surface of a base portion 16.
The base portion 16 is formed with a rectangular opening 16W extending in the longitudinal direction thereof. Furthermore, a bridge portion 16R is bridged so as to cross below a central portion of the rectangular opening 16W in the longitudinal direction, and both ends of the bridge portion 16R are connected to an opening edge of the rectangular opening 16W on a lower surface of the base portion 16. Moreover, belt insertion openings 24K are formed in a pair of end walls 16T at both ends of the base portion 16 in the longitudinal direction. The belt insertion openings 24K have the same width as the rectangular opening 16W, and are formed by cutting portions below intermediate positions of the end walls 16T in the vertical direction. Then, a belt 90 is passed above the bridge portion 16R and inside a pair of the belt insertion openings 24K, and is wound around an outer peripheral surface 96A of a rim 96 (see
Furthermore, a retainer 70C of the present embodiment has a structure obtained by extending the pair of lock arms 76 of the retainer 70B of the second embodiment above the locking pieces 77 and removing the plurality of ridges 79.
This concludes the description of the configuration of the in-tire electric device 103 of the present embodiment. In the bracket 10C of the in-tire electric device 103 of the present embodiment, as in the case of the bracket 10B of the second embodiment, rim contact portions 17 at both ends of the base portion 16 come into contact with two points in the circumferential direction of the outer peripheral surface 96A of the rim 96. This stabilizes the bracket 10C on the outer peripheral surface 96A of the rim 96.
Furthermore, in the in-tire electric device 103 of the present embodiment, as in the case of the above-mentioned in-tire electric device 102 of the first and second embodiments, the two-step operation for attaching the electric circuit unit 50C to the bracket 10C is performed, and then the operation of mounting the retainer 70C is performed, so that the electric circuit unit 50C is held by the bracket 10C. This allows the electric circuit unit 50C to be easily attached to the bracket 10C, and the force with which the electric circuit unit 50C is held by the bracket 10C can be increased than before.
The bracket 10D of the present embodiment is a resin injection-molded product in which a base portion 19 extending in the circumferential direction of a rim 96 is integrally provided with a first facing support portion 31 and a second facing support portion 32 at both ends. The base portion 19 has a groove shape in which both side portions of a strip extending in the circumferential direction of the rim 96 are curved downward. Furthermore, the base portion 19 is entirely curved so that lower surfaces of the both side portions are arc surfaces having a radius of curvature smaller than a radius of curvature of an outer peripheral surface 96A of the rim 96.
The first facing support portion 31 and the second facing support portion 32 are thicker than the plate-shaped first facing support portion 11 and second facing support portion 12 of the bracket 10A of the first embodiment, and surfaces facing each other are curved in accordance with the shape of side surfaces of an electric circuit unit 50A in the longitudinal direction. Then, the both ends of the base portion 19 are connected to lower end portions of the surfaces facing each other of the first facing support portion 31 and the second facing support portion 32. Moreover, lower surfaces of both side portions of the first facing support portion 31 and the second facing support portion 32 are arc surfaces that are continuous with the lower surfaces of the both side portions of the base portion 19. Then, on lower surfaces of the first facing support portion 31 and the second facing support portion 32, edges on opposite sides from the base portion 19 constitute a pair of rim contact portions 17.
In the longitudinal direction of the base portion 19, a pair of slits 11S pass through the first facing support portion 31 and the second facing support portion 32 at positions slightly above an upper surface of the base portion 19. Then, a belt 90 that has been passed through the pair of slits 11S is wound around the outer peripheral surface 96A of the rim 96 (see
In the longitudinal direction of the base portion 19, a first engagement hole 21 passes through a portion above the slit 11S in the first facing support portion 31, and is engaged with a first engagement protrusion 51 of the electric circuit unit 50A. Furthermore, in the second facing support portion 32, a second engagement hole 22 is formed by cutting a portion above a position above the slit 11S. As in the case of the second engagement hole 22 of the bracket 10A of the first embodiment (see
Furthermore, as in the case of the bracket 10A of the first embodiment, a pair of locking holes 23 pass through, in the longitudinal direction of the base portion 19, the second facing support portion 32 at portions on both sides of the retainer receiving portion 22B. Moreover, a retainer receiving recess 32A having a structure obtained by enlarging the retainer receiving portion 22B toward both sides is formed on the second facing support portion 32 on the side opposite to the surface facing the first facing support portion 31, and the pair of locking holes 23 are opened inside the retainer receiving recess 32A. Then, as illustrated in
The retainer 70D of the present embodiment differs from the retainer 70A of the first embodiment in that a plurality of ridges 79 (see
This concludes the description of the configuration of the in-tire electric device 104 of the present embodiment. In the bracket 10D of the in-tire electric device 104 of the present embodiment, as in the case of the bracket 10A of the first embodiment, the rim contact portions 17 at the both ends of the base portion 19 come into contact with two points in the circumferential direction of the outer peripheral surface 96A of the rim 96. This stabilizes the bracket 10D on the outer peripheral surface 96A of the rim 96.
The bracket 10E includes a pair of pedestal protrusions 24 constituted by both ends of a strip-shaped sheet metal bent so as to protrude upward and form U-shaped grooves. Then, the first engagement hole 27 described in the third embodiment is formed on one of the pair of pedestal protrusions 24, and the second engagement hole 28 described in the third embodiment is formed on the other of the pair of pedestal protrusions 24. Furthermore, in a base portion 29 between the pair of pedestal protrusions 24 of the bracket 10E, a rectangular window 29W extending in the longitudinal direction of the base portion 29 is formed, and a plurality of protruding pieces juts toward the inside of the rectangular window 29W from outer edges on a pair of long sides of the rectangular window 29W, and is bent into a crank-like shape. Then, portions from the bent portions to tips of those protruding pieces constitute a plurality of belt support portions 59 facing the rectangular window 29W from below. A belt 90 that has been passed on the belt support portions 59 is wound around a rim 96, and thus the bracket 10E is fixed to the rim 96. Then, an electric circuit unit 50C can be attached to the bracket 10E in the same sequence as that for the in-tire electric device 103 of the third embodiment. With the configuration of the present embodiment, as in the case of the in-tire electric device 103 of the third embodiment, the force with which the electric circuit unit 50C is held by the bracket 10E can be increased than before.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2020/008337 | 2/28/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2021/171561 | 9/3/2021 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
7377156 | Mattson | May 2008 | B1 |
20060059982 | Shimura | Mar 2006 | A1 |
20060144133 | Shimura | Jul 2006 | A1 |
20060220812 | Luce | Oct 2006 | A1 |
20060248947 | Phalak et al. | Nov 2006 | A1 |
20070257666 | Laure et al. | Nov 2007 | A1 |
20090218459 | Durif et al. | Sep 2009 | A1 |
20100238011 | Carr | Sep 2010 | A1 |
20110296907 | Luce | Dec 2011 | A1 |
20120204635 | Kutzscher | Aug 2012 | A1 |
20130133800 | Griffoin | May 2013 | A1 |
20130174955 | Yasunaga et al. | Jul 2013 | A1 |
20140007666 | Kutzscher et al. | Jan 2014 | A1 |
20170349010 | Wilson et al. | Dec 2017 | A1 |
20180056736 | Yu et al. | Mar 2018 | A1 |
20190225032 | Inck et al. | Jul 2019 | A1 |
20200055353 | Nishii | Feb 2020 | A1 |
20220176754 | Isowa | Jun 2022 | A1 |
Number | Date | Country |
---|---|---|
1753797 | Mar 2006 | CN |
1761584 | Apr 2006 | CN |
201069379 | Jun 2008 | CN |
103129330 | Jun 2013 | CN |
103253090 | Aug 2013 | CN |
106606010 | May 2017 | CN |
110418723 | Nov 2019 | CN |
102017221890 | Jun 2019 | DE |
3287303 | Feb 2018 | EP |
2003-200723 | Jul 2003 | JP |
2007-118885 | May 2007 | JP |
2007-196702 | Aug 2007 | JP |
2012-232640 | Nov 2012 | JP |
2012-245888 | Dec 2012 | JP |
2018-506462 | Mar 2018 | JP |
1020090102454 | Sep 2009 | KR |
200306258 | Nov 2003 | TW |
Entry |
---|
Jun. 2, 2020 Search Report issued in International Patent Application No. PCT/JP2020/008337. |
Jun. 2, 2020 Written Opinion of the International Searching Authority issued in International Patent Application No. PCT/JP2020/008337. |
May 26, 2023 Office Action Issued In U.S. Appl. No. 17/437,625. |
Sep. 13, 2023 U.S. Notice of Allowance issued U.S. Appl. No. 17/437,625. |
Jun. 2, 2020 Search Report issued in International Patent Application No. PCT/JP2020/008348. |
Jun. 2, 2020 Written Opinion of the International Searching Authority issued in International Patent Application No. PCT/JP2020/008348. |
Nov. 4, 2021 Search Report issued in European Patent Application No. 20916233.8. |
Nov. 16, 2021 Office Action issued in European Patent Application No. 20916233.8. |
Nov. 3, 2021 Search Report issued in European Patent Application No. 20920765.3. |
Nov. 19, 2021 Office Action issued in European Patent Application No. 20920765.3. |
U.S. Appl. No. 17/437,625, filed Sep. 9, 2021 in the name of ISOWA et al. |
Nov. 1, 2022 Office Action issued in Chinese Patent Application No. 202080012383.8. |
Oct. 10, 2022 Office Action Issued in Chinese Patent Application No. 202080018755.8. |
Number | Date | Country | |
---|---|---|---|
20220314716 A1 | Oct 2022 | US |