In-vehicle transmitter training

Information

  • Patent Grant
  • 11462067
  • Patent Number
    11,462,067
  • Date Filed
    Friday, April 30, 2021
    3 years ago
  • Date Issued
    Tuesday, October 4, 2022
    2 years ago
Abstract
In an embodiment, an in-vehicle apparatus includes a transmitter operable to transmit radio frequency control signals and communication circuitry configured to communicate with a remote computer via a network. The communication circuitry is configured to receive information from the remote computer via the network, the information pertaining to one or more controllable devices of a user account. The apparatus includes a processor configured to: communicate, via the communication circuitry, a transmitter identifier representative of a transmitter code of the transmitter with the remote computer; effect the movable barrier operator to change a state of a movable barrier by causing the transmitter to transmit a first radio frequency control signal to the movable barrier operator system; and effect the movable barrier operator to learn the transmitter by causing the transmitter to transmit a second radio frequency control signal to the movable barrier operator system.
Description
TECHNICAL FIELD

This disclosure relates generally to transmitters for controlling appliances and, in particular, to an in-vehicle transmitter operably coupled to a human-machine interface for controlling the in-vehicle transmitter.


BACKGROUND

An increasing number of vehicles sold today include universal transmitters built into the vehicle that allow a driver or vehicle passenger to control devices such as a garage door opener regardless of the manufacturer of the opener. Users control such transmitters via a human machine interface (HMI) or a user interface integral or unitary to the vehicle. Universal transmitters are configured to control a particular garage door opener or other external device based on some training or set up operations performed by the user. Users engage the user interface to perform the training or configuration of the universal transmitter. Many times, the user refers to additional resources including instructional videos, online tutorials, and paper instructions such as the vehicle's owner manual to facilitate the set-up process.


Other automotive trends include the increasing use of touch screens as the primary interface for the vehicle. These touch screen interface units, typically located in the dashboard of the vehicle and called “center stack” units, are used to control various features and functions of the vehicle, for example, a built-in universal transmitter, navigation, infotainment, telematics, audio devices, climate control, and the like. The center stack communicates with an in-vehicle computing device to facilitate these features and functions. With the number of features available on the center stack, setting up the different features presents an increasing effort on the part of the vehicle user, especially upon first acquiring the vehicle.





BRIEF DESCRIPTION OF THE DRAWINGS

The in-vehicle transmitter training is set forth in the following detailed description, particularly in conjunction with the drawings, wherein:



FIGS. 1A and 1B comprise a flow diagram showing example communications among several elements of a vehicle, network, and a movable barrier operator system;



FIG. 2 comprises a series of example screens as may be displayed on a center stack display unit; and



FIG. 3 comprises a series of example screens as may be displayed on a center stack display unit;



FIG. 4 is an example block diagram of the communication between the vehicle, network, and movable barrier operator system;



FIG. 5 is an example block diagram of the vehicle of FIG. 4;



FIG. 6 is an example block diagram of the movable barrier operator system of FIG. 4; and



FIG. 7 is an example block diagram of a remote computer associated with the network of FIG. 4.





Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions and/or relative positioning of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of various embodiments of the present invention. Also, common but well-understood elements that are useful or necessary in a commercially feasible embodiment are often not depicted in order to facilitate a less obstructed view of these various embodiments. It will further be appreciated that certain actions and/or steps may be described or depicted in a particular order of occurrence while those skilled in the art will understand that such specificity with respect to sequence is not actually required. It will also be understood that the terms and expressions used herein have the ordinary technical meaning as is accorded to such terms and expressions by persons skilled in the technical field as set forth above except where different specific meanings have otherwise been set forth herein.


DETAILED DESCRIPTION

Generally speaking, pursuant to these various embodiments, an in-vehicle or center stack control system can be used to facilitate training of a vehicle mounted universal transmitter in a way that allows a user to forego use of supplemental/additional resources such as paper-based or electronic-based tutorials, videos or instructions. In certain approaches, an internet connection is not needed to allow the user to set up the transmitter to control a movable barrier operator or other controllable device, such as a light or door lock.


In one aspect of the present disclosure, an in-vehicle apparatus is provided that includes a transmitter operable to transmit radio frequency control signals, and communication circuitry configured to communicate with a remote computer via a network. The communication circuitry is configured to receive information from the remote computer via the network, the information pertaining to one or more controllable devices including a movable barrier operator system associated with a user account. The controllable devices may include, for example, a light, a lock, and/or a security system of a home. The in-vehicle apparatus includes a user interface configured to receive a user input requesting control of the movable barrier operator system and a processor operably coupled to the transmitter, communication circuitry, and user interface.


The processor is configured to communicate with the remote computer, via the communication circuitry, a transmitter identifier representative of a transmitter code of the transmitter. The communication may involve the communication circuitry communicating the transmitter identifier to the remote computer. For example, the transmitter identifier may include a hash of a fixed code of the transmitter and the processor causes the communication circuitry to communicate the hash of the fixed code to the remote computer. As another example, the communication may involve the communication circuitry receiving the transmitter identifier from the remote computer. For example, the transmitter identifier may include encoded information that is decoded by the processor and used by the processor to set the transmitter code, such as a one-time-use passcode.


The processor is configured to effect the movable barrier operator to change a state of a movable barrier (e.g., a garage door) by causing the transmitter to transmit a first radio frequency control signal to the movable barrier operator system, wherein the first radio frequency control signal includes the transmitter code. The processor is further configured to effect the movable barrier operator to learn the transmitter by causing the transmitter to transmit a second radio frequency control signal to the movable barrier operator system. In this manner, the in-vehicle apparatus may cause the movable barrier operator to change the state of the movable barrier via the first radio frequency control signal and may cause the movable barrier operator to learn the transmitter via the second radio frequency control signal.


In one embodiment, the processor is configured to cause the transmitter to transmit the first radio frequency control signal at a first frequency and transmit the second radio frequency control signal at a second frequency different than the first frequency. For example, the first frequency may be in the range of approximately 300 MHz to approximately 400 MHz and the second frequency may be in the range of approximately 900 MHz to approximately 1 GHz. The different frequencies of the first and second radio frequency control signals may facilitate the movable barrier operator identifying the first radio frequency control signal including the transmitter code and changing the state of the movable barrier.


In another aspect of the present disclosure, a movable barrier operator system is provided that includes a motor and communication circuitry configured to receive an add transmitter request from a remote computer via a network, the add transmitter request including a transmitter identifier. The communication circuitry is configured to receive a first radio frequency control signal and a second radio frequency control signal from an unknown in-vehicle transmitter, wherein the first radio frequency control signal includes a transmitter code. The movable barrier operator system includes processor circuitry configured to cause the motor to change a state of the movable barrier upon the transmitter code of the first radio frequency control signal corresponding to the transmitter identifier. The processor circuitry is further configured to learn the unknown in-vehicle transmitter in response to the communication circuitry receiving the second radio frequency control signal.


For example, the transmitter code may include a fixed code of the unknown in-vehicle transmitter and the transmitter identifier may include a hash of the fixed code. The processor may perform a hash function on the fixed code hash to determine the fixed code. The processor circuitry may determine that the transmitter code corresponds to the transmitter identifier if the fixed code determined using the hash function matches the fixed code of the first radio frequency control signal. In another approach, the processor circuitry may determine that the transmitter code corresponds to the transmitter identifier if the similarity of the transmitter code and the transmitter identifier is greater than a threshold.


Referring now to the drawings, and in particular to FIG. 1 constituted by FIGS. 1A and 1B, an illustrative process 100 that is compatible with many of these teachings will now be presented. A user 102 selects a programming method via a software-based application (or “app”) in a user interface such as the center stack 104. The center stack 104 communicates with the vehicle's computing system to activate or open a network connection between the vehicle and a wide-area network such as the Internet. In the example of FIG. 1A, this connection includes a 4G radio 106 disposed in the vehicle that communicates with a 4G network 108, thereby providing access to the Internet. In other examples, other technologies and/or wide area networks (e.g., Long Term Evolution (LTE), 5G/NR, etc.) available to allow an Internet connection for the vehicle may be used. As illustrated, the 4G radio 106 in the vehicle communicates with a 4G network 108 to connect to a remote computer 110, such as a cloud based computing system or middleware, executing a server or service associated with the software client app in the vehicle, here labeled the “myQ cloud.” If the user is using the software client app for the first time, the user may login to the cloud based account via the client app on the center stack 104. This login will then request labels (e.g., human-readable names or identifiers) of devices associated with the user's account that are stored in the cloud-based account. In response to this request, the cloud-based account will return the device labels through the 4G network 108 to the 4G radio 106 in the vehicle, which then will present or otherwise display the returned device labels on the center stack 104. In this example, the user may then map the device labels to particular virtual or physical buttons or other user interface features in the vehicle or in the center stack 104.


In certain examples, software available on the center stack 104 or in a transmitter, such as universal transmitter 112 shown as “ARQ2,” mounted in the car may generate codes for each or a set of the devices having labels mapped thereto. The codes are generated independently of the labels downloaded from the cloud based system 110. The codes can be used to facilitate pairing of the transmitter 112 and the mapped devices upon arrival of the vehicle at the home. As illustrated in FIG. 1A, the vehicle based universal transmitter 112 labeled ARQ2 generates and sends these codes called Ecodes to the cloud-based system (labeled myQ Cloud) via the vehicle's 4G radio 106 and the Internet connected 4G network 108. The cloud based system 110 in turn delivers the Ecodes via the Internet to the home based or local network 114 (although the network may be instantiated at any physical location, not necessarily a home), which is operatively connected to a hub device 116 (or optionally the end device itself such as the movable barrier operator, light, lock, and the like). The hub device 116 (or end device) stores the code for later pairing with the transmitter device 112. Optionally, the hub device 116 may send a success acknowledgement through the home network 114, cloud-based system 110, and 4G internet connection 108 to the vehicle-based radio for receipt by the vehicle center stack software app and the vehicle based universal transmitter 112, which may acknowledge this receipt in the user display of the center stack 104.


Turning to FIG. 1B, an example method 150 for completing the learning of the universal transmitter 112 to the home-based device is shown. When the user 102 arrives at home with the vehicle, the user may select one of the previously mapped buttons or user interface elements such as a touch element of the center stack 104 to attempt to operate the associated home-based device. In the illustrated example, user presses the button for operating the movable barrier operator (MBO) 118 on the center stack 104. The center stack 104 receives the button press, and signals to the universal transmitter 112 to send a code signal to the receiving device in the home, here illustrated as the hub device 116 (or, as discussed with reference to FIG. 1A, optionally the end device itself such as the movable barrier operator 118, light, lock, and the like). In this example, the signal sent by the universal transmitter 112 is in the range of a 300 MHz-400 MHz frequency signal as is customary for certain movable barrier operators, such as garage door openers. The hub device 116 compares this signal (sent from the universal transmitter 112 and received by hub device 116) to the previously received Ecode signal to determine whether the signal received from the universal transmitter 112 corresponds to the previously received Ecode (see FIG. 1A—operations of: Generate and send Ecodes for each learned device; Send Ecode for each learned device (4G); Cloud forwards Ecode for each myQ device learned; and Add Ecodes to Whitelist). Based on this determination or comparison of the previously-received (indirectly via network) Ecode and the newly-received (transmitted 300 MHz-400 MHz) Ecode, the hub device 116 operates the movable barrier operator 118 if the comparison result is true (i.e., Ecodes substantially match or match in a relevant portion thereof) and sends an acknowledgement signal back to the universal transmitter 112. A door position sensor 120 may be used to detect when the position of the movable barrier changes. In the illustrated example, the system uses this exchange of signals to configure the universal transmitter 112 to operate in future activations in a 900 MHz-1 GHz transmission mode. Therefore, additional actuations by the user of the garage button in the center stack 104 cause the universal transmitter 112 to send associated signaling to the hub device 116 or movable barrier operator 118 using 900 MHz-1 GHz signaling. So configured, the system is able to pair the universal transmitter 112 with the home based device with minimal interaction by the user. Moreover, from the user's perspective, logging into the cloud based system on the vehicle center stack 104 before even reaching home appears to have configured the transmitter 112 for use with the home based devices. If the 900 MHZ-1 GHz signaling was unsuccessful in permitting the movable barrier operator 118 to learn the universal transmitter 112, the method 150 may include defaulting back to signals in the 300 MHz-400 MHz band to complete learning as shown in FIG. 1B.


An example series of graphical user interface screens displayed to the user in setting up the universal transmitter 112 according to an illustrative process 200 is illustrated in FIG. 2. At screen 202 presentation of the list of devices (e.g., device labels) downloaded from the user's cloud-based account or as may be available for use with the universal transmitter 112 is shown. In this example, the user selects the movable barrier operator 118 for device setup. In response to this selection, screen 204 is displayed, which asks whether the user has the original movable barrier operator transmitter available to assist in training the universal transmitter 112 mounted within the vehicle. If yes, the center stack 104 will proceed through screens 206, 208, and 210 as illustrated in FIG. 2. In screen 206 the user is instructed to press and hold the button of the original movable barrier operator transmitter to allow for training the universal transmitter 112 mounted in the vehicle. The center stack 104 instruction guides the user through this process by including specific instructions in screen 206 for the user to follow. After pressing “next” on screen 206, the center stack 104 will display screen 208 to inform the user with respect to the connection process, eventually transitioning to screen 210 to indicate success in the universal transmitter's 112 receiving the signal from the original transmitter.


Turning to FIG. 3, an additional series of example graphical user interface screens displayed by the center stack 104 is illustrated. This sequence of screens will be displayed in connection with operating the movable barrier operator 118 according to an illustrative process 300, for example, when the user arrives home with a new vehicle having a universal transmitter 112 as described above with respect to FIG. 1. In this sequence, a garage icon is provided in screen 302 for the user to select (e.g., via a tap, press, long press, multi-point gesture, etc.) to trigger the universal transmitter 112 to transmit a signal to operate the movable barrier operator 118. In some situations, a second signal may be sent from the universal transmitter 112 to the universal movable barrier operator 118 to facilitate pairing of the transmitter 112 and the opener 118. In that situation, screen 304 provides another icon prompt for the user to select in order to trigger the universal transmitter 112 to send the additional signal. If this is the first time that the universal transmitter 112 has been used, screen 306 may be provided to allow the user to confirm whether the movable barrier (e.g., garage door) has been moved. If the movement was successful, the user may be prompted in screen 308 to provide an additional name or label for the movable barrier operator 118, especially if this is a new movable barrier operator as opposed to one that was associated with the label downloaded in accord with the process 100 described above with reference to FIG. 1. If the user instead indicates on screen 306 that the movable barrier did not move, an additional set up process may be initiated in response to the user feedback.


A different set of screens may be presented if interaction with the end device facilitates pairing the end device with the universal transmitter 112. For example, a screen can be presented to instruct the user to find and press a learn button or program button on the end device.


An additional series of screens may be used to step the user through the pairing process for certain types of end devices. For example, a series of garage icons is presented to prompt the user to press the respective icons, which in turn triggers the universal transmitter 112 to send various signaling to the end device as may be employed to train the universal transmitter 112 to operate with that end device. For example, a screen may prompt the user to press the garage icon, and a second screen prompts the user to press a second garage icon to facilitate programming between the universal transmitter 112 and the end device. A third screen prompts the user to press the garage icon again to test whether the pairing was successful. A fourth screen requests confirmation from the user as to whether the movable barrier moved as a result of this training process. If successful, a screen can be provided to allow the user to customize or provide a new name or label for the newly learned movable barrier operator 118.


With reference now to FIG. 4, a vehicle 400 may be a “connected car” in communication with the remote computer 110 via the network 108, such as a 4G network or other long-range or wide-area wireless networks (e.g., LoRaWan, vehicle to anything (V2X), or WiMax networks and the internet). The remote computer 110 may include a server computer associated with a movable barrier operator system 420, for example, maintained and/or operated by a manufacturer of the movable barrier operator system 420. As discussed with regard to FIG. 1A, the vehicle 400 may communicate with remote computer 110 to receive a list of the controllable devices associated with a user account. The user may program the vehicle 400 to control one or more of the controllable devices associated with the user account via the universal transmitter 112. The vehicle 400 may communicate a transmitter identifier to the remote computer 110 for the remote computer 110 to send to the movable barrier operator system 420 for learning the universal transmitter 112 to the movable barrier operator system 420. The transmitter identifier code may include a code, token, or credential as some examples. The movable barrier operator system 420 may determine whether signals received include the transmitter identifier. If a signal is determined to include the transmitter identifier, the movable barrier operator system 420 may begin to learn the universal transmitter 112 to the movable barrier operator system 420. As one example, the transmitter identifier includes a fixed portion of code of the universal transmitter 112 that identifies the universal transmitter 112. The fixed portion of the code may be hashed or encrypted by the vehicle 400 or remote computer 110 before transmission across the network 108. The movable barrier operator system 420 may be configured to compare the hashed or encrypted code with the code received from the vehicle 400 to determine whether the codes correspond to one another.


The remote computer 110 may be in communication with the movable barrier operator system 420 via the network 108, e.g., the internet and a local Wi-Fi network. The remote computer 110 may be configured to control and/or monitor the status of the movable barrier operator system 420. For example, the remote computer 110 may communicate control signals to the movable barrier operator system 420 to change the state (e.g., open/close) of an associated movable barrier, e.g., a garage door.


The movable barrier operator system 420 may be configured to receive signals from the universal transmitter 112 of the vehicle 400, for example, radio frequency (RF) signals. The movable barrier operator system 420 may be configured to monitor for a signal that includes the transmitter identifier received from the vehicle 400 via the remote computer 110. To determine whether a signal includes the transmitter identifier, the movable barrier operator system 420 may compare a RF signal received to the transmitter identifier received from the remote computer 110. If a signal sufficiently corresponds to the transmitter identifier, the movable barrier operator system 420 may enter a learn mode or communicate with the universal transmitter 112 of the vehicle to learn the universal transmitter 112 to the movable barrier operator system 420.


Regarding FIG. 5, the vehicle 400 may include processor circuitry 402 and memory 404. The memory 404 may store programs and instructions for execution by the processor circuitry 402 to carry out the functionality of the vehicle 400 computer system. This may include, as examples, instantiating the vehicle navigation system and/or infotainment system. The processor circuitry 402 may communicate with remote devices via the communication circuitry 406. As an example, the communication circuitry 406 may facilitate communication between the processor circuitry 402 and devices on network 108, e.g., the remote computer 110. The communication circuitry 406 may be configured to communicate over one or more wireless communication protocols including, for example, wireless fidelity (Wi-Fi), cellular such as 3G, 4G, 4G LTE, 5G, radio frequency (RF), infrared (IR), Bluetooth (BT), Bluetooth Low Energy (BLE), Zigbee and near field communication (NFC). The processor circuitry 402 may also be configured to control the universal transmitter 112. The universal transmitter 112 may be configured to communicate via RF signals, e.g., the RF signals may be in the 300 MHz-400 MHz range, such as 310 MHz, 315 MHz, 390 MHz, and/or in the 900 MHz-1 GHz range, such as 900 MHz. The transmitter 112 may be configured as a transceiver to both send and receive RF signals.


The vehicle 400 may include a user interface such as a human machine interface 408. The human machine interface 408 may include a touchscreen display, such as a display of the center stack 104 or infotainment system of the vehicle 400. Additionally or alternatively, the human machine interface 408 may include an augmented reality display or heads-up display, button(s), a microphone, and/or speaker(s) 125 as examples. Upon receiving device labels from the cloud-based account, one or more aspects of the human machine interface 408 may be used to control the end devices of the cloud-based account. For example, the user may associate a physical or virtual button with a movable barrier operator 118 such that when the button is selected, a control signal is output for that movable barrier operator 118. As another example, the user may speak a command into a microphone of the vehicle 400, e.g., “Open left garage door,” to cause the vehicle 400 to output a control signal for that movable barrier operator 118.


Regarding FIG. 6, the movable barrier operator system 420 may include the movable barrier operator 118, the door position sensor 120, and a hub device 116. The movable barrier operator 118 includes a controller 422 that includes processor circuitry 424 and memory 426. The memory 426 is non-transitory computer readable media that may store programs and information. The memory 426 may store learned transmitters in a whitelist of transmitters. The movable barrier operator 118 may be actuated in response to receiving a control signal from a learned transmitter that has been stored in the whitelist. The whitelist may include a fixed code and a changing (e.g., rolling) code of learned transmitters. The memory 426 may store the transmitter identifier for comparison to signals received via the communication circuitry 428. The processor circuitry 424 may be configured to process signals received via the communication circuitry 428 to determine whether to change the state of the movable barrier or to learn a transmitter into the whitelist of transmitters in memory 426.


The controller 422 may be in communication with the communication circuitry 428. The communication circuitry 428 enables the movable barrier operator 118 to communicate with devices external to the movable barrier operator 118 directly and/or over network 402. The controller 422 may communicate with the remote computer 110 and the movable barrier operator system 420 via communication circuitry 428. The communication circuitry 428 may enable the movable barrier operator 118 to communicate over wireless protocols, for example, wireless fidelity (Wi-Fi), cellular, radio frequency (RF), infrared (IR), Bluetooth (BT), Bluetooth Low Energy (BLE), Zigbee and near field communication (NFC).


The controller 422 is configured to operate the motor 430. The controller 422 may operate the motor 430 in response to a state change request received via the communication circuitry 428 to operate the motor 430. The motor 430 may be coupled to the movable barrier to change the state of the movable barrier, i.e., move the movable barrier to an open, closed, or intermediate position. The controller 422 may also be in communication with a door position sensor 120. The door position sensor 120 may be used to monitor the state of the movable barrier, e.g., open, closed, or in between states. The door position sensor 120 may be as an example a tilt sensor. As another example, the door position sensor 120 may detect door position by monitoring movement of one or more components of a transmission of the movable barrier operator 118 such as via an optical encoder.


The movable barrier operator system 420 may optionally include a hub device 116. The hub device 116 may be used to facilitate communication between the movable barrier operator 118 and the network 108. The hub device 116 may be configured to communicate with the remote computer 110 via the network 108. The hub device 116 may send control commands to the movable barrier operator 118 to change the state of the movable barrier. The hub device 116 may be configured to communicate with the movable barrier operator 118 via a wired or wireless connection, e.g., via an RF signal. The hub device 116 may be configured to receive RF signals from the transmitter 112 of the vehicle 400. The hub device 116 may learn the transmitter 112 as described in relation to the movable barrier operator 118.


With reference to FIG. 7, the remote computer 110 includes processor circuitry 440 in operative communication with memory 444 and communication circuitry 442. The processor circuitry 440 may be configured to receive the transmitter identifier from the vehicle 400 and store the transmitter identifier in memory 444. The processor circuitry 440 may be configured to encrypt or hash all or a portion of the transmitter identifier. The processor circuitry 440 may send the transmitter identifier to the movable barrier operator system 420. The communication circuitry 442 enables the remote computer 110 to communicate with other devices over the network 108, for example the internet. Specifically, the communication circuitry 442 enables the remote computer 110 to send information to and receive information from the vehicle 400 and movable barrier operator system 420. The remote computer 110 may be associated with the movable barrier operator 118 and/or the hub device 116. As one example, the remote computer 110 is a server computer associated with a client application that is configured to control movable barrier operator 118. The client application may be instantiated in a user device such as the center stack 104, a smartphone, a wearable such as a smartwatch, tablet computer, and/or personal computer.


The memory 444 may include a database of user accounts 446. The user account may be an account that associates a user with one or more movable barrier operators and/or other controllable devices. The user account may be used to remotely control the movable barrier operator, for example, via a smartphone application. The memory 444 may also include a database of controllable devices 448 associated with the user accounts. The database of controllable devices 448 may be a list of devices such as movable barrier operators a user associates with their user account upon installation or for remote control. Upon a request from the vehicle 400 for controllable devices associated with a certain user account, the remote computer 110 may send the controllable devices in the database of movable barrier operator systems 448. The user may then select, within their vehicle, which of the controllable devices they wish to control with their vehicle.


Those skilled in the art will appreciate that the above-described processes may be implemented using any of a wide variety of available and/or readily configured platforms, including partially or wholly programmable platforms as are known in the art or dedicated purpose platforms as may be desired for some applications. Those skilled in the art will recognize and appreciate that such processor devices can comprise a fixed-purpose hard-wired platform or can comprise a partially or wholly programmable platform. All of these architectural options are well known and understood in the art and require no further description here.


Uses of singular terms such as “a,” “an,” are intended to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms. It is intended that the phrase “at least one of” as used herein be interpreted in the disjunctive sense. For example, the phrase “at least one of A and B” is intended to encompass A, B, or both A and B.


While there have been illustrated and described particular embodiments of the present invention, it will be appreciated that numerous changes and modifications will occur to those skilled in the art, and it is intended for the present invention to cover all those changes and modifications which fall within the scope of the appended claims.

Claims
  • 1. A method of controlling a movable barrier operator system using an in-vehicle apparatus, the method comprising: at the in-vehicle apparatus: receiving information from a remote computer via a network, the information pertaining to one or more controllable devices including a movable barrier operator system associated with a user account;receiving a user input requesting control of the movable barrier operator system;communicating with the remote computer a transmitter identifier representative of a transmitter code of a transmitter of the in-vehicle apparatus;transmitting a first radio frequency control signal to the movable barrier operator system to effect the movable barrier operator system to change a state of a movable barrier, the first radio frequency control signal including the transmitter code; andtransmitting a second radio frequency control signal to the movable barrier operator system to effect the movable barrier operator system to learn the transmitter.
  • 2. The method of claim 1 wherein transmitting the first radio frequency control signal includes transmitting the first radio frequency control signal at a first frequency, and wherein transmitting the second radio frequency control signal includes transmitting the second radio frequency control signal at a second frequency different than the first frequency.
  • 3. The method of claim 2 wherein the first frequency is in the range of approximately 300 MHz to approximately 400 MHz; and wherein the second frequency is in the range of approximately 900 MHz to approximately 1 GHz.
  • 4. The method of claim 1 further comprising communicating a credential of the user account to the remote computer via the network.
  • 5. The method of claim 4 further comprising receiving the credential from a user.
  • 6. The method of claim 1 wherein the transmitter code includes a fixed code of the transmitter; and wherein transmitting the second radio frequency control signal includes transmitting the fixed code and a changing code of the transmitter.
  • 7. The method of claim 1 wherein communicating the transmitter identifier includes communicating a hash of the transmitter code with the remote computer.
  • 8. The method of claim 1 wherein communicating with the remote computer includes receiving the transmitter identifier from the remote computer; and further comprising determining the transmitter code based at least in part on the transmitter identifier.
  • 9. The method of claim 1 wherein transmitting the second radio frequency control signal includes transmitting the transmitter code.
  • 10. The method of claim 1 further comprising receiving first and second user inputs via a user interface; and wherein transmitting the first radio frequency control signal includes transmitting the first radio frequency control signal in response to the user interface receiving the first user input; andwherein transmitting the second radio frequency control signal includes transmitting the second radio frequency control signal in response to the user interface receiving the second user input.
  • 11. The method of claim 1 further comprising presenting via a display of the in-vehicle apparatus a representation of the movable barrier operator system based at least in part on the information received from the remote computer.
  • 12. A non-transitory computer readable medium having program instructions that, when executed by a processor of an in-vehicle apparatus, cause performance of operations comprising: receiving information from a remote computer via a network, the information pertaining to one or more controllable devices including a movable barrier operator system associated with a user account;receiving a user input requesting control of the movable barrier operator system;communicating with the remote computer a transmitter identifier representative of a transmitter code of a transmitter of the in-vehicle apparatus;transmitting a first radio frequency control signal to the movable barrier operator system to effect the movable barrier operator system to change a state of a movable barrier, the first radio frequency control signal including the transmitter code; andtransmitting a second radio frequency control signal to the movable barrier operator system to effect the movable barrier operator system to learn the transmitter.
  • 13. The non-transitory computer readable medium of claim 12 wherein transmitting the first radio frequency control signal includes transmitting the first radio frequency control signal at a first frequency, and wherein transmitting the second radio frequency control signal includes transmitting the second radio frequency control signal at a second frequency different than the first frequency.
  • 14. The non-transitory computer readable medium of claim 13 wherein the first frequency is in the range of approximately 300 MHz to approximately 400 MHz; and wherein the second frequency is in the range of approximately 900 MHz to approximately 1 GHz.
  • 15. The non-transitory computer readable medium of claim 12 wherein the operations further comprise, communicating a credential of the user account to the remote computer via the network.
  • 16. The non-transitory computer readable medium of claim 15 wherein the operations further comprise receiving, via a user interface, the credential from a user.
  • 17. The non-transitory computer readable medium of claim 12 wherein the transmitter code includes a fixed code of the transmitter; and wherein transmitting the second radio frequency control signal includes transmitting the fixed code and a changing code of the transmitter.
  • 18. The non-transitory computer readable medium of claim 12 wherein communicating the transmitter identifier includes communicating a hash of the transmitter code with the remote computer.
  • 19. The non-transitory computer readable medium of claim 12 wherein communicating with the remote computer includes receiving the transmitter identifier from the remote computer; and wherein the operations further comprise determining the transmitter code based at least in part on the transmitter identifier.
  • 20. The non-transitory computer readable medium of claim 12 wherein transmitting the second radio frequency control signal includes transmitting the transmitter code.
  • 21. The non-transitory computer readable medium of claim 12 wherein the operations further comprise receiving first and second user inputs; and wherein transmitting the first radio frequency control signal includes transmitting the first radio frequency control signal in response to receiving the first user input; andwherein transmitting the second radio frequency control signal includes transmitting the second radio frequency control signal in response to receiving the second user input.
  • 22. The non-transitory computer readable medium of claim 12 wherein the operations further comprise presenting via a display of the in-vehicle apparatus a representation of the movable barrier operator system based at least in part on the information received from the remote computer.
  • 23. A method of controlling a movable barrier operator system, the method comprising: receiving, via communication circuitry of the movable barrier operator system, an add transmitter request from a remote computer via a network, the add transmitter request including a transmitter identifier;receiving, via the communication circuitry, a first radio frequency control signal and a second radio frequency control signal from an unknown in-vehicle transmitter, the first radio frequency control signal including a transmitter code;causing a motor of the movable barrier operator system to change a state of a movable barrier upon a determination that the transmitter code of the first radio frequency control signal corresponds to the transmitter identifier; andlearning the unknown in-vehicle transmitter in response to the communication circuitry receiving the second radio frequency control signal.
  • 24. The method of claim 23 wherein receiving the first radio frequency control signal and the second radio frequency control signal includes receiving the first radio frequency control signal at a first frequency, and receiving the second radio frequency control signal at a second frequency different than the first frequency.
  • 25. The method of claim 24 wherein the first frequency is in the range of approximately 300 MHz to approximately 400 MHz; and wherein the second frequency is in the range of approximately 900 MHz to approximately 1 GHz.
  • 26. The method of claim 23 wherein the transmitter code includes a fixed code of the unknown in-vehicle transmitter; and wherein learning the unknown in-vehicle transmitter includes storing the fixed code in a memory.
  • 27. The method of claim 26 wherein receiving the second radio frequency control signal includes receiving a changing code; and wherein learning the unknown in-vehicle transmitter includes storing the changing code in the memory.
  • 28. The method of claim 23 wherein the transmitter identifier includes a hash of the transmitter code, the method further comprising: at a processor of the movable barrier operator system: making the determination that the transmitter code of the first radio frequency control signal corresponds to the transmitter identifier includes performing a hash function on the transmitter code.
  • 29. The method of claim 23 wherein learning the unknown in-vehicle transmitter includes learning the unknown in-vehicle transmitter in response to the second radio frequency control signal including the transmitter code.
  • 30. The method of claim 23 wherein receiving the first and second radio frequency control signals includes receiving the first and second radio frequency control signals at different first and second frequencies; and wherein learning the unknown in-vehicle transmitter includes transmitting a radio frequency communication to the unknown in-vehicle transmitter at the second frequency as part of learning the unknown in-vehicle transmitter.
  • 31. A server computer comprising: a memory operable to store information pertaining to one or more controllable devices including a movable barrier operator system associated with a user account;communication circuitry operable to communicate with an in-vehicle apparatus and the movable barrier operator system via a network; anda processor operably coupled to the communication circuitry and the memory, the processor configured to: communicate to the in-vehicle apparatus, via the communication circuitry, the information pertaining to the one or more controllable devices;communicate with the in-vehicle apparatus, via the communication circuitry, a transmitter identifier representative of a transmitter code of a transmitter of the in-vehicle apparatus; andcommunicate to the movable barrier operator system, via the communication circuitry, an add transmitter request including the transmitter identifier, the add transmitter request configured to facilitate determination by the movable barrier operator system, upon receipt by the movable barrier operator system of a first radio frequency control signal including the transmitter code from the transmitter of the in-vehicle apparatus, that the transmitter code corresponds to the transmitter identifier, and the add transmitter request further configured to facilitate learning of the transmitter of the in-vehicle apparatus by the movable barrier operator system upon receipt of a second radio frequency control signal from the in-vehicle apparatus.
  • 32. The server computer of claim 31 wherein the processor is configured to communicate the information pertaining to the one or more controllable devices in response to receiving a credential of the user account from the in-vehicle apparatus via the network.
  • 33. The server computer of claim 31 wherein the transmitter code includes a fixed code of the transmitter.
  • 34. The server computer of claim 31 wherein the transmitter identifier includes a hash of the transmitter code; and wherein the processor is configured to cause the communication circuitry to communicate the hash of the transmitter code with the in-vehicle apparatus.
  • 35. The server computer of claim 31 wherein the communication circuitry is configured to transmit the transmitter identifier to the in-vehicle apparatus via the network for the in-vehicle apparatus to determine the transmitter code based at least in part on the transmitter identifier.
  • 36. The server computer of claim 31 wherein the communication circuitry is configured to receive the transmitter identifier from the in-vehicle apparatus via the network.
  • 37. A non-transitory computer readable medium having program instructions that, when executed by a processor of a server computer, cause performance of operations comprising: storing in a memory information pertaining to one or more controllable devices including a movable barrier operator system associated with a user account;communicating to an in-vehicle apparatus the information pertaining to the one or more controllable devices;communicating with the in-vehicle apparatus a transmitter identifier representative of a transmitter code of a transmitter of the in-vehicle apparatus; andcommunicating to the movable barrier operator system an add transmitter request including the transmitter identifier, the add transmitter request configured to facilitate determination by the movable barrier operator system, upon receipt by the movable barrier operator system of a first radio frequency control signal including the transmitter code from the transmitter of the in-vehicle apparatus, that the transmitter code corresponds to the transmitter identifier, and the add transmitter request further configured to facilitate learning of the transmitter of the in-vehicle apparatus by the movable barrier operator system upon receipt of a second radio frequency control signal from the in-vehicle apparatus.
CROSS-REFERENCE TO RELATED APPLICATIONS

This is a continuation of U.S. patent application Ser. No. 16/871,844, filed May 11, 2020, entitled IN-VEHICLE TRANSMITTER TRAINING, which application claims the benefit of U.S. Provisional application No. 62/848,764, filed May 16, 2019, entitled IN-VEHICLE TRANSMITTER TRAINING, which is incorporated by reference in its entirety herein.

US Referenced Citations (638)
Number Name Date Kind
29525 Sherman Aug 1860 A
30957 Campbell Dec 1860 A
35364 Cox May 1862 A
803047 Browne Oct 1905 A
2405500 Gustav Aug 1946 A
2963270 Magarian Dec 1960 A
3716865 Willmott Feb 1973 A
3735106 Hollaway May 1973 A
3792446 McFiggins Feb 1974 A
3798359 Feistel Mar 1974 A
3798360 Feistel Mar 1974 A
3798544 Norman Mar 1974 A
3798605 Feistel Mar 1974 A
3845277 Spetz Oct 1974 A
3890601 Pietrolewicz Jun 1975 A
3906348 Willmott Sep 1975 A
3938091 Atalla Feb 1976 A
4037201 Willmott Jul 1977 A
4064404 Willmott Dec 1977 A
RE29525 Willmott Jan 1978 E
4078152 Tuckerman Mar 1978 A
4097859 Looschen Jun 1978 A
4138735 Allocca Feb 1979 A
4178549 Ledenbach Dec 1979 A
4195196 Feistel Mar 1980 A
4195200 Feistel Mar 1980 A
4196310 Forman Apr 1980 A
4218738 Matyas Aug 1980 A
4243976 Warner Jan 1981 A
4255742 Gable Mar 1981 A
4304962 Fracassi Dec 1981 A
4305060 Apple Dec 1981 A
4316055 Feistel Feb 1982 A
4326098 Bouricius Apr 1982 A
4327444 Court Apr 1982 A
4328414 Atalla May 1982 A
4328540 Matsuoka May 1982 A
RE30957 Feistel Jun 1982 E
4380762 Capasso Apr 1983 A
4385296 Tsubaki May 1983 A
4387455 Schwartz Jun 1983 A
4387460 Boutmy Jun 1983 A
4393269 Konheim Jul 1983 A
4418333 Schwarzbach Nov 1983 A
4426637 Apple Jan 1984 A
4445712 Smagala-Romanoff May 1984 A
4447890 Duwel May 1984 A
4454509 Buennagel Jun 1984 A
4464651 Duhame Aug 1984 A
4468787 Keiper Aug 1984 A
4471493 Schober Sep 1984 A
4471593 Ragland Sep 1984 A
4491774 Schmitz Jan 1985 A
4509093 Stellberger Apr 1985 A
4529980 Liotine Jul 1985 A
4535333 Twardowski Aug 1985 A
4566044 Langdon Jan 1986 A
4574247 Jacob Mar 1986 A
4578530 Zeidler Mar 1986 A
4580111 Swanson Apr 1986 A
4581606 Mallory Apr 1986 A
4590470 Koenig May 1986 A
4593155 Hawkins Jun 1986 A
4596898 Pemmaraju Jun 1986 A
4596985 Bongard Jun 1986 A
4599489 Cargile Jul 1986 A
4602357 Yang Jul 1986 A
4611198 Levinson Sep 1986 A
4623887 Welles Nov 1986 A
4626848 Ehlers Dec 1986 A
4628315 Douglas Dec 1986 A
4630035 Stahl Dec 1986 A
4633247 Hegeler Dec 1986 A
4638433 Schindler Jan 1987 A
4646080 Genest Feb 1987 A
4652860 Weishaupt Mar 1987 A
4653076 Jerrim Mar 1987 A
4670746 Taniguchi Jun 1987 A
4677284 Genest Jun 1987 A
4686529 Kleefeldt Aug 1987 A
4695839 Barbu Sep 1987 A
4703359 Rumbolt Oct 1987 A
4710613 Shigenaga Dec 1987 A
4716301 Willmott Dec 1987 A
4720860 Weiss Jan 1988 A
4723121 Van Feb 1988 A
4731575 Sloan Mar 1988 A
4737770 Brunius Apr 1988 A
4740792 Sagey Apr 1988 A
4750118 Heitschel Jun 1988 A
4754255 Sanders Jun 1988 A
4755792 Pezzolo Jul 1988 A
4758835 Rathmann Jul 1988 A
4761808 Howard Aug 1988 A
4779090 Micznik Oct 1988 A
4794268 Nakano Dec 1988 A
4794622 Isaacman Dec 1988 A
4796181 Wiedemer Jan 1989 A
4799061 Abraham Jan 1989 A
4800590 Vaughan Jan 1989 A
4802114 Sogame Jan 1989 A
4804938 Rouse Feb 1989 A
4807052 Amano Feb 1989 A
4808995 Clark Feb 1989 A
4825200 Evans Apr 1989 A
4825210 Bachhuber Apr 1989 A
4829296 Clark May 1989 A
4831509 Jones May 1989 A
4835407 Kataoka May 1989 A
4845491 Fascenda Jul 1989 A
4847614 Keller Jul 1989 A
4850046 Philippe Jul 1989 A
4855713 Brunius Aug 1989 A
4856062 Weiss Aug 1989 A
4856081 Smith Aug 1989 A
4859990 Isaacman Aug 1989 A
4870400 Downs Sep 1989 A
4878052 Schulze Oct 1989 A
4881148 Lambropoulos Nov 1989 A
4885778 Weiss Dec 1989 A
4888575 De Vaulx Dec 1989 A
4890108 Drori Dec 1989 A
4893338 Pastor Jan 1990 A
4905279 Nishio Feb 1990 A
4910750 Fisher Mar 1990 A
4912463 Li Mar 1990 A
4914696 Dudczak Apr 1990 A
4918690 Markkula Apr 1990 A
4922168 Waggamon May 1990 A
4922533 Philippe May 1990 A
4928098 Dannhaeuser May 1990 A
4931789 Pinnow Jun 1990 A
4939792 Urbish Jul 1990 A
4942393 Waraksa Jul 1990 A
4951029 Severson Aug 1990 A
4963876 Sanders Oct 1990 A
4979832 Ritter Dec 1990 A
4980913 Skret Dec 1990 A
4988990 Warrior Jan 1991 A
4988992 Heitschel Jan 1991 A
4992783 Zdunek Feb 1991 A
4999622 Amano Mar 1991 A
5001332 Schrenk Mar 1991 A
5021776 Anderson Jun 1991 A
5023908 Weiss Jun 1991 A
5049867 Stouffer Sep 1991 A
5055701 Takeuchi Oct 1991 A
5058161 Weiss Oct 1991 A
5060263 Bosen Oct 1991 A
5091942 Dent Feb 1992 A
5103221 Memmola Apr 1992 A
5107258 Soum Apr 1992 A
5126959 Kurihara Jun 1992 A
5136548 Claar Aug 1992 A
5144667 Pogue Sep 1992 A
5146067 Sloan Sep 1992 A
5148159 Clark Sep 1992 A
5150464 Sidhu Sep 1992 A
5153581 Hazard Oct 1992 A
5159329 Lindmayer Oct 1992 A
5168520 Weiss Dec 1992 A
5193210 Nicholas Mar 1993 A
5197061 Halbert-Lassalle Mar 1993 A
5220263 Onishi Jun 1993 A
5224163 Gasser Jun 1993 A
5237614 Weiss Aug 1993 A
5252960 Duhame Oct 1993 A
5278907 Snyder Jan 1994 A
5280527 Gullman Jan 1994 A
5331325 Miller Jul 1994 A
5361062 Weiss Nov 1994 A
5363448 Koopman Nov 1994 A
5365225 Bachhuber Nov 1994 A
5367572 Weiss Nov 1994 A
5369706 Latka Nov 1994 A
5412379 Waraksa May 1995 A
5414418 Andros May 1995 A
5420925 Michaels May 1995 A
5442340 Dykema Aug 1995 A
5442341 Lambropoulos Aug 1995 A
5444737 Cripps Aug 1995 A
5463376 Stoffer Oct 1995 A
5471668 Soenen Nov 1995 A
5473318 Martel Dec 1995 A
5479512 Weiss Dec 1995 A
5485519 Weiss Jan 1996 A
5517187 Bruwer May 1996 A
5528621 Heiman Jun 1996 A
5530697 Watanabe Jun 1996 A
5554977 Jablonski Sep 1996 A
RE35364 Heitschel Oct 1996 E
5563600 Miyake Oct 1996 A
5565812 Soenen Oct 1996 A
5566359 Corrigan Oct 1996 A
5576701 Heitschel Nov 1996 A
5578999 Matsuzawa Nov 1996 A
5594429 Nakahara Jan 1997 A
5596317 Brinkmeyer Jan 1997 A
5598475 Soenen Jan 1997 A
5600653 Chitre Feb 1997 A
5608723 Felsenstein Mar 1997 A
5614891 Zeinstra Mar 1997 A
5635913 Willmott Jun 1997 A
5657388 Weiss Aug 1997 A
5673017 Dery Sep 1997 A
5678213 Myer Oct 1997 A
5680131 Utz Oct 1997 A
5686904 Bruwer Nov 1997 A
5699065 Murray Dec 1997 A
5719619 Hattori et al. Feb 1998 A
5745068 Takahashi Apr 1998 A
5774065 Mabuchi Jun 1998 A
5778348 Manduley Jul 1998 A
5838747 Matsumoto Nov 1998 A
5872513 Fitzgibbon Feb 1999 A
5872519 Issa Feb 1999 A
5898397 Murray Apr 1999 A
5923758 Khamharn Jul 1999 A
5936999 Keskitalo Aug 1999 A
5937065 Simon Aug 1999 A
5942985 Chin Aug 1999 A
5949349 Farris Sep 1999 A
6012144 Pickett Jan 2000 A
6037858 Seki Mar 2000 A
6049289 Waggamon Apr 2000 A
6052408 Trompower Apr 2000 A
6070154 Tavor May 2000 A
6094575 Anderson et al. Jul 2000 A
6130602 O'Toole Oct 2000 A
6137421 Dykema Oct 2000 A
6140938 Flick Oct 2000 A
6154544 Farris Nov 2000 A
6157719 Wasilewski Dec 2000 A
6166650 Bruwer Dec 2000 A
6175312 Bruwer Jan 2001 B1
6181255 Crimmins Jan 2001 B1
6229434 Knapp May 2001 B1
6243000 Tsui Jun 2001 B1
6275519 Hendrickson Aug 2001 B1
6366051 Nantz Apr 2002 B1
6396446 Walstra May 2002 B1
6414587 Fitzgibbon Jul 2002 B1
6414986 Usui Jul 2002 B1
6456726 Yu Sep 2002 B1
6463538 Elteto Oct 2002 B1
6496477 Perkins Dec 2002 B1
6535544 Partyka Mar 2003 B1
6549949 Bowman-Amuah Apr 2003 B1
6609796 Maki et al. Aug 2003 B2
6640244 Bowman-Amuah Oct 2003 B1
6658328 Alrabady Dec 2003 B1
6688518 Valencia Feb 2004 B1
6690796 Farris Feb 2004 B1
6697379 Jacquet Feb 2004 B1
6703941 Blaker Mar 2004 B1
6754266 Bahl Jun 2004 B2
6778064 Yamasaki Aug 2004 B1
6810123 Farris Oct 2004 B2
6829357 Alrabady Dec 2004 B1
6842106 Hughes Jan 2005 B2
6850910 Yu Feb 2005 B1
6861942 Knapp Mar 2005 B1
6917801 Witte Jul 2005 B2
6930983 Perkins Aug 2005 B2
6956460 Tsui Oct 2005 B2
6963270 Gallagher, III Nov 2005 B1
6963561 Lahat Nov 2005 B1
6978126 Blaker Dec 2005 B1
6980518 Sun Dec 2005 B1
6980655 Farris Dec 2005 B2
6988977 Gregori Feb 2006 B2
6998977 Gregori Feb 2006 B2
7002490 Lablans Feb 2006 B2
7039397 Chuey May 2006 B2
7039809 Wankmueller May 2006 B1
7042363 Katrak May 2006 B2
7050479 Kim May 2006 B1
7050794 Chuey et al. May 2006 B2
7057494 Fitzgibbon Jun 2006 B2
7057547 Olmsted Jun 2006 B2
7068181 Chuey Jun 2006 B2
7071850 Fitzgibbon Jul 2006 B1
7088218 Chuey Aug 2006 B2
7088265 Tsui Aug 2006 B2
7088706 Zhang et al. Aug 2006 B2
7139398 Candelore Nov 2006 B2
7161466 Chuey Jan 2007 B2
7205908 Tsui Apr 2007 B2
7221256 Skekloff May 2007 B2
7257426 Witkowski Aug 2007 B1
7266344 Rodriquez Sep 2007 B2
7289014 Mullet Oct 2007 B2
7290886 Cheng Nov 2007 B2
7298721 Atarashi et al. Nov 2007 B2
7301900 Laksono Nov 2007 B1
7332999 Fitzgibbon Feb 2008 B2
7333615 Jarboe Feb 2008 B1
7336787 Unger Feb 2008 B2
7346163 Pedlow Mar 2008 B2
7346374 Witkowski Mar 2008 B2
7349722 Witkowski Mar 2008 B2
7353499 De Jong Apr 2008 B2
7406553 Edirisooriya et al. Jul 2008 B2
7412056 Farris Aug 2008 B2
7415618 De Jong Aug 2008 B2
7429898 Akiyama Sep 2008 B2
7447498 Chuey et al. Nov 2008 B2
7469129 Blaker Dec 2008 B2
7489922 Chuey Feb 2009 B2
7492898 Farris et al. Feb 2009 B2
7492905 Fitzgibbon Feb 2009 B2
7493140 Mark Feb 2009 B2
7516325 Willey Apr 2009 B2
7532965 Robillard May 2009 B2
7535926 Deshpande May 2009 B1
7545942 Cohen et al. Jun 2009 B2
7548153 Gravelle et al. Jun 2009 B2
7561075 Fitzgibbon Jul 2009 B2
7564827 Das et al. Jul 2009 B2
7598855 Scalisi et al. Oct 2009 B2
7623663 Farris Nov 2009 B2
7668125 Kadous Feb 2010 B2
7741951 Fitzgibbon Jun 2010 B2
7742501 Williams Jun 2010 B2
7757021 Wenzel Jul 2010 B2
7764613 Miyake et al. Jul 2010 B2
7786843 Witkowski Aug 2010 B2
7812739 Chuey Oct 2010 B2
7839263 Shearer Nov 2010 B2
7839851 Kozat Nov 2010 B2
7855633 Chuey Dec 2010 B2
7864070 Witkowski Jan 2011 B2
7889050 Witkowski Feb 2011 B2
7911358 Bos Mar 2011 B2
7920601 Andrus Apr 2011 B2
7970446 Witkowski Jun 2011 B2
7973678 Petricoin, Jr. Jul 2011 B2
7979173 Breed Jul 2011 B2
7999656 Fisher Aug 2011 B2
8000667 Witkowski Aug 2011 B2
8014377 Zhang et al. Sep 2011 B2
8031047 Skekloff Oct 2011 B2
8049595 Olson Nov 2011 B2
8103655 Srinivasan Jan 2012 B2
8111179 Turnbull Feb 2012 B2
8130079 McQuaide, Jr. et al. Mar 2012 B2
8138883 Shearer Mar 2012 B2
8174357 Geerlings May 2012 B2
8194856 Farris Jun 2012 B2
8200214 Chutorash Jun 2012 B2
8207818 Keller, Jr. Jun 2012 B2
8208888 Chutorash Jun 2012 B2
8209550 Gehrmann Jun 2012 B2
8225094 Willey Jul 2012 B2
8233625 Farris Jul 2012 B2
8253528 Blaker Aug 2012 B2
8264333 Blaker Sep 2012 B2
8266442 Burke Sep 2012 B2
8276185 Messina et al. Sep 2012 B2
8284021 Farris et al. Oct 2012 B2
8290465 Ryu et al. Oct 2012 B2
8311490 Witkowski Nov 2012 B2
8330569 Blaker Dec 2012 B2
8384513 Witkowski Feb 2013 B2
8384580 Witkowski Feb 2013 B2
8416054 Fitzgibbon Apr 2013 B2
8422667 Fitzgibbon Apr 2013 B2
8452267 Friman May 2013 B2
8463540 Hannah et al. Jun 2013 B2
8494547 Nigon Jul 2013 B2
8531266 Shearer Sep 2013 B2
8536977 Fitzgibbon Sep 2013 B2
8544523 Mays Oct 2013 B2
8581695 Carlson et al. Nov 2013 B2
8615562 Huang et al. Dec 2013 B1
8633797 Farris et al. Jan 2014 B2
8634777 Ekbatani et al. Jan 2014 B2
8634888 Witkowski Jan 2014 B2
8643465 Fitzgibbon Feb 2014 B2
8645708 Labaton Feb 2014 B2
8661256 Willey Feb 2014 B2
8699704 Liu et al. Apr 2014 B2
8760267 Bos et al. Jun 2014 B2
8787823 Justice et al. Jul 2014 B2
8830925 Kim et al. Sep 2014 B2
8836469 Fitzgibbon et al. Sep 2014 B2
8837608 Witkowski Sep 2014 B2
8843066 Chutorash Sep 2014 B2
8878646 Chutorash Nov 2014 B2
8918244 Brzezinski Dec 2014 B2
8981898 Sims Mar 2015 B2
9007168 Bos Apr 2015 B2
9024801 Witkowski May 2015 B2
9082293 Wellman et al. Jul 2015 B2
9122254 Cate Sep 2015 B2
9124424 Aldis Sep 2015 B2
9142064 Muetzel et al. Sep 2015 B2
9160408 Krohne et al. Oct 2015 B2
9189952 Chutorash Nov 2015 B2
9229905 Penilla Jan 2016 B1
9230378 Chutorash Jan 2016 B2
9264085 Pilat Feb 2016 B2
9280704 Lei et al. Mar 2016 B2
9317983 Ricci Apr 2016 B2
9318017 Witkowski Apr 2016 B2
9324230 Chutorash Apr 2016 B2
9336637 Neil et al. May 2016 B2
9367978 Sullivan Jun 2016 B2
9370041 Witkowski Jun 2016 B2
9396376 Narayanaswami Jul 2016 B1
9396598 Daniel-Wayman Jul 2016 B2
9413453 Sugitani et al. Aug 2016 B2
9418326 Narayanaswami Aug 2016 B1
9430939 Shearer Aug 2016 B2
9443422 Pilat Sep 2016 B2
9449449 Evans Sep 2016 B2
9539930 Geerlings Jan 2017 B2
9552723 Witkowski Jan 2017 B2
9576408 Hendricks Feb 2017 B2
9614565 Pilat Apr 2017 B2
9620005 Geerlings Apr 2017 B2
9640005 Geerlings May 2017 B2
9652907 Geerlings May 2017 B2
9652978 Wright May 2017 B2
9679471 Geerlings Jun 2017 B2
9691271 Geerlings Jun 2017 B2
9711039 Shearer Jul 2017 B2
9715772 Bauer Jul 2017 B2
9715825 Geerlings Jul 2017 B2
9791861 Keohane Oct 2017 B2
9811085 Hayes Nov 2017 B1
9811958 Hall Nov 2017 B1
9819498 Vuyst Nov 2017 B2
9836905 Chutorash Dec 2017 B2
9836955 Papay Dec 2017 B2
9836956 Shearer Dec 2017 B2
9858806 Geerlings Jan 2018 B2
9875650 Witkowski Jan 2018 B2
9916769 Wright Mar 2018 B2
9922548 Geerlings Mar 2018 B2
9947159 Geerlings Apr 2018 B2
9965947 Geerlings May 2018 B2
9984516 Geerlings May 2018 B2
10008109 Witkowski Jun 2018 B2
10045183 Chutorash Aug 2018 B2
10062229 Zeinstra Aug 2018 B2
10096186 Geerlings Oct 2018 B2
10096188 Geerlings Oct 2018 B2
10097680 Bauer Oct 2018 B2
10127804 Geerlings Nov 2018 B2
10147310 Geerlings Dec 2018 B2
10163337 Geerlings Dec 2018 B2
10163366 Wright Dec 2018 B2
10176708 Geerlings Jan 2019 B2
10198938 Geerlings Feb 2019 B2
10217303 Hall Feb 2019 B1
10229548 Daniel-Wayman Mar 2019 B2
10282977 Witkowski May 2019 B2
10553050 Romero Feb 2020 B1
10614650 Minsley Apr 2020 B2
10652743 Fitzgibbon May 2020 B2
10997810 Atwell May 2021 B2
11074773 Morris Jul 2021 B1
11122430 Fitzgibbon Sep 2021 B2
11423717 Cate Aug 2022 B2
20010023483 Kiyomoto Sep 2001 A1
20020034303 Farris Mar 2002 A1
20020183008 Menard Dec 2002 A1
20020184504 Hughes Dec 2002 A1
20020191785 McBrearty Dec 2002 A1
20020191794 Farris Dec 2002 A1
20030025793 McMahon Feb 2003 A1
20030033540 Fitzgibbon Feb 2003 A1
20030051155 Martin Mar 2003 A1
20030056001 Mate Mar 2003 A1
20030070092 Hawkes Apr 2003 A1
20030072445 Kuhlman Apr 2003 A1
20030118187 Fitzgibbon Jun 2003 A1
20030141987 Hayes Jul 2003 A1
20030147536 Andivahis Aug 2003 A1
20030177237 Stebbings Sep 2003 A1
20030190906 Winick Oct 2003 A1
20030191949 Odagawa Oct 2003 A1
20030227370 Brookbank Dec 2003 A1
20040019783 Hawkes Jan 2004 A1
20040046639 Giehler Mar 2004 A1
20040054906 Carro Mar 2004 A1
20040081075 Tsukakoshi Apr 2004 A1
20040174856 Brouet Sep 2004 A1
20040179485 Terrier Sep 2004 A1
20040181569 Attar Sep 2004 A1
20040257200 Baumgardner Dec 2004 A1
20050053022 Zettwoch Mar 2005 A1
20050058153 Santhoff Mar 2005 A1
20050060555 Raghunath Mar 2005 A1
20050101314 Levi May 2005 A1
20050151667 Hetzel Jul 2005 A1
20050174242 Cohen Aug 2005 A1
20050285719 Stephens Dec 2005 A1
20060020796 Aura Jan 2006 A1
20060046794 Scherschel Mar 2006 A1
20060083187 Dekel Apr 2006 A1
20060097843 Libin May 2006 A1
20060103503 Rodriquez May 2006 A1
20060109978 Farris May 2006 A1
20060164208 Schaffzin Jul 2006 A1
20060176171 Fitzgibbon Aug 2006 A1
20060224512 Kurakata Oct 2006 A1
20060232377 Witkowski Oct 2006 A1
20070005806 Fitzgibbon Jan 2007 A1
20070006319 Fitzgibbon Jan 2007 A1
20070018861 Fitzgibbon Jan 2007 A1
20070058811 Fitzgibbon Mar 2007 A1
20070167138 Bauman Jul 2007 A1
20070245147 Okeya Oct 2007 A1
20080194291 Martin Aug 2008 A1
20080224886 Rodriguez et al. Sep 2008 A1
20080229400 Burke Sep 2008 A1
20080291047 Summerford Nov 2008 A1
20080297370 Farris Dec 2008 A1
20080303630 Martinez Dec 2008 A1
20090016530 Farris Jan 2009 A1
20090021348 Farris Jan 2009 A1
20090096621 Ferlitsch Apr 2009 A1
20090176451 Yang et al. Jul 2009 A1
20090313095 Hurpin Dec 2009 A1
20090315672 Nantz Dec 2009 A1
20100029261 Mikkelsen Feb 2010 A1
20100060413 Fitzgibbon et al. Mar 2010 A1
20100112979 Chen et al. May 2010 A1
20100125509 Kranzley et al. May 2010 A1
20100125516 Wankmueller et al. May 2010 A1
20100159846 Witkowski Jun 2010 A1
20100199092 Andrus et al. Aug 2010 A1
20100211779 Sundaram Aug 2010 A1
20110037574 Pratt Feb 2011 A1
20110051927 Murray et al. Mar 2011 A1
20110205014 Fitzgibbon Aug 2011 A1
20110218965 Lee Sep 2011 A1
20110225451 Leggette Sep 2011 A1
20110227698 Witkowski Sep 2011 A1
20110273268 Bassali Nov 2011 A1
20110287757 Nykoluk Nov 2011 A1
20110296185 Kamarthy et al. Dec 2011 A1
20110316668 Laird Dec 2011 A1
20110316688 Ranjan Dec 2011 A1
20110317835 Laird Dec 2011 A1
20110320803 Hampel et al. Dec 2011 A1
20120054493 Bradley Mar 2012 A1
20120133841 Vanderhoff May 2012 A1
20120191770 Perlmutter Jul 2012 A1
20120254960 Lortz Oct 2012 A1
20120297681 Krupke et al. Nov 2012 A1
20130017812 Foster Jan 2013 A1
20130063243 Witkowski Mar 2013 A1
20130088326 Bassali Apr 2013 A1
20130147600 Murray Jun 2013 A1
20130170639 Fitzgibbon Jul 2013 A1
20130268333 Ovick et al. Oct 2013 A1
20130272520 Noda et al. Oct 2013 A1
20130304863 Reber Nov 2013 A1
20140125499 Cate May 2014 A1
20140169247 Jafarian et al. Jun 2014 A1
20140245284 Alrabady Aug 2014 A1
20140266589 Wilder Sep 2014 A1
20140282929 Tse Sep 2014 A1
20140289528 Baghdasaryan Sep 2014 A1
20140327690 McGuire Nov 2014 A1
20140361866 Evans Dec 2014 A1
20150002262 Geerlings Jan 2015 A1
20150022436 Cho Jan 2015 A1
20150084750 Fitzgibbon Mar 2015 A1
20150116082 Cregg Apr 2015 A1
20150139423 Hildebrandt May 2015 A1
20150161832 Esselink Jun 2015 A1
20150187019 Fernandes Jul 2015 A1
20150222436 Morten Aug 2015 A1
20150222517 McLaughlin et al. Aug 2015 A1
20150235172 Hall Aug 2015 A1
20150235173 Hall Aug 2015 A1
20150235493 Hall Aug 2015 A1
20150235495 Hall Aug 2015 A1
20150261521 Choi Sep 2015 A1
20150310737 Simanowski Oct 2015 A1
20150310765 Wright Oct 2015 A1
20150358814 Roberts Dec 2015 A1
20160009188 Yokoyama Jan 2016 A1
20160020813 Pilat Jan 2016 A1
20160021140 Fitzgibbon Jan 2016 A1
20160043762 Turnbull Feb 2016 A1
20160101736 Geerlings Apr 2016 A1
20160104374 Ypma Apr 2016 A1
20160125357 Hall May 2016 A1
20160145903 Taylor May 2016 A1
20160196706 Tehranchi Jul 2016 A1
20160198391 Orthmann et al. Jul 2016 A1
20160203721 Wright Jul 2016 A1
20160261572 Liu et al. Sep 2016 A1
20160359629 Nadathur Dec 2016 A1
20170061110 Wright Mar 2017 A1
20170079082 Papay Mar 2017 A1
20170113619 Boehm Apr 2017 A1
20170140643 Puppo May 2017 A1
20170225526 Tomakidi Aug 2017 A1
20170230509 Lablans Aug 2017 A1
20170316628 Farber Nov 2017 A1
20170320464 Schultz Nov 2017 A1
20170323498 Bauer Nov 2017 A1
20170352286 Witkowski Dec 2017 A1
20170364719 Boehm Dec 2017 A1
20170372574 Linsky Dec 2017 A1
20180052860 Hayes Feb 2018 A1
20180053237 Hayes Feb 2018 A1
20180118045 Gruzen May 2018 A1
20180123806 Vuyst May 2018 A1
20180184376 Geerlings Jun 2018 A1
20180225959 Witkowski Aug 2018 A1
20180232981 Geerlings Aug 2018 A1
20180234843 Smyth Aug 2018 A1
20180245559 Kang Aug 2018 A1
20180246515 Iwama Aug 2018 A1
20180276613 Hall Sep 2018 A1
20180285814 Hall Oct 2018 A1
20180367419 Hall Dec 2018 A1
20190082149 Correnti Mar 2019 A1
20190085615 Cate Mar 2019 A1
20190102962 Miller Apr 2019 A1
20190200225 Fitzgibbon Jun 2019 A1
20190208024 Jablonski Jul 2019 A1
20190228603 Fowler Jul 2019 A1
20190244448 Alamin Aug 2019 A1
20200027054 Hall Jan 2020 A1
20200043270 Cate Feb 2020 A1
20200074753 Adiga Mar 2020 A1
20200208461 Virgin Jul 2020 A1
20200236552 Fitzgibbon Jul 2020 A1
20200364961 Atwell Nov 2020 A1
20210385651 Fitzgibbon Dec 2021 A1
Foreign Referenced Citations (102)
Number Date Country
645228 Feb 1992 AU
710682 Nov 1996 AU
2006200340 Aug 2006 AU
2007203558 Feb 2008 AU
2008202369 Jan 2009 AU
2011202656 Jan 2012 AU
2011218848 Sep 2012 AU
2087722 Jul 1998 CA
2193846 Feb 2004 CA
2551295 Dec 2006 CA
2926281 Feb 2008 CA
2177410 Apr 2008 CA
2443452 Jul 2008 CA
2684658 Oct 2008 CA
2708000 Dec 2010 CA
2456680 Feb 2011 CA
2742018 Dec 2011 CA
2565505 Sep 2012 CA
2631076 Sep 2013 CA
2790940 Jun 2014 CA
2596188 Jul 2016 CA
101399825 Apr 2009 CN
102010015104 Nov 1957 DE
3234538 Mar 1984 DE
3234539 Mar 1984 DE
3244049 Sep 1984 DE
3309802 Sep 1984 DE
3309802 Sep 1984 DE
3320721 Dec 1984 DE
3332721 Mar 1985 DE
3407436 Aug 1985 DE
3407469 Sep 1985 DE
3532156 Mar 1987 DE
3636822 Oct 1987 DE
4204463 Aug 1992 DE
102006003808 Nov 2006 DE
102007036647 Feb 2008 DE
0043270 Jan 1982 EP
0103790 Mar 1984 EP
0154019 Sep 1985 EP
0155378 Sep 1985 EP
0244322 Nov 1987 EP
0244332 Nov 1987 EP
0311112 Apr 1989 EP
0335912 Oct 1989 EP
0372285 Jun 1990 EP
0265935 May 1991 EP
0459781 Dec 1991 EP
0857842 Aug 1998 EP
0870889 Oct 1998 EP
0937845 Aug 1999 EP
1024626 Aug 2000 EP
1223700 Jul 2002 EP
1313260 May 2003 EP
1421728 May 2004 EP
1625560 Feb 2006 EP
1760985 Mar 2007 EP
0771498 May 2007 EP
1865656 Dec 2007 EP
2293478 Mar 2011 EP
2149103 Dec 2011 EP
2437212 Apr 2012 EP
1875333 Jan 2013 EP
2290872 Jun 2014 EP
2800403 Nov 2014 EP
2606232 May 1988 FR
2607544 Jun 1988 FR
2685520 Jun 1993 FR
2737373 Jan 1997 FR
218774 Jul 1924 GB
1156279 Jun 1969 GB
2023899 Jan 1980 GB
2051442 Jan 1981 GB
2099195 Dec 1982 GB
2118614 Nov 1983 GB
2131992 Jun 1984 GB
2133073 Jul 1984 GB
2184774 Jul 1987 GB
2254461 Oct 1992 GB
2265482 Sep 1993 GB
2288261 Oct 1995 GB
2430115 Mar 2007 GB
2440816 Feb 2008 GB
2453383 Apr 2009 GB
H6205474 Jul 1994 JP
09322274 Dec 1997 JP
20050005150 Jan 2005 KR
20060035951 Apr 2006 KR
9300137 Jan 1993 WO
9301140 Jan 1993 WO
9320538 Oct 1993 WO
9400147 Jan 1994 WO
9411829 May 1994 WO
9418036 Aug 1994 WO
0010301 Feb 2000 WO
0010302 Feb 2000 WO
03010656 Feb 2003 WO
03079607 Sep 2003 WO
2008082482 Jul 2008 WO
2011106199 Sep 2011 WO
2019126453 Jun 2019 WO
8908225 Oct 1991 ZA
Non-Patent Literature Citations (161)
Entry
US 7,902,994 B2, 03/2011, Geerlings (withdrawn)
US 10,135,479 B2, 11/2018, Turnbull (withdrawn)
European Patent Application No. 10 183 420.8; Communication Pursuant to Article 94(3) EPC dated May 4, 2020.
U.S. Appl. No. 17/194,923, filed Mar. 8, 2021; 34 pages.
U.S. Appl. No. 17/245,672, filed Apr. 30, 2021, 47 pages.
USPTO, U.S. Appl. No. 16/454,978; Notice of Allowance dated Feb. 16, 2021, 9 pages.
USPTO; U.S. Appl. No. 16/843,119; Office Action dated Feb. 2, 2021, 24 pages.
USPTO; U.S. Appl. No. 16/843,119; Supplemental Notice of Allowability dated May 25, 2021, 2 pages.
USPTO; U.S. Appl. No. 16/843,119; Notice of Allowance dated May 11, 2021, 5 pages.
‘Access Transmitters—Access Security System’, pp. 1-2, Dated Jul. 16, 1997. http://www.webercreations.com/access/security.html.
About us—ParqEx, 5 pages, Wayback Machine capture dated May 5, 2018, 5 pages, retrieved from https://web.archive.org/web/20180505051951/https://www.parqex.com/about-parqex/.
Abrams, and Podell, ‘Tutorial Computer and Network Security,’ District of Columbia: IEEE, 1987. pp. 1075-1081.
Abramson, Norman. ‘The Aloha System—Another alternative for computer communications,’ pp. 281-285, University of Hawaii, 1970.
Adams, Russ, Classified, data-scrambling program for Apple II, Info-World, vol. 5, No. 3; Jan. 31, 1988.
Alexi, Werner, et al. ‘RSA and Rabin Functions: Certain Parts are as Hard as the Whole’, pp. 194-209, Siam Computing, vol. 14, No. 2, Apr. 1988.
Allianz: Allianz-Zentrum for Technik GmbH—Detailed Requirements for Fulfilling the Specification Profile for Electronically Coded OEM Immobilizers, Issue 22, (Jun. 1994 (Translation Jul. 5, 1994).
Anderson, Ross. ‘Searching for the Optium Correlation Attack’, pp. 137-143, Computer Laboratory, Pembroke Street, Cambridge CB2 3QG, Copyright 1995.
Arazi, Benjamin, Vehicular Implementations of Public Key Cryptographic Techniques, IEEE Transactions on Vehicular Technology, vol. 40, No. 3, Aug. 1991, 646-653.
Baran, P. Distribution Communications, vol. 9, ‘Security Secrecy and Tamper-free Communications’, Rand Corporation, 1964.
Barbaroux, Paul. ‘Uniform Results in. Polynomial-Time Security’, pp. 297-306, Advances in Cryptology—Eurocrypt 92, 1992.
Barlow, Mike, ‘A Mathematical Word Block Cipher,’ 12 Cryptologia 256-264 (1988).
Bellovin, S.M. ‘Security Problems in the TCPIIP Protocol Suite’, pp. 32-49, Computer Communication Review, New Jersey, Reprinted from Computer Communication Review, vol. 19, No. 2, pp. 32-48, Apr. 1989.
Beutelspacher, Albrecht. Advances in Cryptology—Eurocrypt 87: ‘Perfect and Essentially Perfect Authentication Schemes’ (Extended Abstract), pp. 167-170, Federal Republic of Germany, believed to be publicly available prior to Jun. 30, 2004.
Bloch, Gilbert. Enigma Before Ultra Polish Work and The French Contribution, pp. 142-155, Cryptologia 11(3), (Jul. 1987).
Bosworth, Bruce, ‘Codes, Ciphers, and Computers: An Introduction to Information Security’ Hayden Book Company, Inc. 1982, pp. 30-54.
Brickell, Ernest F. and Stinson, Doug. ‘Authentication Codes With Multiple Arbiters’, pp. 51-55, Proceedings of Eurocrypt 88, 1988.
Bruwer, Frederick J. ‘Die Toepassing Van Gekombineerde Konvolusiekodering en Modulasie op HF-Datakommunikasie,’ District of Pretoria in South Africa Jul. 1998.
Burger, Chris R., Secure Learning RKE Systems Using KeeLoq.RTM. Encoders, TB001, 1996 Microchip Technology, Inc., 1-7.
Burmeister, Mike. A Remark on the Effiency of Identification Schemes, pp. 493-495, Advances in Cryptology—Eurocrypt 90, (1990).
Cattermole, K.W., ‘Principles of Pulse Code Modulation’ Iliffe Books Ltd., 1969, pp. 30-381.
Cerf, Vinton a ‘Issues in Packet-Network Interconnection’, pp. 1386-1408, Proceedings of the IEEE, 66(11), Nov. 1978.
Cerf, Vinton G. and Kahn, Robert E. ‘A Protocol for Packet Network Intercommunication’, pp. 637-648, Transactions on Communications, vol. Com-22, No. 5, May 1974.
Charles Watts, How to Program the HiSec(TM) Remote Keyless Entry Rolling Code Generator, National Semiconductor, Oct. 1994, 1-4.
Computer Arithmetic by Henry Jacobowitz; Library of Congress Catalog Card No. 62-13396; Copyright Mar. 1962 by John F. Rider Publisher, Inc.
Conner, Doug, Cryptographic Techniques—Secure Your Wireless Designs, EDN (Design Feature), Jan. 18, 1996, 57-68.
Coppersmith, Don. ‘Fast Evalution of Logarithms in Fields of Characteristic Two’, IT-30(4): pp. 587-594, IEEE Transactions on Information Theory, Jul. 1984.
Daniels, George, ‘Pushbutton Controls for Garage Doors’ Popular Science (Aug. 1959), pp. 156-160.
Davies, D.W. and Price, W.C. ‘Security for Computer Networks,’ John Wiley and Sons, 1984. Chapter 7, pp. 175-176.
Davies, Donald W, ‘Tutorial: The Security of Data in Networks,’ pp. 13-17, New York: IEEE, 1981.
Davis, Ben and De Long, Ron. Combined Remote Key Conrol and Immobilization System for Vehicle Security, pp. 125-132, Power Electronics in Transportation, IEEE Catalogue No. 96TH8184, (Oct. 24, 1996).
Davis, Gregory and Palmer, Morris. Self-Programming, Rolling-Code Technology Creates Nearly Unbreakable RF Security, Technological Horizons, Texas Instruments, Inc. (ECN), (Oct. 1996).
Deavours, C. A. and Reeds, James. The Enigma, Part 1, Historical Perspectives, pp. 381-391, Cryptologia, 1(4), (Oct. 1977).
Deavours, C.A. and Kruh, L. ‘The Swedish HC-9 Ciphering Machine’, 251-285, Cryptologia, 13(3): Jul. 1989.
Deavours, Cipher A., et al. ‘Analysis of the Hebern cryptograph Using Isomorphs’, pp. 246-261, Cryptology: Yesterday, Today and Tomorrow, vol. 1, No. 2, Apr. 1977.
Denning, Dorothy E. ‘Cryptographic Techniques’, pp. 135-154, Cryptography and Data Security, 1982. Chapter 3.
Denning, Dorothy E. A Lattice Model of Secure Information Flow, pp. 236-238, 240, 242, Communications of the ACM, vol. 19, No. 5, (May 1976).
Diffie and Hellman, Exhaustive Cryptanalysis of the NB.S Data Encryption Standard, pp. 74-84, Computer, Jun. 1977.
Diffie, Whitfield and Hellman, Martin E. New Directions in Cryptography, pp. 644-654, IEEE Transactions on Information Theory, vol. IT-22, No. 6, (Nov. 1976).
Diffie, Whitfield and Hellman, Martin E. Privacy and Authentication: An Introduction to Cryptography, pp. 397-427, Proceedings of the IEEE, vol. 67, No. 3 (Mar. 1979).
Diffie, Whitfield and Hellman, Martin, E. ‘An RSA Laboratories Technical Note’, Version 1.4, Revised Nov. 1, 1993.
Dijkstra, E. W. Co-Operating Sequential Processses, pp. 43-112, Programming Languages, F. Genuys. NY, believed to be publicly available prior to Jun. 30, 2004.
Dijkstra, E.W. ‘Hierarchical Ordering of Sequential Processes’, pp. 115-138, Acta Informatica 1: 115-138, Springer-Verlag (1971).
Eigamal, Taher. A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms, pp. 469-472, IEEE, Transactions on Information Theory, vol. IT-31, No. 4, (Jul. 1985).
Eigamal, Taher. A Subexponential Time Algorithm for Computing Discrete Logarithms, pp. 473-481, IEEE, Transactions on Information Theory, vol. IT-31, No. 4, (Jul. 1985).
Feistel, Horst, Notz, Wm. A. and Smith, J. Lynn. Some Cryptographic Techniques for Machine-to-Machine Data Communications, pp. 1545-1554, Proceedings of the IEEE, vol. 63, No. 11, (Nov. 1975).
Feistel, Horst. ‘Cryptography and Computer Privacy’, pp. 15-23, Scientific American, vol. 228, No. 5, May 1973.
Fenzl, H. and Kliner, A. Electronic Lock System: Convenient and Safe, pp. 150-153, Siemens Components XXI, No. 4, (1987).
Fischer, Elliot. Uncaging the Hagelin Cryptograph, pp. 89-92, Cryptologia, vol. 7, No. 1, (Jan. 1983).
Fragano, Maurizio. Solid State Key/Lock Security System, pp. 604-607, IEEE Transactions on Consumer Electronics, vol. CE-30, No. 4, (Nov. 1984).
G. Davis, Marcstar.TM. TRC1300 and TRC1315 Remote Control Transmitter/Receiver, Texas Instruments, Sep. 12, 1994. 1-24.
Godlewski, Ph. and Camion P. ‘Manipulations and Errors, Delection and Localization,’ pp. 97-106, Proceedings of Eurocrypt 88, 1988.
Gordon, Professor J., Police Scientific Development Branch, Designing Codes for Vehicle Remote Security Systems, (Oct. 1994), pp. 1-20.
Gordon, Professor J., Police Scientific Development Branch, Designing Rolling Codes for Vehicle Remote Security Systems, (Aug. 1993), pp. 1-19.
Greenlee, B.M., Requirements for Key Management Protocols in the Wholesale Financial Services Industry, pp. 22 28, IEEE Communications Magazine , Sep. 1985.
Guillou, Louis C. and Quisquater, Jean-Jacques. ‘A Practical Zero-Knowledge Protocol Fitted to Security Microprocessor Minimizing Both Transmission and Memory’, pp. 123-128, Advances in Cryptology—Eurocrypt 88, 1988.
Guillou, Louis C. Smart Cards and Conditional Access, pp. 481-489, Proceedings of Eurocrypt, (1984).
Habermann, A. Nico, Synchronization of Communicating Processes , pp. 171 176, Communications , Mar. 1972.
Hagelin C-35/C-36 (The), (1 page) Sep. 3, 1998. http://hem.passagen.se/tan01/C035.HTML.
Haykin, Simon, “An Introduction to Analog and Digital Communications” 213, 215 (1989).
IEEE 100; The Authoritative Dictionary of IEEE Standards Terms, Seventh Ediciton, Published by Standards Information Network, IEEE Press, Copyright 2000.
ISO 8732: 1988(E): Banking Key Management (Wholesale) Annex D: Windows and Windows Management, Nov. 1988.
Jones, Anita K. Protection Mechanisms and The Enforcement of Security Policies, pp. 228-251, Carnegie-Mellon University, Pittsburgh, PA, (1978).
Jueneman, R.R. et al. ‘Message Authentication’, pp. 29-40, IEEE Communications Magazine, vol. 23, No. 9, Sep. 1985.
Kahn, Robert E. The Organization of Computer Resources Into a Packet Radio Network, pp. 177-186, National Computer Conference, (1975).
Keeloq.RTM. Code Hopping Decoder, HCS500, 1997 Microchip Technology, Inc., 1-25.
Keeloq.RTM. Code Hopping Encoder, HCS300, 1996 Microchip Technology, Inc., 1-20.
Keeloq.RTM. NTQ 105 Code Hopping Encoder, pp. 1-8, Nanoteq (Pty.) Ltd., (Jul. 1993).
Keeloq.RTM. NTQ 125D Code Hopping Decoder, pp. 1-9, Nanoteq (pty.) Ltd., (Jul. 1993).
Kent, Stephen T. A Comparison of Some Aspects of Public-Key and Conventional Cryptosystems, pp. 4.3.1-4.3.5, ICC '79 Int. Conf. on Communications, Boston, MA, (Jun. 1979).
Kent, Stephen T. Comments on ‘Security Problems in the TCP/IP Protocol Suite’, pp. 10-19, Computer Communication Review, vol. 19, Part 3, (Jul. 1989).
Kent, Stephen T. Encryption-Based Protection Protocols for Interactive User-Computer Communication, pp. 1-121, (May 1976). (See pp. 50-53).
Kent, Stephen T. Protocol Design Consideration for Network Security, pp. 239-259, Proc. NATO Advanced Study Institute on Interlinking of Computer Networks, (1979).
Kent, Stephen T. Security Requirements and Protocols for a Broadcast Scenario, pp. 778-786, IEEE Transactions on Communications, vol. com-29, No. 6, (Jun. 1981).
Kent, Stephen T., et al. Personal Authorization System for Access Control to the Defense Data Network, pp. 89-93, Conf. Record of Eascon 82 15.sup.th Ann Electronics & Aerospace Systems Conf., Washington, D.C. (Sep. 1982).
Konheim, A.G. Cryptography: A Primer, pp. 285-347, New York, (John Wiley, 1981).
Koren, Israel, “Computer Arithmetic Algorithms” Prentice Hall, 1978, pp. 1-15.
Kruh, Louis. Device anc Machines: The Hagelin Cryptographer, Type C-52, pp. 78-82, Cryptologia, vol. 3, No. 2, (Apr. 1979).
Kruh, Louis. How to Use the German Enigma Cipher Machine: A photographic Essay, pp. 291-296, Cryptologia, vol. No. 7, No. 4 (Oct. 1983).
Kuhn, G.J., et al. A Versatile High-Speed Encryption Chip, Infosec '90 Symposium, Pretoria, (Mar. 16, 1990).
Kuhn. G.J. Algorithms for Self-Synchronizing Ciphers, pp. 159-164, Comsig 88, University of Pretoria, Pretoria, (1988).
Lamport, Leslie. The Synchronization of Independent Processes, pp. 15-34, Acta Informatica, vol. 7, (1976).
Linn, John and Kent, Stephen T. Electronic Mail Privacy Enhancement, pp. 40-43, American Institute of Aeronautics and Astronautics, Inc. (1986).
Lloyd, Sheelagh. Counting Functions Satisfying a Higher Order Strict Avalanche Criterion, pp. 63-74, (1990).
Marneweck, Kobus. Guidelines for KeeLoq.RTM. Secure Learning Implementation, TB007, pp. 1-5, 1987 Microchip Technology, Inc.
Massey, James L. The Difficulty with Difficulty, pp. 1-4, Jul. 17, 1996. http://www.iacr.org/conferences/ec96/massey/html/framemassey.html.
McIvor, Robert. Smart Cards, pp. 152-159, Scientific American, vol. 253, No. 5, (Nov. 1985).
Meier, Willi. Fast Correlations Attacks on Stream Ciphers (Extended Abstract), pp. 301-314, Eurocrypt 88, IEEE, (1988).
Meyer, Carl H. and Matyas Stephen H. Cryptography: A New Dimension in Computer Data Security, pp. 237-249 (1982).
Michener, J.R. The ‘Generalized Rotor’ Cryptographic Operator and Some of Its Applications, pp. 97-113, Cryptologia, vol. 9, No. 2, (Apr. 1985).
Microchip Technology, Inc., Enhanced Flash Microcontrollers with 10-Bit A/D and nano Watt Technology, PIC18F2525/2620/4525/4620 Data Sheet, 28/40/44-Pin, .Copyrgt.2008.
MM57HS01 HiSeC.TM. Fixed and Rolling Code Decoder, National Semiconductor, Nov. 11, 1994, 1-8.
Morris, Robert. The Hagelin Cipher Machine (M-209): Reconstruction of the Internal Settings, pp. 267-289, Cryptologia, 2(3), (Jul. 1978).
Newman, David B., Jr., et al. ‘Public Key Management for Network Security’, pp. 11-16, IEE Network Magazine, 1987.
Nickels, Hamilton, ‘Secrets of Making and Breading Codes’ Paladin Press, 1990, pp. 11-29.
Niederreiter, Harald. Keystream Sequences with a Good Linear Complexity Profile for Every Starting Point, pp. 523-532, Proceedings of Eurocrypt 89, (1989).
Nirdhar Khazanie and Yossi Matias, Growing Eddystone with Ephemeral Identifiers: A Privacy Aware & Secure Open Beacon Format; Google Developers; Thursday, Apr. 14, 2016; 6 pages.
NM95HSO1/NM95HSO2 HiSeC.TM. (High Security Code) Generator, pp. 1-19, National Semiconductor, (Jan. 1995).
Otway, Dave and Rees, Owen. Efficient and timely mutual authentication, ACM Sigops Operating Systems Review, vol. 21, Issue 1, Jan. 8-10, 1987.
Peebles, Jr., Peyton Z. and Giuma, Tayeb A.; “Principles of Electrical Engineering” McGraw Hill, Inc., 1991, pp. 562-597.
Peyret, Patrice, et al. Smart Cards Provide Very High Security and Flexibility in Subscribers Management, pp. 744-752, IEE Transactions on Consumer Electronics, 36(3), (Aug. 1990).
Postel, J. ed. ‘DOD Standard Transmission Control Protocol’, pp. 52-133, Jan. 1980.
Postel, Jonathon B., et al. The ARPA Internet Protocol, pp. 261-271, (1981).
Reed, David P. and Kanodia, Rajendra K. Synchronization with Eventcounts and Sequencers, pp. 115-123, Communications of the ACM, vol. 22, No. 2, (Feb. 1979).
Reynolds, J. and Postel, J. Official ARPA—Internet Protocols, Network Working Groups, (Apr. 1985).
Roden, Martin S., “Analog and Digital Communication Systems,” Third Edition, Prentice Hall, 1979, pp. 282-460.
Ruffell, J. Battery Low Indicator, p. 15-165, Eleckton Electronics, (Mar. 1989). (See p. 59).
Saab Anti-Theft System: ‘Saab's Engine Immobilizing Anti-Theft System is a Road-Block for ‘Code-Grabbing’ Thieves’, pp. 1-2, Aug. 1996; http://www.saabusa.com/news/newsindex/alarm.html.
Savage. J.E. Some Simple Self-Synchronizing Digital Data Scramblers, pp. 449-498, The Bell System Tech. Journal, (Feb. 1967).
Seberry, J. and Pieprzyk, Cryptography—An Introduction to Computer Security, Prentice Hall of Australia, YTY Ltd, 1989, pp. 134-136.
Secure Terminal Interface Module for Smart Card Application, pp. 1488-1489, IBM: Technical Disclosure Bulletin, vol. 28, No. 4, (Sep. 1985).
Shamir, Adi. ‘Embedding Cryptographic Trapdoors in Arbitrary Knapsack Systems’, pp. 77-79, Information Processing Letters, 1983.
Shamir, Adi. Embedding cryptographic Trapdoors in Arbitrary Knapsak Systems, pp. 81-85, IEEE Transactions on Computers, vol. C-34, No. 1, (Jan. 1985).
Siegenthaler, T. Decrypting a Class of Stream Ciphers Using Ciphertext Only, pp. 81-85, IEEE Transactions on Computers, vol. C-34, No. 1, (Jan. 1985).
Simmons, Gustavus, J. Message Authentication with Arbitration of Transmitter/Receiver Disputes, pp. 151-165 (1987).
Smith, J.L., et al. An Experimental Application of Crptography to a Remotely Accessed Data System, pp. 282-297, Proceedings of hte ACM, (Aug. 1972).
Smith, Jack, ‘Modem Communication Circuits.’ McGraw-Hill Book Company, 1986, Chapter 11, pp. 420-454.
Smith, Jack, ‘Modem Communication Circuits’ McGraw-Hill Book Company, 1986, Chapter 7, pp. 231-294.
Smith. J.L. The Design of Lucifer: a Cryptographic Device for Data Communications, pp. 1-65, (Apr. 15, 1971).
Soete, M. Some constructions for authentication—secrecy codes, Advances in Cryptology—Eurocrypt '88, Lecture Notes in Computer Science 303 (1988), 57-75.
SpotHero, Frequently Asked Questions, Wayback Machine capture dated Jun. 30, 2017, 3 pages, retrieved from https://web.archive.org/web/20170630063148/https://spothero.com/faq/.
Steven Dawson, Keeloq.RTM. Code Hopping Decoder Using Secure Learn, AN662, 1997 Microchip Technology, Inc., 1-16.
Summary of Spothero Product, publicly available before Aug. 1, 2018.
Svigals, J. Limiting Access to Data in an Indentification Card Having a Micro-Processor, pp. 580-581, IBM: Technical Disclosre Bulletin, vol. 27, No. 1B, (Jun. 1984).
Thatcham: The Motor Insurance Repair Research Centre, The British Insurance Industry's Criteria for Vehicle Security (Jan. 1993) (Lear 18968-19027), pp. 1-36.
Transaction Completion Code Based on Digital Signatures, pp. 1109-1122, IBM: Technical Disclosure Bulletin, vol. 28, No. 3, (Aug. 1985).
Turn, Rein. Privacy Transformations for Databank Systems, pp. 589-601, National Computer Conference, (1973).
U.S. Appl. No. 16/528,376; Advisory Action dated May 4, 2021; 4 pages.
Uber, Airbnb and consequences of the sharing economy: Research roundup, Harvard Kennedy School—Shorenstein Center on Media, Politics, and Public Policy, 14 pages, Jun. 3, 2016, retrieved from https://journalistsresource.org/studies/economics/business/airbnb-lyft-uber-bike-share-sharing-economy-research-roundup/.
USPTO; U.S. Appl. No. 16/454,978; Notice of Allowance dated Feb. 16, 2021.
USPTO; U.S. Appl. No. 16/454,978, filed Jun. 27, 2019; 57 pages.
USPTO; U.S. Appl. No. 16/454,978; Office Action dated May 8, 2020; 25 pages.
USPTO; U.S. Appl. No. 16/454,978; Office Action dated Sep. 22, 2020; 36 pages.
USPTO; U.S. Appl. No. 16/528,376; Office Action dated Feb. 17, 2021; (pp. 1-14).
USPTO; U.S. Appl. No. 16/528,376; Office Action dated Aug. 18, 2020, (pp. 1-11).
USPTO; U.S. Appl. No. 16/528,376; Office Action dated Aug. 18, 2020; 34 Pages.
Voydock, Victor L. and Kent, Stephen T. ‘Security in High-Level Network Protocols’, IEEE Communications Magazine, pp. 12-25, vol. 23, No. 7, Jul. 1985.
Voydock, Victor L. and Kent, Stephen T. ‘Security Mechanisms in High-Level Network Protocols’, Computing Surveys, pp. 135-171, vol. 15, No. 2, Jun. 1983.
Voydock, Victor L. and Kent, Stephen T. Security Mechanisms in a Transport Layer Protocol, pp. 325-341, Computers & Security, (1985).
Watts, Charles and Harper John. How to Design a HiSec.TM. Transmitter, pp. 1-4, National Semiconductor, (Oct. 1994).
Weinstein, S.B. Smart Credit Cards: The Answer to Cashless Shopping, pp. 43-49, IEEE Spectrum, (Feb. 1984).
Weissman, C. Securtiy Controls in the ADEPT-50 Time-Sharing Syustem, pp. 119-133, AFIPS Full Joint Compuer Conference, (1969).
Welsh, Dominic, Codes and Cryptography, pp. 7.0-7.1, (Clarendon Press, 1988).
Wolfe, James Raymond, “Secret Writing—The Craft of the Cryptographer” McGraw-Hill Book Company 1970, pp. 111-122, Chapter 10.
YouTube Video entitled “How to Set up Tesla Model 3 Homelink . . . Super Easy!!!!” https://www.youtube.com/watch?v=nmmy4i7FO5M; published Mar. 1, 2018.
YouTube Video entitled Tesla Model X Auto Park in Garage (Just Crazy), https://youtu.be/BszlChMuZV4, published Oct. 2, 2016.
USPTO; U.S. Appl. No. 16/528,376; Non-Final Rejection dated Jan. 19, 2022; (pp. 1-12).
USPTO; U.S. Appl. No. 16/871,844; Notice of Allowance dated Feb. 23, 2021; (pp. 1-6).
USPTO; U.S. Appl. No. 16/528,376; Notice of Allowance and Fees Due (PTOL-85) dated Jul. 6, 2022; (pp. 1-3).
USPTO; U.S. Appl. No. 16/528,376; Notice of Allowance and Fees Due (PTOL-85) dated Jul. 20, 2022; (pp. 1-3).
PCT Patent Application No. PCT/US2021/064227; International Search Report and The Written Opinion; dated May 12, 2022; 12 Pages.
USPTO: U.S. Appl. No. 16/528,376; Notice of Allowance and Fees Due (PTOL-85) dated Jun. 14, 2022; (pp. 1-8).
Related Publications (1)
Number Date Country
20210248852 A1 Aug 2021 US
Provisional Applications (1)
Number Date Country
62848764 May 2019 US
Continuations (1)
Number Date Country
Parent 16871844 May 2020 US
Child 17245672 US