IN-VITRO METHOD FOR SCREENING ACCESSIBLE BIOLOGICAL MARKERS IN PATHOLOGICAL TISSUES

Information

  • Patent Application
  • 20090163414
  • Publication Number
    20090163414
  • Date Filed
    December 13, 2006
    17 years ago
  • Date Published
    June 25, 2009
    15 years ago
Abstract
The present invention refers to an in vitro method for screening specific disease biological markers which are accessible from the extracellular space in pathologic tissues comprising the steps of: immersing a native pathologic tissue sample in a solution containing a labelling reagent for labelling proteins, wherein accessible proteins are labelled by the labelling reagent; purifying the labelled proteins; analyzing the labelled proteins or fragments thereof; determining the differential expression pattern of the labelled proteins in the native pathologic tissue samples compared to normal tissue samples; and judging that the labelled protein(s) having higher expression in the native pathologic tissue sample compared to normal tissue samples or being expressed more frequently in respective native pathologic tissue samples compared to normal tissue samples is/are biological marker(s) for pathologic tissue, which are accessible for high-affinity ligands from the extracellular space.
Description

The present invention refers to an in-vitro method for screening specific disease biological markers accessible from the extra cellular space in pathologic tissues.


The discovery of biological markers clinically suited for the accurate detection and selective treatment of diseases represents a major medical challenge. Targeting pathologic tissues without affecting their normal counterparts is one of the most promising approaches for improving treatment efficiency and safety (Wu, A. M. & Senter, P. D. Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 23, 1137-1146 (2005); Adams, G. P. & Weiner, L. M. Monoclonal antibody therapy of cancer Nat Biotechnol 23, 1147-1157 (2005); Carter, P. Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer 1, 118-129 (2001)). Indisputably, such advances would represent a breakthrough for the therapy of cancer and other diseases. Hence, the identification of valid biological markers including proteins specifically expressed in diseased tissues, has become of utmost importance (Hortobagyi, G. N. Opportunities and challenges in the development of targeted therapies. Semin Oncol 31, 21-27 (2004); Neri, D. & Bicknell, R. Tumour vascular targeting. Nat Rev Cancer 5, 436-446 (2005)). Yet, even the most recent target discovery strategies based on state-of-the-art, high-throughput technologies have not addressed the limitation, in human tissues, of antigen accessibility to suitable high-affinity ligands such as human monoclonal antibodies bound to bioactive molecules (Adams, G. P. & Weiner, L. M. Monoclonal antibody therapy of cancer. Nat Biotechnol 23, 1147-1157 (2005); Neri, D. & Bicknell, R. Tumour vascular targeting. Nat Rev Cancer 5, 436-446 (2005).


The identification of biological markers unique to specific pathologic processes would be most valuable for the accurate detection (e.g. by imaging studies) and selective therapy of diseases including cancer. For instance, patients suffering from cancer would certainly benefit from such developments. Indeed, chemotherapeutic agents, usually designed to take advantage of tumor cell characteristics such as high proliferation rates, unfortunately also target normal cycling cells including hematopoietic progenitors. The targeted delivery of these drugs and other bioactive molecules (e.g. radioisotopes, cytokines) to the tumor microenvironment (e.g. proteins specifically expressed in the stromal or vascular compartment of the tumor) by means of binding molecules such as recombinant human antibodies, would represent a considerable therapeutic improvement. This selective strategy would increase the amount of drugs reaching the tumor with little or no toxicity to the host's healthy tissues. The recent development of high-throughput proteomic technologies such as mass spectrometry have facilitated the rapid and accurate identification of small, but complex biological sample mixtures, overcoming many limitations of two-dimensional gel electrophoresis for proteome analysis (Peng, J. & Gygi, S. P. Proteomics: the move to mixtures. J Mass Spectrom 36, 1083-91 (2001)) and making target identification easier than ever. The recent development of this high-throughput proteomic technology holds great promise for speeding up the discovery of novel targets, notably in cancer research. For example, gel-free shotgun tandem mass spectrometry has been recently used to compare global protein expression profiles in human mammary epithelial normal and cancer cell lines (Sandhu, C. et al., Global protein shotgun expression profiling of proliferating mcf-7 breast cancer cells. J Proteome Res 4, 674-89 (2005)). Unfortunately, a significant pitfall associated with such an approach is that it provides no clue as to whether proteins of interest are accessible to suitable high-affinity ligands, such as systemically delivered monoclonal antibodies, in human tissues. Indeed, specific, yet poorly accessible proteins expressed in pathologic tissues are expected to be of little value for the development of antibody-based anti-cancer therapies. Strategies that would unveil disease biological markers not only specifically expressed in pathologic tissues but also accessible from the extracellular fluid would help overcome this limitation.


Further, methods are known allowing protein labelling either by in vivo terminal perfusion or by ex vivo perfusion of human pathologic organs. However, the perfusion technique is restricted to experimental animals (e.g. rodents) or surgically resected organs vascularized by a catheterizable artery (e.g. kidney), which excludes many types of pathologic tissues from investigation, namely those which can not be perfused.


The object of the present invention therefore was to provide a new, simple, quick and efficient method to identify, in human tissues originating from biopsies and non-perfusable organs (e.g. cancer lesions present in mastectomy or radical prostatectomy specimens), specific disease biological markers accessible from the extracellular space.


The object is solved by an in vitro method for screening specific disease biological markers which are accessible from the extra cellular space in pathologic tissues for high-affinity ligands comprising the steps of:

    • immersion of a native pathologic tissue sample in a solution containing a labelling reagent for labelling proteins, wherein accessible proteins are labelled by the labelling reagent;
    • purification of the labelled proteins;
    • analysis of the labelled proteins or fragments thereof;
    • determination of the differential expression pattern of the labelled proteins in the native pathologic tissue samples compared to normal tissue;
    • judging that the labelled protein(s) having higher expression in the native pathologic tissue sample compared to normal tissue or being expressed more frequently in respective pathologic tissue samples compared to normal tissue is/are biological marker(s) for pathologic tissue, which are accessible for high-affinity ligands from the extra cellular space.


It is understood that the in the step of immersing a native pathologic tissue sample in a solution containing a labelling reagent for labelling proteins, only accessible proteins are labelled by the labelling reagent; while non-accessible proteins are not or essentially not labelled. In a preferred embodiment of the method it is judged that said labelled protein(s) is/are accessible for high-affinity ligands from the extra cellular space in the native tissue, most preferred is/are accessible for high-affinity ligands from the extra cellular space in vivo.


The present invention therefore provides a new chemical proteomic method for the reliable identification of target proteins from diseased tissues, which in vivo are accessible from the extra cellular fluid and thus from the bloodstream. By applying this procedure, for example, to small, surgically obtained samples of normal and cancerous human breast tissues, a series of accessible proteins selectively expressed in breast cancer are identified. Some of these breast cancer-associated antigens correspond to extracellular proteins including extra cellular matrix and secreted proteins, and appear to be interesting targets for antibody-based anti-cancer treatments. This powerful technology can theoretically be applied to virtually any tissue and pathologic condition and may become the basis of custom-made target therapies.


According to the present invention at least the pathologic tissue sample is native until the immersion step, preferably the normal tissue sample is also native until the immersion step. As used herein the term “native tissue sample” means that the tissue sample is not denatured and not fixed. As used herein the term “native tissue” comprises native tissue samples as well as the corresponding tissues in vivo.


According to the present invention biological markers for pathologic diseases which are not accessible from the extracellular space in a native tissue sample (and also are not accessible from the extracellular space in vivo) will not or will essentially not be labelled.


An important feature of the present invention is that the native tissue samples are immersed in a solution comprising a reactive compound which is marking and labelling proteins which are accessible from the extra cellular space, by simple diffusion through the native tissue. This means that once the tissue sample is immersed into the solution the reactive compound comprised therein will diffuse through the extracellular space of the native tissue sample and thereby brought into contact with accessible proteins and react with them. The labelled proteins can be easily purified and analysed and identified by proteomic methods. Identification of the labelled proteins is, for example, achieved by liquid chromatography and subsequent mass spectrometry. One major advantage is that the present method does not depend on the possibility that the (native) tissue samples used can be perfused or not. Therefore, according to the method of the present invention any tissue can be investigated and explored in order to seek for accessible biological markers.


As used herein the term “biological marker” represents proteins or polypeptides (which may be modified for example by glycosylation), which are expressed in a given pathologic tissue and which are essentially not expressed in normal tissues, or are expressed on a higher level in the given pathologic tissue than in normal tissues, wherein the biological marker indicates a pathologic condition compared to the normal physiologic condition of normal tissues.


As used herein the term “normal tissue” represents either normal tissue corresponding to the pathologic tissue from the same individual or normal tissue corresponding to the pathologic tissue from other individuals or normal tissue that is not related (in extenso either from a different location in the body, or with a different histologic type) to the pathologic tissue either from the same individual or form other individuals.


In a preferred embodiment the term “normal tissue” refers to the normal tissue corresponding the pathologic tissue from the same individual.


According to the present invention the step of determination of the “differential expression pattern” of the labelled proteins in pathologic tissue samples compared to normal tissue samples means that it is examined, for example, if a given labelled protein is at all expressed in a tissue or not, either pathologic or normal. This analysis may also comprise the assessment of the relation of expression level in pathologic tissue versus normal tissue. Further, this analysis may also comprise the assessment of in how many samples (eventually from different individuals) of a given type of pathologic tissue expression of a given protein is found compared to in how many samples (eventually from different individuals) of the given type of the corresponding or unrelated normal tissue expression of a given protein is found.


According to the present invention there is a step of judging that the labelled protein(s) having higher expression in the native pathologic tissue samples compared to normal tissue samples or being expressed more frequently in respective native pathologic tissue samples compared to normal tissue samples is/are biological marker(s) for pathologic tissue, which are accessible for high-affinity ligands from the extra cellular space in the native tissue. Most preferred, it is judged that the labelled protein(s) having expression in the native pathologic tissue sample but which is not or essentially not expressed in the corresponding and/or unrelated normal tissue is/are biological marker(s) for pathologic tissue, which are accessible for high-affinity ligands from the extra cellular space in the native tissue.


In a preferred embodiment the method comprises the steps of:

    • immersion of a normal tissue sample in a solution containing a labelling reagent for labelling proteins; wherein accessible proteins are labelled by the labelling reagent;
    • immersion of a native pathologic tissue sample in a solution containing a labelling reagent for labelling proteins, wherein accessible proteins are labelled by the labelling reagent;
    • separate purification of the labelled proteins of each of the samples;
    • analysis of the labelled proteins or fragments thereof of normal tissue and pathologic tissue, respectively;
    • determination of the differential expression pattern of the labelled proteins in the native pathologic tissue samples compared to the normal tissue samples;
    • judging that the labelled protein(s) having higher expression in the native pathologic tissue sample compared to the normal tissue sample or being expressed more frequently in respective native pathologic tissue samples compared to the normal tissue sample is/are biological marker(s) for pathologic tissue, which are accessible for high-affinity ligands from the extra cellular space.


Further preferred the labelling reagent for labelling proteins is a reactive biotin, preferably a biotin reactive ester derivative.


In yet another preferred embodiment the purification step makes use of the label of the labelled proteins as selective marker. It is preferred that the labelled proteins are purified by affinity purification mediated by the label.


Preferably, the label is a biotin residue and purification is performed using streptavidin bound to a resin, wherein the biotin-labelled proteins are bound to the resin via streptavidin.


According to a further preferred embodiment after the purification step the labelled proteins are cleaved to peptides, preferably by proteolytic digestion.


Further preferred, the analysis step comprises mass spectrometry, preferably microsequencing by tandem mass spectrometry.


Preferably, the native pathologic tissue sample is derived from tissues selected from the group consisting of tumor tissue, inflamed tissue, atheromatotic tissue or resulting from degenerative, metabolic and genetic diseases.


Further preferred, accessibility of the biological markers refers to being accessible for high-affinity ligands from the extra cellular space. This means that substances (high-affinity ligands) can diffuse in vitro through the extra cellular space of a given native tissue to accessible biological markers (which are accessible from the extra cellular space in the native tissue, and therefore also in vivo). In consequence, if a specific substance for labelling is able to diffuse in vitro through the extra cellular space of a given pathologic tissue and reaches the biological marker, which is indicating the pathologic condition, then said biological marker (which can be determined according to the present invention) likely will also be accessible in vivo via the extracellular space (extra cellular liquid) and therefore can be considered to be a candidate target protein (biological marker) for detecting the disease (for detecting the presence (diagnosis), and/or evaluating the spread (staging) and/or assessing the evolution (monitoring) of the disease) and for targeting drugs to the cells and tissues expressing said accessible protein (biological marker). Preferably, the substances (high-affinity ligands) which can diffuse in vitro through the extra cellular space of a given tissue to accessible biological markers are selected from the group consisting of antibodies, antibody fragments, drugs, prodrugs, ligands, biotin, and derivatives and conjugates thereof, preferably conjugates of antibodies or antibody fragments with drugs or prodrugs.


In a further preferred embodiment the biological markers are proteins or polypeptides, which are expressed in the given pathologic tissue and not expressed in the corresponding normal tissue, or are expressed on a higher level in the given pathologic tissue than in the corresponding normal tissue, wherein the biological marker indicates a pathologic condition compared to the normal physiologic condition of the corresponding normal tissue.


The object of the present invention is also solved by the use of the aforementioned method for the manufacture of a medicament for therapeutic and/or preventive treatment of a human or animal disease, wherein a high-affinity ligand directed against a biological marker for pathologic tissue is comprised in the medicament, wherein said biological marker is accessible for high-affinity ligands from the extra cellular space. Preferably, the high-affinity ligand is an antibody, more preferred a monoclonal antibody or a recombinant antibody, directed to the biological marker. Preferably, a method is provided for the manufacture of a medicament for therapeutic and/or preventive treatment of a human or animal disease, wherein a high-affinity ligand directed against a biological marker for pathologic tissue is comprised in the medicament, wherein said biological marker is accessible for high-affinity ligands from the extra cellular space, wherein the method is comprising the steps of:

    • immersion of a native pathologic tissue sample in a solution containing a labelling reagent for labelling proteins, wherein accessible proteins are labelled by the labelling reagent;
    • purification of the labelled proteins;
    • analysis of the labelled proteins or fragments thereof;
    • determination of the differential expression pattern of the labelled proteins in native pathologic tissue samples compared to normal tissue;
    • judging that the labelled protein(s) having higher expression in the native pathologic tissue sample compared to normal tissue or being expressed more frequently in respective native pathologic tissue samples compared to normal tissue is/are biological marker(s) for pathologic tissue, which are accessible for high-affinity ligands from the extra cellular space in the native tissue.
    • raising antibodies against said biological marker and conjugation with a suitable drug for treatment of the pathologic cells and tissues by drug targeting.


The present invention also provides the use of the aforementioned method for the development of techniques for the detection of pathologic tissues. Preferably, subsequent to the choice of the biological marker (judgement step) according to the present invention antibodies are raised against the biological marker and conjugated with a detectable label well-known in the art, which is detectable, for example by scintigraphy, PET scan, NMR or X-rays. Preferably, a method is provided for the development of techniques for the detection of pathologic tissues, wherein the method is comprising the steps of:

    • immersion of a native pathologic tissue sample in a solution containing a labelling reagent for labelling proteins, wherein accessible proteins are labelled by the labelling reagent;
    • purification of the labelled proteins;
    • analysis of the labelled proteins or fragments thereof;
    • determination of the differential expression pattern of the labelled proteins in the native pathologic tissue samples compared to normal tissue;
    • judging that the labelled protein(s) having higher expression in the native pathologic tissue sample compared to normal tissue or being expressed more frequently in respective pathologic tissue samples compared to normal tissue is/are biological marker(s) for pathologic tissue, which are accessible for high-affinity ligands from the extra cellular space in the native tissue.
    • raising antibodies against said biological marker and conjugation with a detectable label, which is detectable by scintigraphy, PET scan, NMR or X-rays.


The present invention further provides the use of the aforementioned method for the development of a medicament based on the use of specific ligands, preferably antibodies and antibody-drug conjugates, for therapeutic and/or preventive treatment of human or animal diseases. Preferably, subsequent to the choice of the biological marker judgement step) according to the present invention antibodies are raised against the biological marker and conjugated with a suitable drug for treatment the pathologic cells and tissues by drug targeting. Preferably, a method is provided for the development of a medicament based on the use of specific ligands, preferably antibodies and antibody-drug conjugates, for therapeutic and/or preventive treatment of human or animal diseases, wherein the method is comprising the steps of:

    • immersion of a native pathologic tissue sample in a solution containing a labelling reagent for labelling proteins, wherein accessible proteins are labelled by the labelling reagent;
    • purification of the labelled proteins;
    • analysis of the labelled proteins or fragments thereof;
    • determination of the differential expression pattern of the labelled proteins in the native pathologic tissue samples compared to normal tissue;
    • judging that the labelled protein(s) having higher expression in the pathologic tissue sample compared to normal tissue or being expressed more frequently in respective pathologic tissue samples compared to normal tissue is/are biological marker(s) for pathologic tissue, which are accessible for high-affinity ligands from the extra cellular space in the native tissue.
    • raising antibodies against said biological marker and conjugation with a suitable drug for treatment of the pathologic cells and tissues by drug targeting.


The present invention further provides the use of the aforementioned method for the screening of accessible biological markers of a pathologic tissue of an individual patient for the development of an individual treatment protocol. Preferably, subsequent to the choice of the biological marker (judgement step) according to the present invention antibodies are raised against the biological marker and conjugated with a suitable drug for treatment the pathologic cells and tissues by drug targeting. Preferably, a method is provided for the development of a medicament based on the use of specific ligands, preferably antibodies and antibody-drug conjugates, for therapeutic and/or preventive treatment of human or animal diseases, wherein the method is comprising the steps of:

    • immersion of a native pathologic tissue sample of an individual patient in a solution containing a labelling reagent for labelling proteins, wherein accessible proteins are labelled by the labelling reagent;
    • purification of the labelled proteins;
    • analysis of the labelled proteins or fragments thereof;
    • determination of the differential expression pattern of the labelled proteins in the native pathologic tissue samples compared to normal tissue;
    • judging that the labelled protein(s) having higher expression in the native pathologic tissue sample compared to normal tissue or being expressed more frequently in respective pathologic tissue samples compared to normal tissue is/are biological marker(s) for pathologic tissue, which are accessible for high-affinity ligands from the extra cellular space in the native tissue.
    • raising antibodies against said biological marker and conjugation with a suitable drug for treatment of the pathologic cells and tissues by drug targeting.


The object is also solved by a method for therapeutic and/or preventive treatment of a human or animal disease, wherein a high-affinity ligand directed against a biological marker for pathologic tissue is used, wherein said biological marker is accessible for high-affinity ligands from the extra cellular space, wherein the method is comprising the aforementioned procedure of the present invention. Preferably, a method is provided for therapeutic and/or preventive treatment of a human or animal disease, wherein a high-affinity ligand directed against an biological marker for pathologic tissue is used, wherein said biological marker is accessible for high-affinity ligands from the extra cellular space, wherein the method is comprising the steps of:

    • immersion of a native pathologic tissue sample in a solution containing a labelling reagent for labelling proteins, wherein accessible proteins are labelled by the labelling reagent;
    • purification of the labelled proteins;
    • analysis of the labelled proteins or fragments thereof;
    • determination of the differential expression pattern of the labelled proteins in the native pathologic tissue samples compared to normal tissue;
    • judging that the labelled protein(s) having higher expression in the native pathologic tissue sample compared to normal tissue or being expressed more frequently in respective native pathologic tissue samples compared to normal tissue is/are biological marker(s) for pathologic tissue, which are accessible for high-affinity ligands from the extra cellular space in the native tissue;
    • raising antibodies against said biological marker and conjugation with a suitable drug for treatment of the pathologic cells and tissues by drug targeting.


In the present patent application a new, simple, quick and efficient method is provided to identify, in human tissue biopsies, specific disease biological markers accessible from the extra cellular space. The method of the present invention preferably makes use of covalent linking of biotin onto primary amines of accessible proteins brought into contact with a solution of reactive biotin ester derivatives. The method according to the present invention permits the ex vivo biotinylation of human tissues, which originate either from biopsies or from non-perfusable organs (e.g. cancer lesions present in mastectomy or prostatectomy samples), by simple immersion in the biotinylation solution, without prior lysis or homogenisation, and preferably also without denaturation or fixation. Biotinylated proteins are easily purified thanks to the extremely high and specific interaction of biotin with streptavidin, even in lysis buffers containing strong detergents, thus minimizing the non-specific binding during the affinity purification step. Proteolytic digestion of the purified biotinylated proteins preferably is performed directly on-resin, before shotgun mass spectrometry analysis.


In summary the method of the present invention allows the identification of several accessible proteins differentially expressed in pathologic and healthy tissue samples. This method is applicable to virtually any tissue, including tumor tissue samples as well as other pathologic tissues resulting from inflammatory, degenerative metabolic and even genetic diseases. The present invention sought for specific biological markers of human breast cancer, the most frequent form of cancer and the second leading cause of cancer death in American women. Among a list of candidate markers, two of them, versican and periostin, were identified in breast cancers with the chemical proteomic-based approach of the present invention, and were further validated by immunohistochemistry. The accessibility of these extra cellular matrix proteins may be particularly suited for targeting strategies using an intravenous route. It was demonstrated that the method is easy to perform and reliable. Of note, results can be obtained in less than one week. The method is versatile enough to be exploited in the future for complete mapping of primary tumors and associated metastases. It would enable the development of custom-made treatments, targeting only accessible proteins effectively expressed in the diseased tissues. It may be anticipated that once the most relevant, accessible biological markers specific for a patient's disease are identified, high affinity ligands, such as recombinant human antibodies and their fragments, can be prepared to assess the precise localization of the pathologic lesions and to selectively destroy them. As an example, the human antibody L19, a specific ligand of the EDB domain of fibronectin, a biological marker of several cancer types (Zardi, L. et al. Transformed human cells produce a new fibronectin isoform by preferential alternative splicing of a previously unobserved exon. Embo J 6, 2337-2342 (1987); Pini, A. et al. Design and use of a phage display library. Human antibodies with subnanomolar affinity against a marker of angiogenesis eluted from a two-dimensional gel. J. Biol Chem 273, 21769-21776 (1998); Castellani, P. et al. Differentiation between high and low-grade astrocytoma using a recombinant antibody to the extra domain-B of fibronectin. Am J Pathol 161, 1695-1700 (2002)), is currently tested in clinical trials, both as a imaging tool (conjugated to radioactive iodine (Berndorff, D. et al. Radioimmunotherapy of solid tumors by targeting extra domain B fibronectin: identification of the best-suited radioimmunoconjugate. Clin Cancer Res 11, 7053s-7063s (2005); Borsi, L. et al. Selective targeting of tumoral vasculature: comparison of different formats of an antibody (L19- to the ED-B domain of fibronectin. Int J Cancer 102, 75-85 (2002)) and as a therapeutic agent (fused with human interleukin-2 (Ebbinghaus, C. et al. Engineered vascular-targeting antibody-interferon-gamma fusion protein for cancer therapy. Int J Cancer 116, 304-313 (2005); Menrad, A. & Menssen, H. D. ED-B fibronectin as a target for antibody-based cancer treatments. Expert Opin Ther Targets 9, 491-500 (2005); Carnemolla, B. et al. Enhancement of the antitumor properties of interleukin-2 by its targeted delivery to the tumor blood vessel extracellular matrix. Blood 99, 1659-1665 (2002))). The new technology of the present invention will promote the development of selective target therapies and therefore may represent an unprecedent step toward a clean and effective war against diseases and particularly cancer.







BEST MODE FOR CARRYING OUT THE PRESENT INVENTION

In a preferred embodiment the object is solved by an in vitro method for screening specific disease biological markers which are accessible from the extra cellular space in pathologic tissues for high-affinity ligands comprising the steps of:

    • immersion of a native normal tissue sample in a solution containing a reactive biotin for labelling proteins; wherein accessible proteins are labelled (biotinylized) by the reactive biotin;
    • immersion of a native pathologic tissue sample in a solution containing a reactive biotin for labelling proteins; wherein accessible proteins are labelled (biotinylized) by the reactive biotin;
    • separate purification of the biotinylized proteins of each of the samples using a streptavidin-bound resin, wherein the streptavidin moiety binds to the biotin group;
    • analysis of the labelled proteins or fragments thereof of normal tissue and pathologic tissue, respectively, using liquid chromatography followed by mass spectrometry;
    • determination of the differential expression pattern of the labelled proteins in the native pathologic tissue samples compared to the native normal tissue samples;
    • judging that the biotinylized protein(s) having expression in the native pathologic tissue sample but which is/are not or essentially not expressed in the corresponding normal tissue is/are biological marker(s) for the given pathologic tissue, which are accessible for high-affinity ligands from the extra cellular space in the native tissue. FIG. 1 summarizes these steps of the method.


EXAMPLES
1. Assessment of the Immersion Time of the Tissue in the Biotin Solution

First, the effect of immersion time in the biotin solution on labelling extent and intensity was investigated by histochemistry. Diffusion extent was dependent not only on soaking time, but also on the thickness and composition of the tissue. Increased soaking times (up to 40 minutes) were tested onto breast tissue specimens of variable thicknesses. It was observed that labelling extent, indicative of biotin penetration in the tissues, increased over time (FIG. 2). Since a 20-minute immersion time was found appropriate for 2 mm-thick human breast tissue slices, this procedure was used in all further experiments. Reproducibility of the biotinylation step, evaluated by examining labelled protein patterns of different samples from the same tumor specimen, was found consistent (FIG. 4c).


2. Expression Profiles of Accessible Proteins in Breast Carcinomas

Expression profiles of biotinylated, accessible proteins in 7 ductal and 3 lobular human breast carcinomas (Table 2) and their matched non-tumoral counterparts were then determined using the MudPIT (Multidimensional protein identification technology) technique, based on 2-dimensional separation of tryptic peptide digest using nanoflow liquid chromatography coupled to electrospray tandem mass spectrometry. The complete list of proteins includes 670 proteins identified with high confidence (Table 3). Reproducibility of the method was assessed by comparing the protein lists generated by multiple runs of the same sample, and by comparing protein lists generated from 3 different samples from the same tumor (FIG. 4c). The number of proteins identified in the biotinylated breast samples (>250 proteins) was definitely higher than the one found in non-biotinylated, control samples (no more than 10 proteins in normal or tumor samples, data not shown). Proteins found in non-biotinylated samples were most likely “sticky” proteins that unspecifically bound to the streptavidin beads and consisted mainly of serum proteins (e.g. human serum albumin, hemoglobin chains and immunoglobulins) and keratins. Biotinylated proteins included extra cellular, plasma membrane, and intracellular proteins (Table 3). As already described in the prior art, i) intracellular proteins are most likely released by damaged cells prior to biotinylation when tissues are sliced, ii) cytoplasmic proteins could be co-purified because of a strong interaction with membrane proteins, and iii) although negatively charged, the long chain biotin esters can enter into the cells (Scheurer, S. B. et al., Identification and relative quantification of membrane proteins by surface biotinylation and two-dimensional peptide mapping. Proteomics 5, 2718-28 (2005); Peirce, M. J. et al., Two-stage affinity purification for inducibly phosphorylated membrane proteins. Proteomics 5, 2417-21 (2005)).


The comparative analysis of nor-tumoral and cancerous breast tissues identified several proteins known to be preferentially localized in the extra cellular compartment Stromal proteins that are selectively expressed in cancer tissues are prime candidates for tumor targeting strategies because (i) they are expected to be more accessible than intracellular proteins, (ii) they are often present in high quantities, and (iii) tumor cells frequently induce changes in the stromal compartment. This “reactive stroma” creates a permissive and supportive environment contributing to cancer progression (Walker, R. A. The complexities of breast cancer desmoplasia. Breast Cancer Res 3, 143-145 (2001); De Wever, O. & Mareel, M. Role of tissue stroma in cancer cell invasion. J Pathol 200, 429-447 (2003)). For these reasons, identification of new stromal proteins specifically involved in cancer is of high interest. Searching for accessible extra cellular matrix (ECM) proteins, versican has been identified as being systematically expressed only in the breast cancer microenvironment (Table 1). Among other potential extra cellular biological markers, periostin and fibronectin were more frequently detected in the cancerous tissues analyzed. Further, the in situ expression of some of these potential markers was investigated by immunohistochemistry in a series of human breast cancers together with their normal counterparts.


Table 1 shows a selection of 10 accessible proteins identified with high confidence. Several proteins of this list appeared to be cancer- or breast cancer-associated proteins (e.g. cytokeratins, anterior gradient protein homolog 2, periostin and versican, among others). Interestingly, the membrane antigen ErbB2 was also identified by MS in the single tumor (out of the 10 tumors tested) that was considered as ErbB2-positive by routine immunohistochemical assessment. Biotinylated proteins included extracellular and plasma membrane proteins, but also included a non-negligible fraction of intracellular proteins. The reasons for this observation include intracellular protein leakage when tissues are sliced, biotin penetration, and strong interactions between cytoplasmic and membrane proteins. Nevertheless, the comparative analysis of non-tumoral versus cancerous breast tissues identified several proteins known to be preferentially localized in the extracellular compartment.


Searching for accessible extracellular matrix (ECM) proteins, versican was identified in this study as being systematically and specifically (10 out of the 10 sample pairs tested) detected in the breast cancer samples, but not in the matched normal counterparts (Table 1). Versican, a large proteoglycan secreted by stromal cells in the ECM, is a recognized cell adhesion and motility modulator that may facilitate tumor cell invasion and metastasis (Yamagata, M., et al., Regulation of cell-substrate adhesion by proteoglycans immobilized on extra cellular substrates. J Biol Chem 264, 8012-8 (1989); Evanko, S. P. et al., Formation of hyaluronan- and versican-rich pericellular matrix is required for proliferation and migration of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 19, 1004-13 (1999); Ricciardelli, C. et al., Regulation of stromal versican expression by breast cancer cells and importance to relapse-free survival in patients with node-negative primary breast cancer. Clin Cancer Res 8, 1054-60 (2002)). Anti-versican immunoreactivity is increased in the peritumoral stromal matrices of breast (Suwiwat, S. et al., Expression of extra cellular matrix components versican, chondroitin sulfate, tenascin, and hyaluronan, and their association with disease outcome in node-negative breast cancer. Clin Cancer Res 10, 2491-8 (2004)), lung (Pirinen, R. et al., Versican in nonsmall cell lung cancer: relation to hyaluronan, clinicopathologic factors, and prognosis. Hum Pathol 36, 44-50 (2005)), prostate (Ricciardelli, C. et al., Elevated levels of versican but not decorin predict disease progression in early-stage prostate cancer. Clin Cancer Res 4, 963-71 (1998)), and colon (Mukaratirwa, S. et al., Versican and hyaluronan expression in canine colonic adenomas and carcinomas: relation to malignancy and depth of tumour invasion. J Comp Pathol 131, 259-70 (2004)) cancers. In addition, increased accumulation of versican in the stroma surrounding breast cancer cells is associated with a higher risk of relapse in node-negative, primary breast cancer (Ricciardelli, C. et al. Regulation of stromal versican expression by breast cancer cells and importance to relapse-free survival in patients with node-negative primary breast cancer. Clin Cancer Res 8, 1054-60 (2002); Suwiwat, S. et al., Expression of extra cellular matrix components versican, chondroitin sulfate, tenascin, and hyaluronan, and their association with disease outcome in node-negative breast cancer. Clin Cancer Res 10, 2491-8 (2004)). Versican was identified from several peptides (up to 5), and MS spectra of versican peptides were thoroughly examinated (FIG. 4b). Further validation of this potential target was undertaken using immunohistochemistry. FIG. 3 shows representative examples of anti-versican immunostaining in human breast tissues. While versican expression around normal breast glands and ducts was generally absent, the protein harbored strong immunoreactivity in the stromal compartment of the 10 different breast cancer lesions analyzed. These results as well as those from the above-referenced literature are thus fully consistent with the mass spectrometry analysis of the present studies detecting versican only in neoplastic tissues. In view of all these data, versican is proposed as a potential target protein for the treatment of human breast cancer. However, an ideal target protein should not only be specifically expressed in tumors, but also be absent in normal tissues. Since the distribution of versican expression in the normal human body was largely unknown, the present inventors undertook to examine in detail the presence of this ECM proteoglycan using tissue microarrays comprising a wide variety of normal human tissues and organs. Analysis of versican expression by immunoperoxidase staining revealed that anti-versican immunoreactivity was absent in most normal tissues (e.g. adrenal gland, amniotic membrane, breast, umbilical cord, endometrium, myometrium, uterine cervix, heart, kidney, oesophagus, pancreas, peripheral nerve, liver, lung, spleen, thymus, thyroid, tongue), with only moderate reactivity detected in the placenta and some areas of the central nervous system. Since the central nervous system is not accessible to circulating, conjugated antibodies unless blood brain barrier is disrupted, these in situ expression analyses further identified versican as a promising target for antibody-based anti-cancer treatments.


Periostin is a soluble, secreted ECM-associated protein (Takeshita, S. et al., Osteoblast-specific factor 2: cloning of a putative bone adhesion protein with homology with the insect protein fasciclin I. Biochem J 294 (Pt 1), 271-8 (1993)) that localizes with integrins at sites of focal adhesion, thus suggesting a contribution of this protein to cell adhesion and motility (Gillan, L. et al. Periostin secreted by epithelial ovarian carcinoma is a ligand for alpha(V)beta(3) and alpha(V)beta(5) integrins and promotes cell motility. Cancer Res 62, 5358-64 (2002)). It has been recently shown that human periostin is overexpressed in several cancer types, including colorectal carcinoma (Bao, S. et al., Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway. Cancer Cell 5, 329-39 (2004); Tai, I. T. et al., Periostin induction in tumor cell line explants and inhibition of in vitro cell growth by anti-periostin antibodies. Carcinogenesis 26, 908-15 (2005)), breast adenocarcinoma (Shao, R. et al., Acquired expression of periostin by human breast cancers promotes tumor angiogenesis through up-regulation of vascular endothelial growth factor receptor 2 expression. Mol Cell Biol 24, 3992-4003 (2004)), non-small cell lung carcinoma (Sasaki, H. et al., Expression of Periostin, homologous with an insect cell adhesion molecule, as a prognostic marker in non-small cell lung cancers. Jpn J Cancer Res 92, 869-73 (2001)), glioblastoma (Lal, A. et al., A public database for gene expression in human cancers. Cancer Res 59, 5403-7 (1999)), and epithelial ovarian carcinoma (Ismail, R. S. et al., Differential gene expression between normal and tumor-derived ovarian epithelial cells. Cancer Res 60, 6744-9 (2000)). In addition, periostin overexpression in cancer lesions may be associated with advanced disease (Bao, S. et al., Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway. Cancer Cell 5, 329-39 (2004)) and poor outcome (Sasaki, H. et al., Expression of Periostin, homologous with an insect cell adhesion molecule, as a prognostic marker in non-small cell lung cancers. Jpn J Cancer Res 92, 869-73 (2001)). Periostin may facilitate tumor invasion and metastasis by promoting angiogenesis (Bao, S. et al., Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway. Cancer Cell 5, 329-39 (2004); Shao, R. et al., Acquired expression of periostin by human breast cancers promotes tumor angiogenesis through up-regulation of vascular endothelial growth factor receptor 2 expression. Mol Cell Biol 24, 3992-4003 (2004)). Given the suspected role of periostin in tumor metastasis, this secreted protein represents an attractive cancer biological marker and target. In the current study, protein expression profiles obtained in the 10 breast cancer and matched non-tumoral tissues analyzed revealed that periostin was among the most frequently extra cellular proteins identified in the tumor samples (10 out of the 10 breast cancers evaluated). This was further confirmed by immunohistochemical experiments demonstrating an up-regulation of periostin in the stroma associated with the breast cancers analyzed in this study, as compared with the stroma associated with the non-tumoral breast glandular/ductal compartment (data not shown).


3. Figure Legends


FIG. 1 shows a schematic representation of a method for the identification of accessible proteins in human pathologic tissues. Ex vivo biotinylation of normal and diseased human tissue samples is achieved by immersion of the tissues into a solution containing a reactive ester derivative of biotin that labels free primary amines. Biotinylated proteins from each tissue sample are extracted with detergents, captured on streptavidin, and submitted to on-resin proteolytic digestion after washes. Biotinylated accessible proteins are finally sequenced by shotgun mass spectrometry using nLC-ESI MS/MS. Identified accessible proteins differentially expressed in the tissue samples are further validated for example by immunohistochemical analysis.



FIG. 2 shows the evaluation of increasing immersion times on the depth of tissue biotinylation. Thin slices of breast cancer tissues were soaked in the biotinylation solution for various periods of time, as indicated. Extent of tissue biotinylation was assessed using histochemistry. Histochemical experiments were carried out with the use of the ABC Vectastain kit, according to the manufacturer's directions (Vector Laboratories, Burlingame, Calif., USA). Original magnification: ×100.



FIG. 3: Validation of versican by in situ expression analyses. a: Representative examples of versican expression in cancerous and matched non-tumoral human breast cancer tissues, as assessed by immunohistochemistry. Paraffin sections of human breast tissues were subjected to immunoperoxidase staining. Original magnification: ×100. b: Representative examples of versican expression by immunoperoxidase staining in various normal human tissues and organs, as indicated, using tissue microarrays.



FIG. 4: Sample processing overview. a: Purification of biotinylated proteins. The upper blot shows biotinylated proteins from the coomassie blue (CB) stained gel depicted in the lower panel. Whole tumor lysate is shown in lane 1. Human serum albumin and immunoglobulins are removed from the samples, as clearly shown in lane 2 (CB gel). This lysate is applied onto a streptavidin resin. Lane 3 shows proteins that did not attach to the resin: a significant amount of protein did not attach, but few proteins were actually biotinylated. Lanes 4, 5 and 6 show the flow-through fractions of different washes (with detergent, high salt and alkaline buffer, respectively). Proteins attached to the resin are shown in lane 7; these proteins represent those that are on-resin digested and analysed by MS. b: MS/MS fragmentation of the peptide LLASDAGLYR found in the versican core protein precursor, followed by MS/MS fragmentation annotated by Mascot software. The monoisotopic mass of the neutral peptide is 1077.58, the measured mass is 1077.535448 (from the doubly charged parent ion 539.775000). The table below the fragmentation spectra shows ions from the b and y series (20 out of 74 fragment ions using the 37 most intense peaks). m/z: mass-to-charge ratio. c: Reproducibility of the biotinylation steps and MS analyses. A breast tumor specimen was cut into four samples, which were biotinylated separately. Each sample was stained by histochemistry with avidin-HRP conjugates as shown for sample no 4 (original magnification: ×100). The patterns of biotinylated proteins from the first, second and third samples were revealed by neutravidin-HRP after western blotting. Lane 3 shows a weaker staining, but an overall identical pattern when compared with lanes 1 and 2. Sample no 1 was analysed by MS 3 times. The histograms on the left side of the figure display the average number of proteins identified following 1, 2 or 3 replicate analyses of the same sample (error bars indicate the standard error to the mean for each pairwise replicate comparison), and the overlap of protein identified in the three replicate runs. Samples no 1, 2 and 3 were analysed by MS. The average number of identifications and the percentage of overlap in protein identifications are reported in the histograms.


4 Tissue Harvesting

Cancerous and non-tumoral human breast tissue samples were obtained from mastectomy specimens, immediately sliced and soaked into freshly prepared biotinylation solution (1 mg.ml−1 of EZ-link Sulfo NHS-LC biotin (Pierce) dissolved extemporaneously in PBS [pH 7.4]). The time frame from the excision in the operating theatre to the biotinylation step required typically less than 10 minutes. Each biotinylation reaction was stopped by a 5 minute incubation in a primary amine-containing buffer solution (e.g. 50 mM Tris [pH 7.4]). Tissue samples were then snap-frozen in liquid nitrogen, except for a tiny portion of each sample that was directly immersed in formalin and then processed for further histological and histochemical investigations. Additional tissue samples not included in the biotinylation procedure were routinely processed for histopathological diagnosis. Controls included adjacent tissue slices immersed in PBS. The Ethics Committee of the University Hospital of Liege reviewed and approved the specific protocol used in this study, and written informed consent was obtained from all patients.


5. Histochemistry and Immunohistochemistry

In order to assess the diffusion depth of reactive biotin ester derivatives in the biotinylated tissues, formalin-fixed, paraffin-embedded breast tissue sections were incubated with avidin-peroxidase conjugates with the use of the Vectastain ABC kit (Vector Labortories, Burlingame, Calif., USA), according to the manufacturer's instructions. Immunohistochemical experiments were performed as previously described by Waltregny et al. (Waltregny, D. et al. Prognostic value of bone sialoprotein expression in clinically localized human prostate cancer. J Natl Cancer Inst 90, 1000-1008 (1998)). For the immunohistochemical detection of versican, antigen retrieval was performed by incubating the slides with chondroitinase. Anti-versican (clone 12C5, Developmental Studies Hybridoma Bank at the University of Iowa, Iowa City, Iowa, USA) antibody was applied onto the sections at a dilution of 1:200. Control experiments included omission of the primary antibody in the procedure.


6. Sample Processing

Pulverization of frozen biotinylated biopsies was performed using a Mikro-Dismembrator U (Braun Biotech, Melsungen, Germany) and generated tissue powder that was resuspended first in a PBS buffer containing a protease inhibitor cocktail (Complete, Roche Diagnostics, Mannheim, Germany). Homogenates were sonicated (2×30″) with a 2 mm microprobe and soluble proteins were subjected to a preclearing step consisting in human serum albumin (HSA) and immunoglobulins (IgGs) depletion (Qproteome HSA and IgGs Removal Kit, Quiagen). This step was included to limit the number of HSA and IgGs peptides detected by MS, but did not hinder detection of low abundant proteins (data not shown). Insoluble pellet was resuspended in 2% SDS in PBS, and lysates were sonicated (3×30″). HSA- and IgGs-depleted soluble proteins fraction and detergent-solubilized proteins were pooled and boiled for 5 minutes. Protein concentration was determined using the BCA protein assay reagent kit (Pierce Chemical Co.). Streptavidin-sepharose slurry (Amersham Biosciences, 150 μl per mg of total proteins) was equilibrated by three washes in buffer A (1% NP40 and 0.1% SDS in PBS), and protein binding was allowed for 2 hours at room temperature in a rotating mixer. The resin was then washed twice with buffer A, twice with buffer B (0.1% NP40, 1M NaCl in PBS), twice with buffer C (0.1M sodium carbonate in PBS, pH 11), and once with ammonium hydrogenocarbonate (50 mM, pH 7.8). Binding of the biotinylated proteins onto the resin and washing efficiencies were checked by SDS-PAGE, and further either by Coomassie blue staining or by blotting for subsequent detection of biotin by streptavidin-horseradish peroxidase. On-resin digestion was carried out overnight at 37° C. with agitation, using modified porcine trypsin (Promega) in 100 μl final volume of ammonium hydrogenocarbonate (pH 7.8). The supernatants were collected, protein concentration was determined, and once evaporated, the peptides were resuspended in 0.1% formic acid. Samples were analysed by nanocapillary liquid chromatography-electrospray tandem mass spectrometry (nLC-ESI MS/MS).


7. Mass Spectrometry

Peptide separation by reverse-phase liquid chromatography was performed on an “Ultimate LC” system (LC Packings) completed with a Famos autosampler and a Swichos II Microcolumn switching device for sample clean-up, fractionation and preconcentration. Sample (20 μL at 0.25 μg/μL 0.1% formic acid) was first trapped on a SCX micro pre-column (500 μM internal diameter, 15 mm length, packed with MCA50 bioX-SCX 5 μm; LC Packings) at a flow rate of 200 nL/min followed by a micro pre-column cartridge (300 μM i.d., 5 mm length, packed with 5 μm C18 PepMap100; LC Packings). After 5 min the precolumn was connected with the separating nanocolumn (75 μm i.d., 15 cm length, packed with 3 μm C18 PepMap100; LC Packings) equilibrated in mobile phase A (0.1% formic acid in 2:98 of acetonitrile:degassed milliQ water). A linear elution gradient was applied with mobile phase B (0.1% formic acid in 80:20 of acetonitrile:degassed milliQ water) from 10% to 40% spanning on 95 minutes. The outlet of the LC system was directly connected to the nano electrospray source of an Esquire HCT ion trap mass spectrometer (Bruker Daltonics, Germany). Mass data acquisition was performed in the mass range of 50-2000 m/z using the standard-enhanced mode (8100 m/z per second). For each mass scan, a data dependant scheme picked the 3 most intense doubly or triply charged ions to be selectively isolated and fragmented in the trap. The resulting fragments were analyzed using the Ultra Scan mode (m/z range of 50-3000 at 26000 m/z per second). SCX-trapped peptides were stepwise eluted with 5 salt concentrations (10 mM, 20 mM, 40 mM, 80 mM, and 200 mM), each followed by the same gradient of mobile phase B.


8. Data Processing and mgf File Generation

Raw spectra were formatted in DataAnalysis software (Bruker Daltonics). Portion of the chromatogram containing signal (i.e. with base peak chromatogram signal above 50000 arbitrary units) was processed to extract and deconvolute MS/MS spectra, without smoothing or background substraction. A signal/noise ratio of 3 was applied to filtrate irrelevant data in the MS/MS spectra and generate the mass list. Charge deconvolution was performed on both MS and MS/MS spectra. A retention time of 1.5 minutes was allowed for compound elution to minimise detection redundancy of parents of identical masses and charge states. Both deconvoluted and undeconvoluted data were incorporated in the mgf file.


9. Database Searching

Protein identification was performed using different databases and different softwares featuring different built-in algorithms. Protein were first identified using the NCBI nonredundant database (NCBlnr, release 20060131) through the Phenyx web interface (GeneBio, Geneva, Switzerland). The mass tolerance of precursor ions was set at 0.6; allowed modifications were partial oxidization of methionines and partial lysin-modifications with LC biotin. One misscut was also allowed. For each tumor samples, identification of more than 400 proteins were obtained. Additional searches were performed against the minimally redundant SWISS-PROT human protein database (Nesvizhskii, A. I. & Aebersold, R. Interpretation of Shotgun Proteomic Data: The Protein Inference Problem. Mol Cell Proteomics 4, 1419-1440 (2005)) through the MS/MS ion search algorithm of the Mascot search engine (Mascot and Mascot Daemon v2.1.0) (Perkins, D. N. et al., Electrophoresis 20, 3551-67 (1999)) running on a multi-processor computer cluster. The mass tolerance of precursor and fragmented ions were set at 0.6 and 0.3 respectively; allowed modifications were partial oxidization of methionines. Stringent filtration was deliberately used: the absolute probability (P) was set to 0.01 (i.e. less than 1% probability of a random match), and the MudPIT scoring was used, while discriminating peptides with ion scores inferior to 15. Despite this “aggressive” filtering, proteins hits were manually inspected, particularly for those proteins identified by only one peptide. These precautions were taken to ascertain the accuracy of protein identification reported in Table 1. Proteins of interest were identified by both Phenyx and Mascot search engines, the sequence coverage being usually higher with Phenyx (data not shown).


10. Tissue Microarrays

Medium-density tissue microarrays (TMAs) comprising 0.6 mm cores of various normal human tissues were assembled as previously described (Kononen, J. et al. (1998) Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 4, 844-847; Perrone, E. E. et al. (2000) Tissue Microarray Assessment of Prostate Cancer Tumor Proliferation in African-American and White Men. J Natl Cancer Inst 92, 937-939). Formalin-fixed, paraffin-embedded blocks of normal human tissues were retrieved from the Department of Pathology of the University Hospital of Liege. Most normal tissues were from surgical specimens, except for neuronal tissues, which were obtained from autopsies. Initial sections were stained with haematoxylin and eosin to verify histology. Two TMAs were generated with the use of a manual tissue arrayer (Beecham Instruments). Duplicate cores were included in the TMA for each specific tissue or organ analysed. A total of 120 cores were examined for immunohistochemical expression of versican. Immunostaining intensity was scored as absent, weak, moderate or strong by 2 observers.









TABLE 1







Selection of proteins identified in the breast tumors (n = 10) and


associated adjacent normal breast tissues (n = 10). The proteins are identified from


the SwissProt database (release 49.5) with Mascot (v2.1). The numbers indicate in


how many breast samples each protein was detected. Location of the proteins was


determined using both the Human Protein Reference Database (www.hprd.org)


and Bioinformatic Harvester (harvester.embl.de).















Sequence
MudPIT

Non



Swiss

coverage
Score

Tumoral
Tumoral


Prot #
Protein Name
(lowest-highest)
(lowest-highest)
Location
Breast
Breast
















P13611
Versican core protein
0.2%-1.5%  
40-221
E
0
10



precursor


P08727
Keratin, type I
10-55% 
212-1270
C
1
10



cytoskeletal 19


P02751
Fibronectin precursor
0.7-12%  
 56-3688
E
3
10


Q15063
Periostin precursor
1-26%
 60-3383
E
5
10


P12111
Collagen type VI
7-26%
73-573
E
10
10



alpha 3


P51884
Lumican precursor
13-33% 
313-2009
E
10
10


P05783
Keratin, type I
4-25%
49-543
C, N
0
8



cytoskeletal 18


O95994
Anterior gradient
6-42%
39-775
ER
1
7



protein 2 homolog



precursor


P24821
Tenascin precursor
1-11%
 41-1471
E, Mb
1
5


P02533
Keratin, type I
3-17%
75-417
C
5
1



cytoskeletal 14





C: Cytoplasmic,


E: Extracellular,


ER: Endoplasmic Reticulum,


Mb: plasma membrane,


N: Nuclear.













TABLE 2







Clinico-pathological characteristics of the breast carcinomas


analyzed in the study. Cancerous and matched non-tumoral tissues


from each mastectomy specimen were soaked in PBS or EZ-link


Sulfo-NHS-LC-biotin, and then flash frozen in liquid nitrogen for


subsequent analyses. The grading system used is based on the Bloom


classification modified by Elston. Estrogen receptor (ER), progesterone


receptor (PR), and ErbB2 status of the breast cancer lesions was routinely


assessed by immunohistochemistry.

















Tumor










size


Nodal


#
Age
(cm)
Type
Grade
status
ER
PR
ErbB2


















1
74
2.5
Infiltrating
2
N0
+
+






ductal


2
56
4
Infiltrating
2
N0
+
+






lobular


3
56
1.8
Infiltrating
3
N+
+
+






ductal


4
74
1.5
Infiltrating
2
N0
+







lobular


5
78
2.2
Infiltrating
3
N0


+





ductal


6
74
2.5
Infiltrating
2
N0
+







lobular


7
61
1.7
Infiltrating
3
N0








ductal


8
77
2.8
Infiltrating
3
N0








ductal


9
80
2.2
Infiltrating
2
N0
+
+






ductal


10
73
1.5
Infiltrating
3
N+
+







ductal
















TABLE 3







Complete list of proteins identified by nanoLC-ESI-MS/MS analysis with


stringent parameters. The numbers indicate the number of patients for which


proteins were found either in cancerous or in non-tumoral tissues. The proteins


were identified from the SwissProt database with Mascot using stringent


parameters (p < 0.01). The numbers indicate in how many breast samples each


protein was detected. Location of the proteins was determined using the Human


Protein Reference Database (www.hprd.org) and Bioinformatic Harvester


(harvester.embl.de).












Swiss

Non Tumoral
Tumoral


Protein Name
Prot #
Location
Breast
Breast














Versican core protein precursor
P13611
E
0
10


Keratin, type I cytoskeletal 18
P05783
C, N
0
8


Rho GDP-dissociation inhibitor 2
P52566
C
0
7


Calreticulin precursor
P27797
C, E, Mb
0
6


Annexin A6
P08133
C, Mb
0
6


Calnexin precursor
P27824
C, Mb
0
6


Talin-1
Q9Y490
E, Mb, C
0
6


Heterogeneous nuclear
Q14103
C
0
5


ribonucleoprotein D0


Isocitrate dehydrogenase
P48735
C
0
5


ATP-dependent DNA helicase 2
P13010
N
0
5


subunit 2


Heterogeneous nuclear
P09651
N, C
0
5


ribonucleoprotein A1


Heterogeneous nuclear
P22626
N, C
0
5


ribonucleoproteins A2/B1


Macrophage migration inhibitory
P14174
E, C
0
5


factor


Tropomyosin alpha 4 chain
P67936
C
0
4


Myosin regulatory light chain 2
P19105
C
0
4


Actin-like protein 2
P61160
C
0
4


Elongation factor 1-delta
P29692
C
0
4


Peroxiredoxin 5
P30044
C
0
4


Malate dehydrogenase
P40926
C
0
4


mitochondrial precursor


Nucleophosmin
P06748
N, C
0
4


Heterogeneous nuclear
P61978
N, C
0
4


ribonucleoprotein K


Adenylyl cyclase-associated
Q01518
Mb
0
4


protein 1 (CAP 1)


ATP-dependent RNA helicase A
Q08211
C, N
0
3


Cellular retinoic acid-binding
P29373
C
0
3


protein 2


Filamin B
O75369
C
0
3


Isocitrate dehydrogenase
O75874
C
0
3


Caldesmon
Q05682
C, Mb
0
3


Signal transducer and activator
P42224
C, N
0
3


of transcription 1-alpha/beta


LIM and SH3 domain protein 1
Q14847
C
0
3


Calmodulin (CaM)
P62158
C, N, Mb
0
3


Ras-related protein Rab-1B
Q9H0U4
C
0
3


Thrombospondin-1 precursor
P07996
E
0
3


Prohibitin
P35232
C, Mb, E
0
3


Heterogeneous nuclear
P51991
N, C
0
3


ribonucleoprotein A3


ATP-dependent DNA helicase 2
P12956
N, C
0
3


subunit 1


Interleukin enhancer-binding
Q12905
N
0
3


factor 2


Sodium/potassium-transporting
P05023
Mb
0
3


ATPase α-1 chain precursor


Tubulin beta-3 chain
Q13509
C
0
3


Superoxide dismutase
P04179
C
0
3


mitochondrial precursor


Major vault protein
Q14764
C, N
0
2


Coronin-1A
P31146
C
0
2


Cytosolic nonspecific
Q96KP4
C
0
2


dipeptidase


60S ribosomal protein L15
P61313
C
0
2


40S ribosomal protein S4, 1
P62701
C
0
2


isoform


T-complex protein 1 subunit
P50990
C
0
2


theta


Hsc70-interacting protein
P50502
C
0
2


Coatomer subunit alpha
P53621
C
0
2


Protein transport protein Sec23A
Q15436
C
0
2


60S ribosomal protein L9
P32969
C
0
2


Aspartyl-tRNA synthetase
P14868
C
0
2


T-complex protein 1 subunit eta
Q99832
C
0
2


Peroxiredoxin 6
P30041
C
0
2


Transaldolase
P37837
C
0
2


T-plastin
P13797
C
0
2


Adenosylhomocysteinase
P23526
C
0
2


Glutathione S-transferase Mu 1
P09488
C
0
2


Elongation factor 1-bet
P24534
C
0
2


Carbonic anhydrase 2
P00918
C, Mb, N
0
2


Legumain precursor
Q99538
C
0
2


NADH-cytochrome b5 reductase
P00387
C, Mb, C
0
2


Coatomer subunit beta′
P35606
C
0
2


Trifunctional purine biosynthetic
P22102
C
0
2


protein adenosine-3


Coatomer subunit beta
P53618
C
0
2


Coatomer subunit gamma-2
Q9UBF2
C
0
2


Tubulin alpha-3 chain
Q71U36
C
0
2


Transmembrane emp24 domain-
Q9BVK6
C
0
2


containing protein 9 precursor


Ras-related protein Rab-1A
P62820
C
0
2


Surfeit locus protein 4
O15260
C
0
2


Galectin-1
P09382
E, C, Mb
0
2


EMILIN-1 precursor
Q9Y6C2
E, C
0
2


Ig kappa chain V-I region DEE
P01597
E
0
2


Apolipoprotein A-II precursor
P02652
E
0
2


Galectin-3-binding protein
Q08380
E, Mb
0
2


precursor


Collagen type I alpha 1
P02452
E
0
2


Lysosomal alpha-glucosidase
P10253
C
0
2


precursor


Voltage-dependent anion-
Q9Y277
C
0
2


selective channel protein 3


Elongation factor Tu,
P49411
C
0
2


mitochondrial precursor


Cytochrome C oxidase
P14406
C
0
2


polypeptide VIIa-liver/heart,


precursor


Ubiquinol-cytochrome-c
P22695
C
0
2


reductase complex core protein 2


Programmed cell death protein
O95831
C, N
0
2


8, mitochondrial precursor


Heterogeneous nuclear
O60812
N, C
0
2


ribonucleoprotein C-like


Histone H2B
P33778
N
0
2


Poly(rC)-binding protein 1
Q15365
N
0
2


Lamin B2
Q03252
N
0
2


Splicing factor, proline- and
P23246
N, Mb
0
2


glutamine-rich


ATP-dependent RNA helicase
O00148
N
0
2


DD139


Ras-related protein Rab-11B
Q15907
N, C, Mb
0
2


ATP-dependent RNA helicase
Q92499
N
0
2


DD11


Heterogeneous nuclear
P31943
N, C
0
2


ribonucleoprotein H


HLA class I histocompatibility
P30464
Mb
0
2


antigen, B-15 α-chain precursor


HLA class II histocompatibility
P01903
Mb, C
0
2


antigen


HLA class I histocompatibility
P01893
Mb
0
2


antigen


HLA class II histocompatibility
P04233
Mb, C
0
2


antigen, gamma chain


SPFH domain-containing protein
O75477
Mb
0
2


1 precursor


Myoferlin
Q9NZM1
Mb
0
2


Thy-1 membrane glycoprotein
P04216
Mb
0
2


precursor


Twinfilin-1
Q12792
U
0
2


Heat shock 70 kDa protein 4
P34932
U
0
2


Protein FAM49B (L1)
Q9NUQ9
U
0
2


Receptor tyrosine-protein kinase
P04626
Mb, E
0
1


ErbB2 precursor


6S proteasome non-ATPase
Q13200
C
0
1


regulatory subunit 2


ATP-citrate synthase
P53396
C
0
1


Hexokinase-1
P19367
C, Mb, C
0
1


Interferon-induced GTP-binding
P20591
C
0
1


protein Mx1


AICAR transformylase, IMP
P31939
C
0
1


cyclohydrolase


Septin-9
Q9UHD8
C, Mb
0
1


40S ribosomal protein S16
P62249
C
0
1


Integrin-linked protein kinase 1
Q13418
C
0
1


60S ribosomal protein L27
P61353
C
0
1


6-phosphofructokinase, liver
P17858
C
0
1


type


40S ribosomal protein S9
P46781
C
0
1


Biliverdin reductase A precursor
P53004
C
0
1


Puromycin-sensitive
P55786
C, N
0
1


aminopeptidase


Eukaryotic translation initiation
Q04637
C
0
1


factor 4 gamma 1


Kinectin
Q86UP2
C
0
1


Breast cancer-associated
Q15008
C
0
1


protein SGA-113M


Elongation factor 1-gamma
P26641
C
0
1


Copine-3
O75131
C
0
1


Vesicle-fusing ATPase
P46459
C
0
1


60S ribosomal protein L10a
P62906
C
0
1


60S ribosomal protein L22
P35268
C
0
1


Cysteine and glycine-rich protein 1
P21291
C, N
0
1


40S ribosomal protein S8
P62241
C
0
1


40S ribosomal protein S6
P62753
C
0
1


Proteasome subunit alpha type 4
P25789
C, N
0
1


Fructose-bisphosphate aldolase C
P09972
C
0
1


40S ribosomal protein S2
P15880
C
0
1


T-complex protein 1 subunit
P17987
C
0
1


alpha


Kynureninase
Q16719
C
0
1


Ras-related protein Rab-7
P51149
C
0
1


T-complex protein 1 subunit zeta
P40227
C
0
1


Eukaryotic translation initiation
P41567
C
0
1


factor 1


Calpastatin
P20810
C, N
0
1


Toll-interacting protein
Q9H0E2
C
0
1


FK506-binding protein 4
Q02790
C, N
0
1


Actin-related protein 2/3 complex
P59998
C
0
1


subunit 4


40S ribosomal protein S28
P62857
C, N
0
1


General vesicular transport
O60763
C, N
0
1


factor p115


40S ribosomal protein SA
P08865
C, N
0
1


Actin-related protein 2/3 complex
O15145
C
0
1


subunit 3


Dihydropyrimidinase-related
Q14195
C
0
1


protein 3


Proteasome subunit alpha type 2
P25787
C, N
0
1


Fructose-1,6-bisphosphatase 1
P09467
C, N
0
1


Coactosin-like protein
Q14019
C
0
1


Dynein heavy chain
Q14204
C, Mb
0
1


Ras-related protein Rab-35
Q15286
C
0
1


Keratin, type I cytoskeletal 15
P19012
C
0
1


Cytoplasmic dynein 1
Q13409
C
0
1


intermediate chain 2


Malate dehydrogenase,
P40925
C
0
1


cytoplasmic


Lactoylglutathione lyase
Q04760
C
0
1


60S ribosomal protein L14
P50914
C
0
1


Desmoplakin
P15924
C, Mb, N
0
1


Nucleoside diphosphate kinase A
P15531
C, N
0
1


Glutathione S-transferase Mu 3
P21266
C
0
1


Tubulin alpha-6 chain
Q9BQE3
C
0
1


Keratin, type II cytoskeletal 6B
P04259
C
0
1


40S ribosomal protein S14
P62263
C
0
1


Coatomer subunit delta
P48444
C
0
1


Sorting nexin-9
Q9Y511
C, Mb
0
1


Rab GDP dissociation inhibitor
P31150
C
0
1


alpha


Bifunctional aminoacyl-tRNA
P07814
C
0
1


synthetase


Ferritin heavy chain
P02794
C
0
1


F-actin capping protein alpha-2
P47755
C
0
1


subunit


Eukaryotic translation initiation
P56537
C, N
0
1


factor 6


Signal recognition particle 14
P37108
C
0
1


kDa protein


60S ribosomal protein L27a
P46776
C
0
1


Translin-associated protein 1
Q99598
C, N
0
1


Proteasome subunit beta type 1
P20618
C
0
1


Serine
P34896
C
0
1


hydroxymethyltransferase,


cytosolic


Nicotinamide
P43490
C
0
1


phosphoribosyltransferase


Importin beta-1 subunit
Q14974
C, N
0
1


14-3-3 protein theta (14-3-3
P27348
C, N
0
1


protein tau)


Acid ceramidase precursor
Q13510
C
0
1


Phosphoglucomutase-1
P36871
C
0
1


Tubulin-specific chaperone B
Q99426
C
0
1


Platelet-activating factor
Q15102
C
0
1


acetylhydrolase IB gamma


subunit


Importin beta-3
O00410
C, N
0
1


Ras GTPase-activating-like
Q13576
C
0
1


protein IQGAP2


Dipeptidyl-peptidase 2 precursor
Q9UHL4
C
0
1


N(4)-(beta-N-
P20933
C
0
1


acetylglucosaminyl)-L-


asparaginase precursor


26S proteasome non-ATPase
O00232
C
0
1


regulatory subunit 12


Putative eukaryotic translation
O75153
C
0
1


initiation factor 3 subunit


Inositol monophosphatase
P29218
C
0
1


60S ribosomal protein L7a
P62424
C
0
1


AP-2 complex subunit mu-1
Q96CW1
C
0
1


T-complex protein 1 subunit
P50991
C
0
1


delta


UTP--glucose-1-phosphate
Q16851
C
0
1


uridylyltransferase 2


Translocon-associated protein
Q9UNL2
C, N
0
1


gamma subunit


60S ribosomal protein L11
P62913
C
0
1


Fumarylacetoacetase
P16930
C
0
1


Probable aminopeptidase
Q8NDH3
C
0
1


NPEPL1


Glucosamine--fructose-6-
Q06210
C
0
1


phosphate aminotransferase


ADP-ribosylation factor-like 10B
Q96BM9
C
0
1


ADP-ribosylation factor 5
P84085
C
0
1


Thioredoxin domain-containing
Q9BS26
C
0
1


protein 4 precursor


Eukaryotic translation initiation
P41091
C
0
1


factor 2 subunit 3


Serine/threonine-protein
P62140
C
0
1


phosphatase PP1-β catalytic


subunit


Ras-related protein Rab-5C
P51148
C
0
1


NAD(P)H dehydrogenase
P15559
C, N
0
1


[quinone] 1


6-phosphofructokinase type C
Q01813
C
0
1


Septin-2
Q15019
C, Mb
0
1


Superoxide dismutase
P00441
C
0
1


60S acidic ribosomal protein P0
P05388
C, N
0
1


Eukaryotic translation initiation
P20042
C
0
1


factor 2 subunit 2


60S ribosomal protein L7
P18124
C, N
0
1


Glycylpeptide N-
P30419
C
0
1


tetradecanoyltransferase 1


40S ribosomal protein S25
P62851
C
0
1


Ribonuclease inhibitor
P13489
C
0
1


60S ribosomal protein L4
P36578
C
0
1


GTP-binding nuclear protein Ran
P62826
C
0
1


60S ribosomal protein L5
P46777
C, N
0
1


60S ribosomal protein L24
P83731
C
0
1


Dynamin-1-like protein
O00429
C
0
1


Neutral alpha-glucosidase AB
Q14697
C
0
1


precursor


Peptidyl-prolyl cis-trans
P45877
C, E
0
1


isomerase C


Translocon-associated protein
P51571
C
0
1


delta subunit precursor


Cytochrome P450 2A6
P11509
C
0
1


ERGIC-53 protein precursor
P49257
C
0
1


Protein transport protein Sec24C
P53992
C
0
1


NADPH--cytochrome P450
P16435
C, Mb
0
1


reductase


RER1 protein
O15258
C
0
1


Antigen peptide transporter 2
Q03519
C
0
1


150 kDa oxygen-regulated
Q9Y4L1
C
0
1


protein precursor


Transmembrane protein 109
Q9BVC6
C
0
1


precursor


ERO1-like protein alpha
Q96HE7
C, Mb
0
1


precursor


Oligosaccharyl transferase 48 kDa
P39656
C
0
1


subunit


Endoplasmic reticulum protein
P30040
C
0
1


ERp29 precursor


Apolipoprotein-L1 precursor
O14791
E
0
1


Kallistatin precursor
P29622
E
0
1


C-type lectin domain family 3
O75596
E
0
1


member A precursor


Calgranulin A
P05109
E, Mb, C
0
1


Ig kappa chain V-I region BAN
P04430
E
0
1


Complement factor I precursor
P05156
E, Mb
0
1


Prothrombin precursor
P00734
E
0
1


Tenascin-1 precursor
P22105
E
0
1


Complement C5 precursor
P01031
E
0
1


Selenoprotein P precursor
P49908
E
0
1


Ig mu heavy chain disease
P04220
E
0
1


protein (BOT)


Thymidine phosphorylase
P19971
E, C, N
0
1


precursor


MMP-2 (72 kDa type IV
P08253
E, Mb
0
1


collagenase precursor)


Thrombospondin-2 precursor
P35442
E
0
1


Ig heavy chain V-III region GAL
P01781
E
0
1


Agrin precursor
O00468
E
0
1


Anterior gradient protein 3
Q8TD06
E, C
0
1


homolog precursor


Ig kappa chain V-I region Wes
P01611
E
0
1


Lipopolysaccharide-binding
P18428
E, Mb
0
1


protein precursor


Collagen alpha-1(1I) chain
P12107
E
0
1


precursor


Ig heavy chain V-III region TIL
P01765
E
0
1


Beta-2-glycoprotein I precursor
P02749
E, Mb, C
0
1


Chymase precursor
P23946
E
0
1


Ig gamma 2 chain C
P01859
E
0
1


Guanine nucleotide-binding
P63092
E, Mb
0
1


protein G(s), alpha subunit


Carboxypeptidase B precursor
P15086
E, C
0
1


Succinate-CoA ligase, GDP-
Q96I99
C
0
1


forming, beta subunit


Inorganic pyrophosphatase 2,
Q9H2U2
C
0
1


mitochondrial precursor


Sulfide:quinone oxidoreductase,
Q9Y6N5
C
0
1


mitochondrial precursor


ADP/ATP translocase 3
P12236
C
0
1


3-hydroxyacyl-CoA
Q99714
C, Mb
0
1


dehydrogenase type-2


Carbamoyl-phosphate synthase
P31327
C
0
1


Glutathione S-transferase kappa 1
Q9Y2Q3
C
0
1


Mitochondrial import receptor
Q9NS69
C
0
1


subunit TOM22 homolog


2,4-dienoyl-CoA reductase,
Q16698
C
0
1


mitochondrial precursor


3,2-trans-enoyl-CoA isomerase,
P42126
C
0
1


mitochondrial precursor


Electron transfer flavoprotein
P13804
C
0
1


alpha-subunit


ADP/ATP translocase 1
P12235
C
0
1


Calcium-binding mitochondrial
Q9UJS0
C, Mb
0
1


carrier protein Aralar 2


Prohibitin-2 (Repressor of
Q99623
C
0
1


estrogen receptor activity)


NAD-dependent malic enzyme,
P23368
C
0
1


mitochondrial precursor


Sideroflexin-1
Q9H9B4
C, Mb, C
0
1


Adenylate kinase isoenzyme 2
P54819
C
0
1


Splicing factor, arginine/serine-
Q07955
N, C
0
1


rich 1


Heterogeneous nuclear
P14866
N, C
0
1


ribonucleoprotein L


Proliferation-associated protein
Q9UQ80
N
0
1


2G4


ATP-dependent RNA helicase
O15523
N, C
0
1


DD13Y


DNA repair protein RAD50
Q92878
N
0
1


Protein SET
Q01105
N, C
0
1


Histone H2A.z
P17317
N
0
1


Histone H1.4
P10412
N
0
1


Interleukin enhancer-binding
Q12906
N, C
0
1


factor 3


Non-POU domain-containing
Q15233
N
0
1


octamer-binding protein


Mitotic checkpoint protein BUB3
O43684
N, C
0
1


Tripartite motif protein 25
Q14258
N, C
0
1


Serine/threonine-protein kinase
Q13523
N
0
1


PRP4 homolog


Nucleosome assembly protein 1-
Q99733
N, C
0
1


like 4


Core histone macro-H2A.1
O75367
N
0
1


Activated RNA polymerase II
P53999
N, C
0
1


transcriptional coactivator p15


Splicing factor, arginine/serine-
Q08170
N
0
1


rich 4


Lupus La protein
P05455
N, Mb, C
0
1


High mobility group protein 2
P26583
N, C
0
1


Chromobox protein homolog 3
Q13185
N
0
1


Cystatin B
P04080
N, C
0
1


High mobility group protein 4
O15347
N
0
1


Double-stranded RNA-specific
P55265
N
0
1


adenosine deaminase


Spliceosome RNA helicase BAT1
Q13838
N
0
1


Histone-binding protein RBBP4
Q09028
N
0
1


ELAV-like protein 1
Q15717
N, C
0
1


U5 small nuclear
O75643
N
0
1


ribonucleoprotein 200 kDa


helicase


Signal transducer and activator
P40763
N, C
0
1


of transcription 3


Far upstream element binding
Q92945
N, C
0
1


protein 2


Heterogeneous nuclear
P07910
N, C
0
1


ribonucleoproteins C1/C2


Transcription intermediary factor
Q13263
N
0
1


1-beta


Protein NipSnap3A
Q9UFN0
Mb
0
1


Large neutral amino acids
Q01650
Mb
0
1


transporter small subunit 1


Myristoylated alanine-rich C-
P29966
Mb, C
0
1


kinase substrate


Platelet endothelial cell adhesion
P16284
Mb
0
1


molecule prec.


Sel-1 homolog precursor
Q9UBV2
Mb
0
1


Oligosaccharyl transferase STT3
P46977
Mb
0
1


subunit homolog


Guanine nucleotide-binding
P04899
Mb, C
0
1


protein G


HLA class I histocompatibility
P01889
Mb
0
1


antigen, B-7 α-chain precursor


HLA class I histocompatibility
Q9TNN7
Mb
0
1


antigen, Cw-5 α-chain precursor


HLA class I histocompatibility
P13747
Mb
0
1


antigen


Gamma-glutamyltransferase 5
P36269
Mb
0
1


precursor


Adipocyte plasma membrane-
Q9HDC9
Mb
0
1


associated protein


Flotillin-1
O75955
Mb
0
1


Sideroflexin-3
Q9BWM7
Mb
0
1


Defender against cell death 1
P61803
Mb, C
0
1


Lutheran blood group
P50895
Mb
0
1


glycoprotein precursor


CD166 antigen precursor
Q13740
Mb, C
0
1


Vesicle-associated membrane
Q9P0L0
Mb
0
1


protein-associated protein A


Leukocyte surface antigen CD47
Q08722
Mb
0
1


precursor


Complement component C9
P02748
Mb, E
0
1


precursor


Protein KIAA0152 precursor
Q14165
Mb
0
1


Nucleobindin-2 precursor
P80303
Mb, C
0
1


Mucin-1 precursor
P15941
Mb,
0
1




C, E


HLA class I histocompatibility
P18462
Mb
0
1


antigen


4F2 cell-surface antigen heavy
P08195
Mb
0
1


chain


Transmembrane protein Tmp21
P49755
Mb
0
1


Aquaporin-1
P29972
Mb
0
1


Actin-related protein 2/3 complex
O15143
Mb
0
1


subunit 1B


Integrin beta-1 precursor
P05556
Mb
0
1


HLA class II histocompatibility
P04229
Mb
0
1


antigen, DRB1-1 β chain prec.


D-3-phosphoglycerate
O43175
U
0
1


dehydrogenase


Glycogen phosphorylase, liver
P06737
U
0
1


form


Protein FAM82B
Q96DB5
U
0
1


UDP-glucose 6-dehydrogenase
O60701
U
0
1


SH3 domain-binding glutamic
O75368
U
0
1


acid-rich-like protein


HLA class I histocompatibility
P10316
U
0
1


antigen, A-69 alpha chain


Keratin, type I cytoskeletal 19
P08727
C
1
10


Phosphoglycerate kinase 1
P00558
C, N
1
9


Heat shock protein HSP 90-beta
P08238
C, N
1
8


Actinin alpha 4
O43707
C, N
1
8


14-3-3 protein epsilon
P62258
C, N
1
7


Synaptic vesicle membrane
Q99536
C
1
7


protein VAT-1 homolog


Heat shock 70 kDa
P08107
C, N
1
7


Protein disulfide-isomerase
P07237
C
1
7


precursor


Anterior gradient protein 2
O95994
C
1
7


homolog precursor


Lamin B1
P20700
N
1
7


Cofilin-1
P23528
C, N, Mb
1
6


ADP-ribosylation factor 1
P84077
C, Mb
1
6


Heat-shock protein beta-1
P04792
C, N, Mb
1
6


Ribosome-binding protein 1
Q9P2E9
C
1
6


14-3-3 protein beta/alpha
P31946
C
1
5


Myosin-10
P35580
C
1
5


Elongation factor 2 EF-2
P13639
C
1
5


Rho GDP-dissociation inhibitor 1
P52565
C
1
5


Macrophage capping protein
P40121
C, N
1
5


Protein disulfide-isomerase A6
Q15084
C
1
5


precursor


Protein disulfide-isomerase A4
P13667
C, Mb
1
5


precursor


Inter-alpha-trypsin inhibitor
P19827
E
1
5


heavy chain H1 precursor


Tenascin precursor
P24821
E, Mb
1
5


TGF-beta induced protein IG-H3
Q15582
E, C, N
1
5


precursor


Fibulin-1 precursor
P23142
E
1
5


Nascent polypeptide-associated
Q13765
N
1
5


complex alpha subunit


Chloride intracellular channel
O00299
Mb, N
1
5


protein 1


Ras-related protein Rap-1A
P62834
Mb, N
1
5


F-actin capping protein alpha-1
P52907
C
1
4


subunit


Glutathione S-transferase P
P09211
C, N
1
4


L-plastin
P13796
C
1
4


Tropomyosin beta chain
P07951
C
1
4


Stress-70 protein, mitochondrial
P38646
C, Mb
1
4


precursor


Nucleolin
P19338
N, C, Mb
1
4


Eukaryotic initiation factor 4A-I
P60842
N
1
4


Heterogeneous nuclear
O60506
C, N
1
3


ribonucleoprotein Q


F-actin capping protein beta
P47756
C
1
3


subunit


Actin-like protein 3
P61158
C
1
3


14-3-3 protein eta
Q04917
C
1
3


40S ribosomal protein S3
P23396
C
1
3


Ras GTPase-activating-like
P46940
C, Mb
1
3


protein


Transketolase
P29401
C
1
3


Glycogen phosphorylase brain
P11216
C, N
1
3


form


Clathrin heavy polypeptide
Q00610
C, Mb
1
3


Tropomyosin alpha 3 chain
P06753
C
1
3


Spectrin alpha chain, brain
Q13813
C, Mb
1
3


Actin, alpha cardiac
P68032
C
1
3


Ribophorin II
P04844
C
1
3


Laminin beta-1 chain precursor
P07942
E
1
3


Apolipoprotein A IV
P06727
E
1
3


Apolipoprotein B-100 precursor
P04114
E
1
3


Laminin alpha-4 chain precursor
Q16363
E, Mb
1
3


Trifunctional enzyme alpha
P40939
C
1
3


subunit, mitochondrial precursor


Heterogenous nuclear
Q00839
N
1
3


ribonucleoprotein U


Annexin A4
P09525
N, C
1
3


Transitional endoplasmic
P55072
N, C
1
3


reticulum ATPase


Rab GDP dissociation inhibitor
P50395
Mb, C
1
3


beta


Collagen-binding protein 2
P50454
Mb, C
1
3


precursor


Ezrin (p81)
P15311
Mb
1
3


Plectin 1
Q15149
Mb,
1
3




C, N


Adenine
P07741
C
1
2


phosphoribosyltransferase


ADP-ribosylation factor 4
P18085
C
1
2


40S ribosomal protein S15a
P62244
C
1
2


60S ribosomal protein L6
Q02878
C
1
2


SAM domain and HD domain-
Q9Y3Z3
C
1
2


containing protein 1


Vacuolar protein sorting 26
O75436
C
1
2


Fatty acid synthase
P49327
C
1
2


Thioredoxin
P10599
C, N, E
1
2


Glucosidase II beta subunit
P14314
C
1
2


precursor


Ribophorin I
P04843
C
1
2


Ig lambda chain V-III region LOI
P80748
E
1
2


ADP/ATP translocase 2
P05141
C
1
2


Aconitate hydratase
Q99798
C
1
2


mitochondrial precursor


Glutamate deshydrogenase
P00367
C
1
2


DNA-dependent protein kinase
P78527
N
1
2


catalytic subunit


Histone H1.5
P16401
N
1
2


DEAH box protein 15
O43143
N
1
2


Calcyclin (Prolactin receptor
P06703
N, C
1
2


associated protein)


PRA1 family protein 3
O75915
Mb, C
1
2


Protein C7orf24
O75223
U
1
2


Cellular retinoic acid-binding
P29762
C
1
1


protein 1


FK506-binding protein 1A
P62942
C
1
1


60S ribosomal protein L18
Q07020
C
1
1


Caspase-14 precursor
P31944
C
1
1


Carbonyl reductase
P16152
C
1
1


Copine-1
Q99829
C
1
1


Guanine nucleotide-binding
P63244
C
1
1


protein beta subunit 2-like 1


Eukaryotic translation initiation
P05198
C
1
1


factor 2 subunit 1


Selenium-binding protein 1
Q13228
C, Mb
1
1


4-trimethylaminobutyraldehyde
P49189
C
1
1


dehydrogenase


Glucose-6-phosphate isomerase
P06744
C
1
1


Alcohol dehydrogenase
P14550
C
1
1


Spectrin beta chain
Q01082
C, Mb
1
1


Coatomer subunit gamma
Q9Y678
C
1
1


Tubulin beta-6 chain
Q9BUF5
C
1
1


Disheveled associated activator
Q86T65
C
1
1


of morphogenesis 2


Receptor-interacting
Q13546
C
1
1


serine/threonine-protein kinase 2


Minor histocompatibility antigen
Q8TCT9
C
1
1


H13


Sarcoplasmic/endoplasmic
P16615
C
1
1


reticulum calcium ATPase 2


Cytochrome P450 1B1
Q16678
C
1
1


Ras-related protein Rab-2A
P61019
C
1
1


Plasminogen precursor
P00747
E
1
1


Laminin beta-2 chain precursor
P55268
E
1
1


Calgranulin B
P06702
E, Mb, C
1
1


Ig lambda chain V-IV region Hil
P01717
E
1
1


Protein-glutamine gamma-
P21980
E, Mb, C
1
1


glutamyltransferase 2


Collagen alpha-1(1VIII) chain
P39060
E, C
1
1


precursor


Acyl-CoA dehydrogenase, very-
P49748
C
1
1


long-chain


L3-hydroxyacyl-CoA
Q16836
C
1
1


dehydrogenase, short chain


Trifunctional enzyme beta
P55084
C
1
1


subunit, mitochondrial precursor


Voltage-dependent anion-
P45880
C
1
1


selective channel protein 2


Lethal(3)malignant brain tumor-
Q96JM7
N
1
1


like 3 protein


Histone H2A.z
P0C0S5
N
1
1


Staphylococcal nuclease
Q7KZF4
N
1
1


domain-containing protein 1


Histone H2A type 1-A
Q96QV6
N
1
1


Heterogeneous nuclear
O43390
N
1
1


ribonucleoprotein R


Myosin Ic
O00159
Mb, C
1
1


CD44 antigen precursor
P16070
Mb
1
1


Solute carrier family 2
P11166
Mb
1
1


Vesicle trafficking protein
O75396
Mb, C
1
1


SEC22b


Protein C10orf58 precursor
Q9BR18
U
1
1


Tryptophanyl-tRNA synthetase
P23381
C
1
0


Glucose-6-phosphate 1-
P11413
C
1
0


dehydrogenase


Myosin regulatory light chain 2
P24844
C
1
0


Calponin-1
P51911
C
1
0


Keratin, type II cytoskeletal 4
P19013
C
1
0


Perilipin
O60240
C
1
0


Voltage-dependent L-type
Q13698
C
1
0


calcium channel alpha-1


Keratin, type I cytoskeletal 13
P13646
C, Mb
1
0


EH-domain containing protein 2
Q9NZN4
C, N, Mb
1
0


Dihydropyrimidinase-related
Q16555
C, N
1
0


protein 2


UTP--glucose-1-phosphate
Q07131
C
1
0


uridylyltransferase 1


Hormone-sensitive lipase
Q05469
C, N
1
0


Aldo-keto reductase family 1
Q04828
C
1
0


member C1


Keratin, type II cytoskeletal 1b
Q7Z794
C
1
0


Thioredoxin domain-containing
Q8NBS9
C, Mb
1
0


protein 5 precursor


Thioredoxin domain-containing
Q9H3N1
C, Mb
1
0


protein 1 precursor


Long-chain-fatty-acid--CoA
P33121
C
1
0


ligase 1


Heparin cofactor II precursor
P05546
E
1
0


Extracellular superoxide
P08294
E
1
0


dismutase


Nidogen-1 precursor
P14543
E
1
0


C9orf19
Q9H4G4
E, Mb, C
1
0


Corticosteroid-binding globulin
P08185
E
1
0


precursor


Ig heavy chain V-III region HIL
P01771
E
1
0


Ig kappa chain V-I region Lay
P01605
E
1
0


Ig kappa chain V-I region OU
P01606
E
1
0


Serum amyloid A-4 protein
P35542
E
1
0


(candidate of metastasis 1)


Galectin-3
P17931
E, N, Mb
1
0


Tubulointerstitial nephritis
Q9GZM7
E
1
0


antigen


Heat shock protein 75 kDa,
Q12931
C
1
0


mitochondrial precursor


3-ketoacyl-CoA thiolase,
P42765
C
1
0


mitochondrial


Probable transcription factor
P29590
N
1
0


PML


Probable global transcription
P28370
N
1
0


activator SNF2L1


Ras-related protein R-Ras (p23)
P10301
Mb, C
1
0


Target of Nesh-SH3 precursor
Q7Z7G0
Mb
1
0


Band 3 anion transport protein
P02730
Mb,
1
0




N, C


Platelet glycoprotein 4
P16671
Mb
1
0


Cell surface glycoprotein MUC18
P43121
Mb,
1
0


precursor

E, C


Spectrin alpha chain, erythrocyte
P02549
Mb
1
0


Talin-2
Q9Y4G6
Mb
1
0


Ankyrin-1
P16157
Mb, C
1
0


Synaptotagmin-5
O00445
Mb
1
0


Adipocyte-derived leucine
Q9NZ08
Mb, E
1
0


aminopeptidase precursor


Vacuolar ATP synthase subunit
P15313
Mb, C
1
0


B, kidney isoform


Clathrin coat assembly protein
O60641
Mb, C
1
0


AP180


78 kDa glucose-regulated protein
P11021
C
2
10


precursor


Peptidyl-prolyl cis-trans
P62937
C
2
9


isomerase A


Endoplasmin precursor 94 kDa
P14625
C
2
9


glucose-regulated protein


Fructose-bisphosphate aldolase A
P04075
C
2
8


Keratin, type II cytoskeletal 7
P08729
C
2
8


Neuroblast differentiation
Q09666
N
2
8


associated protein AHNAK


Calgizzarin S100C
P31949
C, N, Mb
2
7


Elongation factor 1-alpha
P68104
C, N
2
7


Heat shock protein HSP90 —
P07900
C, N
2
7


alphaHSP86


Protein disulfide-isomerase A3
P30101
C, Mb
2
7


precursor


Collagen alpha 1(1II)
Q99715
E, C
2
7


60 kDa heat shock protein
P10809
C, Mb
2
7


mitochondrial precursor


Transgelin-2
P37802
U
2
7


Heat shock 70 k
P34931
C, N
2
6


Tubulin beta 2
P68371
C
2
6


14-3-3 protein gamma
P61981
C
2
6


Moesin
P26038
C, Mb, N
2
6


Peptidyl-prolyl cis-trans
P23284
C, E, Mb
2
6


isomerase B precursor


Complement factor H precursor
P08603
E, C
2
6


Cathepsin D
P07339
C, E
2
6


ATP synthase alpha chain
P25705
C
2
6


Voltage-dependent anion-
P21796
C, Mb
2
6


selective channel protein 1


Histone H1.2
P16403
N
2
5


Ras-related protein Rab-10
P61026
C
2
4


Ubiquitin-activating enzyme E1
P22314
C, Mb
2
4


Raf kinase inhibitor protein
P30086
C, Mb
2
4


Complement C4-A precursor
P0C0L4
E, Mb
2
3


Angiotensinogen precursor
P01019
E
2
3


Coagulation factor 1III A chain
P00488
E
2
3


precursor


Tetranectin precursor
P05452
E
2
3


Phosphate carrier protein
Q00325
C
2
3


Thioredoxin-dependent peroxide
P30048
C
2
3


reductase precursor


Histone 1 H2AE
P28001
N
2
3


Four and a half LIM domains
Q13642
C
2
2


protein 1 FHL


Catalase
P04040
C, C
2
2


Ig kappa chain V-I region CAR
P01596
E
2
2


Inter-alpha-trypsin inhibitor
P19823
E
2
2


heavy chain H2 precursor


Laminin gamma-1 chain
P11047
E, Mb
2
2


precursor


Pigment epithelium-derived
P36955
E
2
2


factor precursor


Ig kappa chain V-I region AG
P01593
E
2
2


Prolactin-inducible protein
P12273
E
2
2


precursor


Alpha-1 acid glycoprotein
P02763
E
2
2


Ig kappa chain V-II region Cum
P01614
E
2
2


Alpha-1B-glycoprotein precursor
P04217
E
2
2


Basement membrane-specific
P98160
E
2
2


HSPG core protein precursor


Myosin light polypeptide 6
P60660
C
2
1


Hemoglobin gamma-1 chain
P69891
C
2
1


Immunoglobulin J chain
P01591
C, E
2
1


Inter-alpha-trypsin inhibitor
Q14624
E
2
1


heavy chain H4 precursor


Complement C4 precursor
P01028
E
2
1


Nidogen-2 precursor
Q14112
E
2
1


Serum amyloid A protein
P02735
E
2
1


precursor


Aldehyde dehydrogenase
P05091
C
2
1


mitochondrial precursor


6-phosphogluconate
P52209
C
2
0


dehydrogenase, decarboxylating


Retinal dehydrogenase 1
P00352
C
2
0


Transforming protein RhoA
P61586
C, Mb, N
2
0


precursor


Alcohol dehydrogenase 1A
P07327
C
2
0


Liver carboxylesterase 1
P23141
C, E
2
0


precursor


Kininogen-1 precursor
P01042
E
2
0


Zinc-alpha-2-glycoprotein
P25311
E
2
0


precursor


Alpha-2-HS-glycoprotein
P02765
E
2
0


precursor, Fetuin


Collagen alpha-2(IV) chain
P08572
E
2
0


precursor


Grainyhead-like protein 1
Q9NZI5
N
2
0


homolog


Fibronectin precursor
P02751
E
3
10


14-3-3 protein zeta/delta
P63104
C
3
9


Pyruvate kinase, isozymes
P14618
C
3
8


M1/M2


Profilin-1
P07737
C
3
7


Vinculin Metavinculin
P18206
C, Mb
3
6


Histidine rich glycoprotein
P04196
E, Mb
3
6


Transgelin
Q01995
C
3
5


L-lactate dehydrogenase B chain
P07195
C
3
5


Apolipoprotein E
P02649
E, C
3
5


Triosephosphate isomerase 1
P60174
C
3
4


Complement factor B precursor
P00751
E
3
4


Lactotransferrin precursor
P02788
E, C, Mb
3
4


Keratin, type II cytoskeletal 6A
P02538
C
3
3


Ig kappa chain V-III region SIE
P01620
E
3
3


Ig kappa chain V-IV region Len
P01625
E
3
3


AMBP protein precursor
P02760
E, C, Mb
3
3


Myosin light chain 1, slow-twitch
P14649
C, N
3
2


muscle A isoform


Apolipoprotein D precursor
P05090
E
3
2


Ig heavy chain V-III region BRO
P01766
E
3
2


Carbonic anhydrase 1
P00915
C
3
1


Vitamin D binding protein
P02774
E, C, Mb
3
1


Apolipoprotein C-III precursor
P02656
E
3
1


Dermatopontin precursor
Q07507
E
3
1


Collagen type I alpha 2
P08123
E
3
1


Glycerol-3-phosphate
P21695
C
3
0


dehydrogenase


Membrane copper amine oxidase
Q16853
Mb
3
0


Tubulin beta-2 chain
P07437
C
4
10


Filamin A
P21333
C, N
4
9


Peroxiredoxin 1
Q06830
C, N
4
9


Glyceraldehyde-3-
P04406
C, N
4
9


phosphatedehydrogenase


Gelsolin precursor (Actin-
P06396
E, C
4
9


depolymerizing factor)


Heat shock cognate 71 kDa
P11142
C
4
8


protein


Annexin A1
P04083
Mb,
4
8




C, N


Alpha-actinin 1
P12814
C
4
7


Annexin A5
P08758
C, E, N
4
7


L-lactate dehydrogenase A chain
P00338
C
4
6


Vitronectin
P04004
E
4
6


ATP synthase beta chain,
P06576
C
4
6


mitochondrial precursor


Immunoglobulin Am2
P01877
E
4
5


Histone H1t
P22492
N, C
4
4


Myosin-11
P35749
C, E, N
4
3


Peroxiredoxin 2
P32119
C, Mb
4
3


Keratin type II cytoskeletal 3
P12035
C
4
3


Immunoglobin Gm 1
P01857
Mb
4
3


Keratin, type II cytoskeletal 5
P13647
C
4
2


Keratin, type I cytoskeletal 16
P08779
C
4
2


Immunoglobulin kappa light
P01834
E, N, C
7
9


chain


Clusterin precursor
P10909
E, N
7
9


Collagen alpha 2(VI) chain
P12110
E
7
9


precursor


Fibrinogen alpha chain
P02671
E
7
7


precursor


Fibrinogen beta chain
P02675
E, C
8
10


Annexin A2
P07355
N, C, E
8
10


Lamin A/C
P02545
N, C
8
10


Ig lambda chain C regions
P01842
E
8
8


Collagen alpha 1 VI chain
P12109
E
8
8


precursor


Hemoglobin delta chain
P02042
C
8
7


Actin, aortic smooth muscle
P62736
C
8
6


Alpha-actin-2


Ig mu chain C region
P01871
E, Mb
8
5


Serum amyloid P-component
P02743
E, N, C
8
3


precursor


Actin cytoplasmic 1 Beta
P60709
C
9
10


Collagen alpha 1 1IV chain
Q05707
E
9
10


Ig alpha-1 chain
P01876
E
9
10


Complement C3 precursor
P01024
E
9
9


Prolargin precursor
P51888
E
9
9


Fibrinogen gamma chain
P02679
E
9
8


precursor


Keratin, type I cytoskeletal 9
P35527
C
9
7


Keratin 2E
P35908
C
9
6


Hemoglobin alpha chain
P69905
C
10
10


Hemoglobin beta chain
P68871
C
10
10


Vimentin
P08670
C, N
10
10


Collagen type VI alpha 3
P12111
E
10
10


Lumican precursor
P51884
E
10
10


Alpha-1-antitrypsin precursor
P01009
E, C
10
10


Apolipoprotein AI
P02647
E, C
10
10


Biglycan precursor
P21810
E,
10
10


(Bone/cartilage proteoglycan)


Serotransferrin precursor
P02787
E, C, N
10
10


Decorin
P07585
E
10
10


Serum albumin precursor
P02768
E
10
10


Macroglobulin alpha 2
P01023
E
10
9


Osteoglycin
P20774
E
10
9


Keratin, type II cytoskeletal 1
P04264
Mb
10
9


Hemopexin
P02790
E
10
8


Keratin, type I cytoskeletal 10
P13645
C, N
10
7





C: Cytoplasmic,


E: Extracellular,


Mb: plasma membrane,


N: Nuclear,


U: Unknown.





Claims
  • 1. An in vitro method of screening for specific disease biological markers which are accessible from the extracellular space in pathologic tissues for high-affinity ligands, comprising the steps of: immersing a native pathologic tissue sample in a solution containing a labelling reagent for labelling proteins, wherein accessible proteins are labelled by the labelling reagent;purifying the labelled proteins;analyzing the labelled proteins or fragments thereof;determining the differential expression pattern of the labelled proteins in the native pathologic tissue samples compared to corresponding and/or unrelated normal tissues; andjudging that the labelled protein(s) having higher expression in the native pathologic tissue sample compared to corresponding and/or unrelated normal tissue samples or being expressed more frequently in respective native pathologic tissue samples compared to corresponding and/or unrelated normal tissue samples is/are biological marker(s) for pathologic tissue, which are accessible for high-affinity ligands from the extracellular space.
  • 2. The method according to claim 1, comprising the steps of immersing a native normal tissue sample in a solution containing a labelling reagent for labelling proteins; wherein accessible proteins are labelled by the labelling reagent;immersing a native pathologic tissue sample in a solution containing a labelling reagent for labelling proteins, wherein accessible proteins are labelled by the labelling reagent;separately purifying the labelled proteins of each of the samples;analyzing the labelled proteins or fragments thereof of normal tissue and pathologic tissue, respectively;determining the differential expression pattern of the labelled proteins in the native pathologic tissue samples compared to the normal tissue samples; andjudging that the labelled protein(s) having higher expression in the native pathologic tissue sample compared to the normal tissue sample or being expressed more frequently in respective native pathologic tissue samples compared to the normal tissue sample is/are biological marker(s) for pathologic tissue, which are accessible for high-affinity ligands from the extracellular space.
  • 3. The method according to claim 1, wherein it is judged that the labelled protein(s) having expression in the native pathologic tissue sample but which is/are not or essentially not expressed in the normal tissue is/are biological marker(s) for pathologic tissue, which are accessible for high-affinity ligands from the extracellular space, preferably are accessible for high-affinity ligands from the extracellular space in native tissue, most preferred are accessible for high-affinity ligands from the extracellular space in vivo.
  • 4. The method according to claim 1, wherein the labelling reagent for labelling proteins is a reactive biotin, preferably a biotin reactive ester derivative.
  • 5. The method according to claim 1, wherein the purification step makes use of the label of the labelled proteins as selective marker.
  • 6. The method according to claim 1, wherein the label is a biotin residue and wherein purification is performed using streptavidin bound to a resin, wherein the biotin-labelled proteins are bound to the resin via streptavidin.
  • 7. The method according to claim 1, wherein after the purification step the labelled proteins are cleaved to peptides, preferably by proteolytic digestion.
  • 8. The method according to claim 1, wherein the analysis step comprises mass spectrometry, preferably microsequencing by tandem mass spectrometry.
  • 9. The method according to claim 1, wherein the native pathologic tissue sample is derived from tissues selected from the group consisting of tumor tissue, inflamed tissue, and atheromatotic tissue or tissues resulting from degenerative, metabolic and genetic diseases.
  • 10. The method according to claim 1, wherein accessibility of the biological markers refers to being accessible for high-affinity ligands from the extracellular space in native tissue.
  • 11. The method according to claim 1, wherein biological markers for pathologic diseases which are not accessible for high-affinity ligands from the extracellular space in a native tissue sample will not or will essentially not be labelled.
  • 12. The method according to claim 10, wherein the high-affinity ligands are selected from the group consisting of antibodies, antibody fragments, drugs, prodrugs, ligands, biotin, and derivatives and conjugates thereof, preferably conjugates of antibodies or antibody fragments with drugs or prodrugs.
  • 13. The method according to claim 1, wherein biological markers are proteins or polypeptides, which are expressed in the given pathologic tissue and not expressed in the normal tissue, or are expressed on a higher level in the given pathologic tissue than in the normal tissue, wherein the biological marker indicates a pathologic condition compared to the normal physiologic condition of the corresponding normal tissue.
  • 14. A method of manufacturing a medicament for therapeutic and/or preventive treatment of a human or animal disease comprising the method of claim 1, wherein a high-affinity ligand directed against a biological marker for pathologic tissue is comprised in the medicament, wherein said biological marker is accessible for high-affinity ligands from the extracellular space.
  • 15. (canceled)
  • 16. (canceled)
  • 17. A method of developing an individual treatment protocol comprising the method of claim 1, wherein said screening for specific disease biological markers is performed with a pathologic tissue of an individual patient.
  • 18. A method for therapeutic and/or preventive treatment of a human or animal disease comprising the method according to claim 1, further comprising a step of using a high-affinity ligand directed against a biological marker for pathologic tissue, wherein said biological marker is accessible for high-affinity ligands from the extracellular space.
Priority Claims (1)
Number Date Country Kind
06100141.8 Jan 2006 EP regional
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP2006/069679 12/13/2006 WO 00 7/7/2008