This disclosure relates generally to transmitters for controlling appliances and, in particular, to an in-vehicle transmitter operably coupled to a human-machine interface for controlling the in-vehicle transmitter.
An increasing number of vehicles sold today include universal transmitters built into the vehicle that allow a driver or vehicle passenger to control devices such as a garage door opener regardless of the manufacturer of the opener. Users control such transmitters via a human machine interface (HMI) or a user interface integral or unitary to the vehicle. Universal transmitters are configured to control a particular garage door opener or other external device based on some training or set up operations performed by the user. Users engage the user interface to perform the training or configuration of the universal transmitter. Many times, the user refers to additional resources including instructional videos, online tutorials, and paper instructions such as the vehicle's owner manual to facilitate the set-up process.
Other automotive trends include the increasing use of touch screens as the primary interface for the vehicle. These touch screen interface units, typically located in the dashboard of the vehicle and called “center stack” units, are used to control various features and functions of the vehicle, for example, a built-in universal transmitter, navigation, infotainment, telematics, audio devices, climate control, and the like. The center stack communicates with an in-vehicle computing device to facilitate these features and functions. With the number of features available on the center stack, setting up the different features presents an increasing effort on the part of the vehicle user, especially upon first acquiring the vehicle.
The in-vehicle transmitter training is set forth in the following detailed description, particularly in conjunction with the drawings, wherein:
Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions and/or relative positioning of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of various embodiments of the present invention. Also, common but well-understood elements that are useful or necessary in a commercially feasible embodiment are often not depicted in order to facilitate a less obstructed view of these various embodiments. It will further be appreciated that certain actions and/or steps may be described or depicted in a particular order of occurrence while those skilled in the art will understand that such specificity with respect to sequence is not actually required. It will also be understood that the terms and expressions used herein have the ordinary technical meaning as is accorded to such terms and expressions by persons skilled in the technical field as set forth above except where different specific meanings have otherwise been set forth herein.
Generally speaking, pursuant to these various embodiments, an in-vehicle or center stack control system can be used to facilitate training of a vehicle mounted universal transmitter in a way that allows a user to forego use of supplemental/additional resources such as paper-based or electronic-based tutorials, videos or instructions. In certain approaches, an internet connection is not needed to allow the user to set up the transmitter to control a movable barrier operator or other controllable device, such as a light or door lock.
In one aspect of the present disclosure, an in-vehicle apparatus is provided that includes a transmitter operable to transmit radio frequency control signals, and communication circuitry configured to communicate with a remote computer via a network. The communication circuitry is configured to receive information from the remote computer via the network, the information pertaining to one or more controllable devices including a movable barrier operator system associated with a user account. The controllable devices may include, for example, a light, a lock, and/or a security system of a home. The in-vehicle apparatus includes a user interface configured to receive a user input requesting control of the movable barrier operator system and a processor operably coupled to the transmitter, communication circuitry, and user interface.
The processor is configured to communicate with the remote computer, via the communication circuitry, a transmitter identifier representative of a transmitter code of the transmitter. The communication may involve the communication circuitry communicating the transmitter identifier to the remote computer. For example, the transmitter identifier may include a hash of a fixed code of the transmitter and the processor causes the communication circuitry to communicate the hash of the fixed code to the remote computer. As another example, the communication may involve the communication circuitry receiving the transmitter identifier from the remote computer. For example, the transmitter identifier may include encoded information that is decoded by the processor and used by the processor to set the transmitter code, such as a one-time-use passcode.
The processor is configured to effect the movable barrier operator to change a state of a movable barrier (e.g., a garage door) by causing the transmitter to transmit a first radio frequency control signal to the movable barrier operator system, wherein the first radio frequency control signal includes the transmitter code. The processor is further configured to effect the movable barrier operator to learn the transmitter by causing the transmitter to transmit a second radio frequency control signal to the movable barrier operator system. In this manner, the in-vehicle apparatus may cause the movable barrier operator to change the state of the movable barrier via the first radio frequency control signal and may cause the movable barrier operator to learn the transmitter via the second radio frequency control signal.
In one embodiment, the processor is configured to cause the transmitter to transmit the first radio frequency control signal at a first frequency and transmit the second radio frequency control signal at a second frequency different than the first frequency. For example, the first frequency may be in the range of approximately 300 MHz to approximately 400 MHz and the second frequency may be in the range of approximately 900 MHz to approximately 1 GHz. The different frequencies of the first and second radio frequency control signals may facilitate the movable barrier operator identifying the first radio frequency control signal including the transmitter code and changing the state of the movable barrier.
In another aspect of the present disclosure, a movable barrier operator system is provided that includes a motor and communication circuitry configured to receive an add transmitter request from a remote computer via a network, the add transmitter request including a transmitter identifier. The communication circuitry is configured to receive a first radio frequency control signal and a second radio frequency control signal from an unknown in-vehicle transmitter, wherein the first radio frequency control signal includes a transmitter code. The movable barrier operator system includes processor circuitry configured to cause the motor to change a state of the movable barrier upon the transmitter code of the first radio frequency control signal corresponding to the transmitter identifier. The processor circuitry is further configured to learn the unknown in-vehicle transmitter in response to the communication circuitry receiving the second radio frequency control signal.
For example, the transmitter code may include a fixed code of the unknown in-vehicle transmitter and the transmitter identifier may include a hash of the fixed code. The processor may perform a hash function on the fixed code hash to determine the fixed code. The processor circuitry may determine that the transmitter code corresponds to the transmitter identifier if the fixed code determined using the hash function matches the fixed code of the first radio frequency control signal. In another approach, the processor circuitry may determine that the transmitter code corresponds to the transmitter identifier if the similarity of the transmitter code and the transmitter identifier is greater than a threshold.
Referring now to the drawings, and in particular to
In certain examples, software available on the center stack 104 or in a transmitter, such as universal transmitter 112 shown as “ARQ2,” mounted in the car may generate codes for each or a set of the devices having labels mapped thereto. The codes are generated independently of the labels downloaded from the cloud based system 110. The codes can be used to facilitate pairing of the transmitter 112 and the mapped devices upon arrival of the vehicle at the home. As illustrated in
Turning to
An example series of graphical user interface screens displayed to the user in setting up the universal transmitter 112 according to an illustrative process 200 is illustrated in
Turning to
A different set of screens may be presented if interaction with the end device facilitates pairing the end device with the universal transmitter 112. For example, a screen can be presented to instruct the user to find and press a learn button or program button on the end device.
An additional series of screens may be used to step the user through the pairing process for certain types of end devices. For example, a series of garage icons is presented to prompt the user to press the respective icons, which in turn triggers the universal transmitter 112 to send various signaling to the end device as may be employed to train the universal transmitter 112 to operate with that end device. For example, a screen may prompt the user to press the garage icon, and a second screen prompts the user to press a second garage icon to facilitate programming between the universal transmitter 112 and the end device. A third screen prompts the user to press the garage icon again to test whether the pairing was successful. A fourth screen requests confirmation from the user as to whether the movable barrier moved as a result of this training process. If successful, a screen can be provided to allow the user to customize or provide a new name or label for the newly learned movable barrier operator 118.
With reference now to
The remote computer 110 may be in communication with the movable barrier operator system 420 via the network 108, e.g., the internet and a local Wi-Fi network. The remote computer 110 may be configured to control and/or monitor the status of the movable barrier operator system 420. For example, the remote computer 110 may communicate control signals to the movable barrier operator system 420 to change the state (e.g., open/close) of an associated movable barrier, e.g., a garage door.
The movable barrier operator system 420 may be configured to receive signals from the universal transmitter 112 of the vehicle 400, for example, radio frequency (RF) signals. The movable barrier operator system 420 may be configured to monitor for a signal that includes the transmitter identifier received from the vehicle 400 via the remote computer 110. To determine whether a signal includes the transmitter identifier, the movable barrier operator system 420 may compare a RF signal received to the transmitter identifier received from the remote computer 110. If a signal sufficiently corresponds to the transmitter identifier, the movable barrier operator system 420 may enter a learn mode or communicate with the universal transmitter 112 of the vehicle to learn the universal transmitter 112 to the movable barrier operator system 420.
Regarding
The vehicle 400 may include a user interface such as a human machine interface 408. The human machine interface 408 may include a touchscreen display, such as a display of the center stack 104 or infotainment system of the vehicle 400. Additionally or alternatively, the human machine interface 408 may include an augmented reality display or heads-up display, button(s), a microphone, and/or speaker(s) 125 as examples. Upon receiving device labels from the cloud-based account, one or more aspects of the human machine interface 408 may be used to control the end devices of the cloud-based account. For example, the user may associate a physical or virtual button with a movable barrier operator 118 such that when the button is selected, a control signal is output for that movable barrier operator 118. As another example, the user may speak a command into a microphone of the vehicle 400, e.g., “Open left garage door,” to cause the vehicle 400 to output a control signal for that movable barrier operator 118.
Regarding
The controller 422 may be in communication with the communication circuitry 428. The communication circuitry 428 enables the movable barrier operator 118 to communicate with devices external to the movable barrier operator 118 directly and/or over network 402. The controller 422 may communicate with the remote computer 110 and the movable barrier operator system 420 via communication circuitry 428. The communication circuitry 428 may enable the movable barrier operator 118 to communicate over wireless protocols, for example, wireless fidelity (Wi-Fi), cellular, radio frequency (RF), infrared (IR), Bluetooth (BT), Bluetooth Low Energy (BLE), Zigbee and near field communication (NFC).
The controller 422 is configured to operate the motor 430. The controller 422 may operate the motor 430 in response to a state change request received via the communication circuitry 428 to operate the motor 430. The motor 430 may be coupled to the movable barrier to change the state of the movable barrier, i.e., move the movable barrier to an open, closed, or intermediate position. The controller 422 may also be in communication with a door position sensor 120. The door position sensor 120 may be used to monitor the state of the movable barrier, e.g., open, closed, or in between states. The door position sensor 120 may be as an example a tilt sensor. As another example, the door position sensor 120 may detect door position by monitoring movement of one or more components of a transmission of the movable barrier operator 118 such as via an optical encoder.
The movable barrier operator system 420 may optionally include a hub device 116. The hub device 116 may be used to facilitate communication between the movable barrier operator 118 and the network 108. The hub device 116 may be configured to communicate with the remote computer 110 via the network 108. The hub device 116 may send control commands to the movable barrier operator 118 to change the state of the movable barrier. The hub device 116 may be configured to communicate with the movable barrier operator 118 via a wired or wireless connection, e.g., via an RF signal. The hub device 116 may be configured to receive RF signals from the transmitter 112 of the vehicle 400. The hub device 116 may learn the transmitter 112 as described in relation to the movable barrier operator 118.
With reference to
The memory 444 may include a database of user accounts 446. The user account may be an account that associates a user with one or more movable barrier operators and/or other controllable devices. The user account may be used to remotely control the movable barrier operator, for example, via a smartphone application. The memory 444 may also include a database of controllable devices 448 associated with the user accounts. The database of controllable devices 448 may be a list of devices such as movable barrier operators a user associates with their user account upon installation or for remote control. Upon a request from the vehicle 400 for controllable devices associated with a certain user account, the remote computer 110 may send the controllable devices in the database of movable barrier operator systems 448. The user may then select, within their vehicle, which of the controllable devices they wish to control with their vehicle.
Those skilled in the art will appreciate that the above-described processes may be implemented using any of a wide variety of available and/or readily configured platforms, including partially or wholly programmable platforms as are known in the art or dedicated purpose platforms as may be desired for some applications. Those skilled in the art will recognize and appreciate that such processor devices can comprise a fixed-purpose hard-wired platform or can comprise a partially or wholly programmable platform. All of these architectural options are well known and understood in the art and require no further description here.
Uses of singular terms such as “a,” “an,” are intended to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms. It is intended that the phrase “at least one of” as used herein be interpreted in the disjunctive sense. For example, the phrase “at least one of A and B” is intended to encompass A, B, or both A and B.
While there have been illustrated and described particular embodiments of the present invention, it will be appreciated that numerous changes and modifications will occur to those skilled in the art, and it is intended for the present invention to cover all those changes and modifications which fall within the scope of the appended claims.
This is a continuation of U.S. patent application Ser. No. 16/871,844, filed May 11, 2020, entitled IN-VEHICLE TRANSMITTER TRAINING, which application claims the benefit of U.S. Provisional application No. 62/848,764, filed May 16, 2019, entitled IN-VEHICLE TRANSMITTER TRAINING, which is incorporated by reference in its entirety herein.
Number | Date | Country | |
---|---|---|---|
62848764 | May 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16871844 | May 2020 | US |
Child | 17245672 | US |