The present invention relates to a device for improving ventricular function of the heart and, more particularly, to a modified in vivo device for improving diastolic function of the left ventricle of the heart.
Heart failure is commonly defined as the inability of the left ventricle, herein, also referred to as LV, to generate an adequate cardiac output at rest or during exertion, while operating at a normal or enhanced LV filling pressure. Congestive heart failure (CHF) is a clinical syndrome in which heart failure is accompanied by the symptoms and signs of pulmonary and/or peripheral congestion. Heart failure is most commonly associated with impaired LV systolic function. A widely used index for quantifying systolic function is ‘ejection fraction’ (EF), defined as the ratio of stroke volume to end-diastolic volume, which can be estimated using techniques such as radiocontrast, radionuclide angiography, and/or, echocardiography. The normal value of EF is 0.67±0.08, which is frequently depressed in systolic heart failure even when the stroke volume is normal. A value of EF ≧0.50 is commonly used as an indicator of normal systolic function. It is notable, however, that as much as 30-50% of all patients with typical symptoms of congestive heart failure have a normal or slightly reduced ejection fraction, that is, a value of EF ≧0.45.
In these patients, diastolic dysfunction is implicated as a major contributor of congestive heart failure. In some patients, systolic and diastolic heart failure coexist. The most common form of heart failure, the one caused by coronary arteriosclerosis, is an example of combined systolic and diastolic failure, as described in “Braunwald's Heart Disease: Review and Assessment”, third edition, 1997, Saunders Company Publishers. There are about 4.6 million people in the United States with heart failure, and about 550,000 are being reported annually, as indicated by Vasan, R. S., and Benjamin, E. J., in “Diastolic Heart Failure—No Time to Relax”, New England Journal of Medicine 2001, 344: 56-59. Also indicated therein, is that the mortality rate from diastolic heart failure (DHF), 5-12% annually, is about four times that among persons without heart failure and half that among patients with systolic heart failure, and that, nonetheless, rates of hospitalization and health care associated with diastolic heart failure rival those associated with systolic heart failure.
Primary diastolic dysfunction is typically observed in patients with hypertension and hypertrophic or restrictive cardiomyopathy, but can also occur in a variety of other clinical disorders and has a particularly high prevalence in the elderly population. Aging is associated with ‘physiologic’ diastolic dysfunction due to the increase in LV muscle mass and changes in passive elastic properties of the myocardium, hence, the concern of an increase in the incidence of diastolic dysfunction as the aging of the western world population progresses.
For the purpose of clearly understanding, and implementing, the following described preferred embodiments of the present invention, relevant details, description, and, definitions of selected terms, well known to one of ordinary skill in the art, of physiological and pathological aspects, mechanisms, and functions, of the heart, in general, and of the ventricles and atria, in particular, are provided herein. Additional details, description, and, definitions of terms, thereof, are readily available in the scientific literature.
The left ventricle is the chamber on the left side of the heart that receives oxygenated arterial blood from the left atrium and contracts to drive it into the aorta for distribution to the body. The right ventricle is the chamber on the right side of the heart that receives deoxygenated venous blood from the right atrium aid drives it into the pulmonary artery in order to receive oxygen from the lungs. Diastole is the normal rhythmically occurring relaxation and dilatation (stretching, expansion, dilation) of the heart cavities (ventricles), during which the cavities are filled with blood. Atrial contraction occurs during the last stage of diastole of the ventricle and aids ventricular filling. Systole is the rhythmic contraction of the heart, especially of the ventricles, by which blood is driven through the aorta and pulmonary artery after each dilation or diastole.
Ventricular filling starts just after mitral valve opening. As the LV pressure decreases below that in the left atrium, the phase of rapid or early filling of the LV accounts for most of ventricular filling. LV filling temporarily stops as pressures in the atrium and left ventricle equalize, commonly known as the phase of diastasis, occurring prior to atrial contraction and during which little blood enters the filled left ventricle. Atrial contraction increases the pressure gradient from the atrium to the left ventricle to renew filling. When the LV fails to relax normally, as in ‘LV hypertrophy’, increased atrial contraction can enhance late filling. Relaxation (inactivation of contraction) is a dynamic process that begins at the termination of contraction and occurs during isovolumetric relaxation and early ventricular filling. ‘Myocardial elasticity’ is the change in muscle length for a given change in force. ‘Ventricular compliance’ is the change in ventricular volume for a given change in pressure, and, ‘ventricular stiffness’ is the inverse of compliance.
The ‘preload’ is the load present before contraction has started and is provided by the venous return that fills the ventricle during diastole. The ‘Frank Starling law of the heart’ states that the larger the volume of the heart, the greater the energy of its contraction and hence the stroke volume is larder. In other words, when the preload increases, the left ventricle distends (widens, expands) and the stroke volume increases, as described by Opie, H. L., in “The Heart Physiology, From Cell To Circulation”, third edition, Lippincott-Raven publishers, 1998. The pressure-volume relation curves are an accepted description of the ventricular function.
The fundamental problem in diastolic heart failure (DHF) is the inability of the left ventricle to accommodate blood volume during diastole at low filling pressures, as described by Mandinov, L., Eberli, F. R., Seiler, C., and Hess, M. O., in “Diastolic Heart Failure”, Cardiovascular Res. 2000, 45: 813-825. Initially, hemodynamic changes may be manifested only in an upward displacement of the diastolic pressure-volume curve in the presence of a normal end-diastolic volume with inappropriate elevation of LV diastolic, left atrial and pulmonocapillary pressure (as previously described above, with reference to
Currently, four different pathophysiological mechanisms are known and used for understanding and/or explaining diastolic heart failure (DHF), combinations of which may readily take place in a particular patient: (1) slow isovolumic left ventricular relaxation, (2) slow early left ventricular filling, (3) reduced left ventricular diastolic distensibility, and, (4) increased left ventricular chamber stiffness or increased myocardial muscle stiffness, as describe in the report, “How To Diagnose Diastolic Heart Failure: European Study Group On Diastolic Heart Failure”, European Heart Journal, 1998, 19: 990-1003.
Slow isovolumic left ventricular relaxation, (1), refers to a longer time interval between aortic valve closure and mitral valve opening and a lower negative peak ventricular dP/dt. Regional variation in the onset, rate, and extent of myocardial lengthening is referred to as ‘diastolic asynergy’; temporal dispersion of relaxation, with some fibers commencing to lengthen later than others, is referred to as ‘asynchrony’. Slow early left ventricular filling, (2), is a result of slow myocardial relaxation, segmental incoordination related to coronary artery disease and the atrioventricular pressure gradient. Reduced left ventricular diastolic distensibility, (3), refers to an upward shift of the LV pressure-volume relation on the pressure-volume plot, irrespective of a simultaneous change in slope. Reduction in LV end diastolic distensibility is usually caused by extrinsic compression of the ventricles as in cardiac tamponade. Increased LV chamber stiffness or increased myocardial muscle stiffness, (4), as manifested by a shift to a steeper ventricular pressure-volume curve, is due to processes such as ventricular hypertrophy, endomyocardial fibrosis, disorders wits myocardial infiltration (for example, amyloidosis) and replacement of normal, distensible myocardium with non-distensible fibrous scar tissue in healed infarct zones.
The previously cited European Study Group proposed criteria for the diagnosis of DHF. Accordingly, simultaneous presence of the following three criteria is considered obligatory for establishing a diagnosis of DHF: (1) evidence of CHF, (2) normal or mildly abnormal LV systolic function, (3) evidence of abnormal LV relaxation, filling, diastolic distensibility, or, diastolic stiffness.
Pulmonary edema is the result of the increase pulmocapillary pressure and is due to a shift of liquid from the intravascular compartment to the lung interstitial compartment. Pulmonary edema is frequently associated with hypertension. Gandhi, S. K. et al., in “The Pathogenesis Of Acute Pulmonary Edema Associated With Hypertension”, New England Journal of Medicine, 2001, 344: 17-22, have contradicted the hypothesis that pulmonary edema, apparently associated with hypertension, in patients with preserved ejection fraction, is due to transient systolic dysfunction. They found that the LV ejection fraction and the extent of regional wall motion measured during the acute episode of hypertensive pulmonary edema were similar to those measured after the resolution of the congestion, when the blood pressure was controlled, thus concluding that the pulmonary edema was due to diastolic rather than systolic heart failure.
The management of diastolic heart failure is difficult. There have been no large-scale, randomized controlled trials of therapy in diastolic heart failure, and there remains substantial disagreement about the appropriate therapy for this disease, according to Sweitzer, N. K., and Stevenson, L. W., in “Diastolic heart Failure: Miles To Go Before We Sleep”, American Journal of Medicine, 2000, 109: 603-605. Medical therapy of diastolic dysfunction is often empirical and lacks clear-cut pathophysiologic concepts, as indicated in previously cited Mandinov, L. et al. No single drug presently exists which selectively enhances myocardial relaxation without negative effects on LV contractility or pump function, and thus, there is a significant need for a new therapeutic approach for this particular type of heart disease.
Treatment of diastolic heart failure may be logically divided into three areas or categories: (1) removal of the precipitating cause, (2) correction of the underlying cause, and, (3) control of the congestive heart failure state. Treatment goals that have been advocated, by previously cited Mandinov, L. et al., and, by Braunwald, E., in “Heart Failure”, Harrison's Principles of Internal Medicine, fourteenth edition, McGraw Hill publishers, are as follows:
1. Reduction of central blood volume. Reduction of salt intake and use of diuretics (usually, loop diuretics). Diuretics are effective in reducing pulmonary congestion, shifting the pressure-volume relation downwards. However, they must be used with care because the volume sensitivity of patients with diastolic dysfunction bears the risk that excessive diuresis may result in a sudden drop in stroke volume. Because of the steep pressure-volume relationship, a small decrease in diastolic volume will cause a large decrease of the filling pressure, and will result in a drop in stroke volume, and thus, in cardiac output.
2. Reduction of workload. Reduction of physical activity, maintenance of emotional rest and use of vasodilators. Vasodilators, such as sodium nitroprusside or ACE inhibitors reduce the filling pressure and the afterload in all patients, and elevate cardiac output. Reduction of an elevated left ventricular end diastolic pressure may improve subendocardial perfusion, thus improving myocardial contraction. Nonetheless, vasodilators have not been useful in the management of isolated diastolic heart failure and are more effective in combined heart failure, as indicated in the previously cited Braunwald, E. text. Vigorous control of hypertension is imperative in patients with heart failure caused by diastolic dysfunction, because control of hypertension may prevent progression or may partially reverse the disorder by addressing the primary cause of most cases, as described by Grauner, K., in “Heart Failure, Diastolic Dysfunction and the Role of the Family Physician”, American Family Physician, 2001, 63: 1483-1486.
3. Improvement of LV relaxation. In particular, by using calcium channel blockers or ACE inhibitors. Ca channel blockers have been shown to improve myocardial relaxation and enhance diastolic filling. These drugs may be best matched to the pathophysiology of relaxation disturbances due to their ability to decrease cytoplasmic calcium concentration and reduce afterload. However, currently, use of Ca2+ channel blockers is limited due to their negative inotropic effects (negative influence on the systolic function of the heart), and clinical trials have not clearly proven them to be beneficial.
4. Regression of LV hypertrophy. In particular, decrease in wall thickness and removal of excess collagen by ACE inhibitors and AT-2 antagonists or Spironolactone. Philbin, E. F., Rocco, T. A., Lindenmuth, N. W., Ulrich, K., and Jenkins, 0.1., in “Systolic Versus Diastolic Heart Failure In Community Practice: Clinical Features, Outcomes, And The Use Of ACE Inhibitors”, American Journal of Medicine, 2000, 109: 605-613, have shown that the use of ACE inhibitors in patients with ejection fraction equal to or greater than 0.50 was associated with a better NYHA class (New York Heart Association functional and therapeutic classification for stages of heart failure) after discharge from hospitalization, but had no significant effect on mortality or hospital readmission. ACE inhibitors and AT-2 antagonists affect blood pressure, reduce afterload, and affect the myocardium via the local renin-angiotensin system. These effects are important for regression of LV hypertrophy, and improvement of elastic properties of the myocardium.
5. Maintenance of atrial contraction and control of heart rats. In particular, by using beta-blockers and/or antiarrhythmics. Beta-blockers reduce blood pressure and myocardial hypertrophy. The positive effect on diastolic dysfunction is mainly due to slowing of the heart rate and not to a primary improvement in isovolumic relaxation or the diastolic properties of the left ventricle.
6. NO donors. NO (Nitric Oxide) donors have been shown to exert a relaxant effect on the myocardium, which is associated with a decrease in LV end diastolic pressure. In patients with severe LV, hypertrophy, an increased susceptibility to NO donors has been documented, which may be beneficial for the prevention of diastolic dysfunction.
7. Heart transplantation. Heart transplantation is a definitive treatment for end stage heart failure.
8. Biventricular pacing. Biventricular pacing improves uncoordinated contraction due to left bundle branch block or other conduction abnormalities with wide ‘QRS complex’ (P-Q-R-S-T waveform) of an electrocardiogram, which are common in patients with CHF. Morris-Thurgood, J. A., Turner, M. S., Nightingale, A. K., Masani, N., Mumford, C., and, Frenneaux, M. P., in “Pacing In Heart Failure: Improved Ventricular Interaction In Diastole Rather Than Systolic Re-synchronization”, Europace 2000, 2: 271-275, have shown that left ventricular pacing acutely benefits congestive heart failure patients with pulmonary capillary wedge pressure greater than 15 mm Hg, irrespective of left bundle branch block. They suggested the beneficial mechanism might be related to an improvement of ventricular interaction in diastole (VID) rather than ventricular systolic re-synchronization. According to their suggestion, LV pacing in patients with high LV end diastolic pressure, will delay right ventricular filling and allow greater LV filling before the onset of VID. Biventricular pacing, however, has not been clinically proven effective in the treatment of patients with diastolic heart failure.
To one of ordinary skill in the art, there is thus a need for, and it would be highly advantageous to have an in vivo device for use in improving diastolic function of the left ventricle of the heart, while minimally disturbing systolic function of the heart. Moreover, there is need for such a device which is biocompatible and is specially configured for compact and long-term reliable use in humans.
One of the purposes of the present invention is to provide an indwelling in vivo device that may be used to improve diastolic function of either the left ventricle or right ventricle of the heart.
Another purpose of the present invention is to provide such a device that may be readily adapted to the precise topographic conformation of the heart that is to be treated.
Yet another purpose of the present invention is to provide such a device that may be readily delivered to the required site on the external surface of the ventricle by non-invasive or minimally-invasive means.
A further purpose of the present invention is to provide an in vivo device that overcomes the problems and disadvantages of previous devices.
Further objects and advantages of the present invention will become clear as the description proceeds.
The present invention relates to an in vivo device for improving diastolic function of the left or right ventricle of the heart, said device being a modification of the devices disclosed in co-pending international patent application no. PCT/IL02/00547. The modified device disclosed and described herein possesses certain advantageous features over and above those recited in the corresponding invention disclosed in the aforementioned international patent application, all of which advantages will be enumerated and described in more detail hereinbelow.
The present invention is primarily directed to an anatomically-compatible and physiologically-compatible in vivo device for improving diastolic function of either the left or right ventricle of the heart, comprising:
at least one elastic component that is capable of being operatively connected to the external ventricular surface of the heart by means of one or more connecting elements,
wherein said at least one elastic component comprises a plurality of essentially longitudinal members which are arranged such that the lateral separation between adjacent longitudinal members may be increased or decreased in response to elastic deformation of said elastic component,
and wherein said essentially longitudinal members are arranged relative to each other such that said elastic component is curved in both the vertical and horizontal planes, such that the inner surface of said elastic component may be adapted to the curvature of the external ventricular surface of the heart, or a portion thereof,
such that said at least one elastic component is capable of exerting both a radially outward expansive force and a tangentially-directed force on the external ventricular surface of the heart to which said component may be connected by means of said one or more connecting elements.
The term “anatomically compatible” as used hereinbefore refers to the fact that the structure of the device of the invention is such that it may readily be adapted in situ to the precise shape and size of the heart to be treated.
The term “physiologically compatible” as used hereinbefore refers to the fact that the structure of the device of the invention is such that it may readily be adapted in situ to the precise movement vectors of the heart to be treated.
According to one preferred embodiment of the invention, the device comprises only one elastic component.
In one particularly preferred embodiment of the device of the invention, the elastic component comprises a plurality of elongated members, each of said elongated members having one end connected to, and continuous with, a base element, said base element being of a size and shape such that it is capable of either fully of partially encircling the apical region of the heart, and wherein said elongated members are arranged such that they are capable of being disposed in an essentially longitudinal manner along the external ventricular surface of the heart, such that said free ends of said elongated members are directed towards the base of the heart. In a particularly preferred embodiment, the abovementioned base element is provided in an annular shape.
In another particularly preferred embodiment of the device of the invention, the elastic component comprises a wire spring, wherein said wire spring is bent such that it contains one or more angled portions, each angled portion comprising either an inferiorly-directed or a superiorly-directed apex that is formed at the junction of two essentially-longitudinally disposed lengths, and wherein said spring is capable of being connected to the external ventricular surface of the heart in an essentially horizontal orientation.
In one especially preferred embodiment of the wire spring device disclosed immediately hereinabove, one or more of said apices is further twisted around the longitudinal axis of the angled portion comprising said apex or apices, such that each of said apices is in the form of an essentially circular loop.
In the present context, the term “longitudinal” as used herein in relation to the in vivo device of the invention refers to a plane that is approximately parallel with an imaginary line connecting the apex of the heart with the center point of its base. Also, the term ‘horizontal’ is to be understood as referring to an essentially equatorial plane, that is, a plane that is approximately parallel with that defined in a transverse section of the heart.
According to another preferred embodiment of the invention, the in vivo device comprises two or more elastic components. In one particularly preferred embodiment, each of the two or more elastic components comprises a wire spring of the types defined hereinabove. In another particularly preferred embodiment, each of the two or more elastic components comprises a plurality of elongated members and a base element, as defined hereinabove.
Although the at least one elastic component of the in vivo device of the invention may be constructed of any suitable material possessing the desired spring-like properties, in a preferred embodiment, said at least one elastic component is constructed from a material selected from the group consisting of tungsten, platinum, titanium, nitinol alloy, stainless steel alloy, biocompatible plastics (e.g. silicon) and, combinations thereof.
According to one preferred embodiment of the device of the invention, said device is constructed such that the aforementioned maximal value for the radially outward expansive pressure exerted on at least one part of the external ventricular wall is in a range of about 5 mm Hg to about 40 mm Hg.
The present invention is also directed to connecting elements suitable for connecting a medical or surgical device to an organ or tissue of the body, in particular for connecting a device of the present invention as disclosed herein to the external surface of the heart.
In one preferred embodiment, the connecting element comprises a girdle in the form of a thin fabric patch, extending from the lateral borders of which is a plurality of tabs arranged in contralateral pairs, wherein each tab is capable of being joined to its contralateral partner, thereby forming a loop into which may be inserted a portion of the device which is to be connected to said organ or tissue.
In another preferred embodiment of this aspect of the present invention, the connecting element consists of a multi-component assembly comprising the following three elements: a hollow element, into which is inserted the device to be attached to said organ or tissue, or a portion of said device, a rigid element, which serves inter die to prevent movement of said hollow element during insertion of the connecting element and a fastener, for adhering, attaching or fastening the entire connecting element to said organ or tissue. The details of this multi-component attachment assembly will be described hereinbelow.
In another aspect, the present invention is also directed to several different connecting elements for use in connecting the device of the invention to the external surface of the heart.
In one preferred embodiment, the invention provides a transmural or intramural anchor for use as a connecting element for connecting the in vivo device disclosed hereinabove to the external ventricular surface of the heart
In another preferred embodiment, the connecting element is provided in the form of a girdle as described hereinabove.
In yet another preferred embodiment, the connecting element is provided in the form of a tube constructed of a biocompatible material. In one particularly preferred embodiment, this material is Dacron. In another particularly preferred embodiment, the material is polytetrafluorethylene (PTFE).
While many other different materials may be used as connecting elements for affixing the in viva device of the invention to the external surface of the heart, according to one preferred embodiment, the connecting elements are selected from the group consisting of biocompatible pins (including intramural and other non-transmural pins), biocompatible needles, biocompatible spikes, biocompatible screws, biocompatible clamps, biocompatible glue, surgical sutures, and, combinations thereof.
As mentioned hereinabove, the in viva device according to the present invention possesses a number of further significant advantageous properties in addition to those described in relation to the corresponding devices disclosed in co-pending international patent application no. PCT/IL02/00547. Among these advantages are included the following desirable properties:
The invention is herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of the preferred embodiments of the present invention only, and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention.
The present invention relates to an in vivo device for improving diastolic function of the left or right ventricle of the heart.
It is to be noted that the terms “ventricular”, “ventricular surface”, “ventricle” and the like are used herein to refer to either the left or right ventricles or to portions thereof. Thus, wherever the description refers to the left ventricle or portions thereof, it is to be appreciated that the teachings derived from said description apply equally to the right ventricle.
A key advantage possessed by all embodiments of the presently claimed in vivo device is the fact that said device is capable of exerting elastic forces on the external ventricular wall in a tangential direction, in addition to the externally-directed radial forces. These tangential forces are of importance for the following two reasons:
1. they permit more even distribution of applied forces across the left ventricular wall surface;
2. they assist the diastolic movement of the left ventricle in a manner more similar to its normal physiological movement.
In order to further understand the latter point, it is necessary to further consider the physiological changes in ventricular shape and volume during the cardiac cycle. Thus the normal left ventricle performs a systolic wringing motion with clockwise rotation at the base (of approximately 4.4 degrees) and counterclockwise rotation at the apex (of approximately 6.8 degrees), as seen from the apex (Nagel F, Stuber M, Burkhard B, Fischer S E, Scheidegger M B, Boesiger P, Hess O M: “Cardiac rotation and relaxation in patients with aortic valve stenosis”. European Heart Journal 2000; 21:582-589). This motion is analogues to the wringing of a wet towel to squeeze the water out; it allows the ventricle to generate high intraventricular pressures, with minimal shortening of the muscle fibers, and thus minimal energy expenditure. It is important to note that the rotation normally occurs during the isovolumic contraction phase, and there is no, or minimal rotation during systolic ejection.
During isovolumic relaxation an untwisting motion is observed, which is directed opposite to systolic rotation, counterclockwise at the base and clockwise at the apex. There is minimal rotation during the filling phase.
Clearly, solely radial expansion of an in vivo device would not provide the optimal assistance in increasing diastolic filling of the left ventricle. The addition of the longitudinal members of the presently-claimed device, however, permits said device to exert tangential forces on the expanding heart, thus assisting the ventricle in its normal untwisting motion, as explained hereinabove.
Referring now to
The device of the present invention is based on uniquely applying both a radially outward expansive force or pressure (force per unit area) to the wall region of the left ventricle and a tangentially-directed force or pressure to said wall region, in order to reduce intraluminal hydrostatic pressure of the left ventricle, also known as LV filling pressure, during the ventricular diastolic stage of the cardiac cycle, thereby, improving diastolic function of the left ventricle of the heart, while minimally disturbing systolic function of the heart.
Reduction of hydrostatic pressure within the left ventricle has the beneficial effect of reducing hydrostatic pressure in other cardiac compartments and organs preceding, that is, upstream relative to, the left ventricle in the overall cardiac system, in particular, in the left atrium, and in the pulmonary vasculature of the venous system supplying blood to the atrium. These beneficial effects prevent both dilatation of the atria with propagation to atrial fibrillation, and pulmonary congestion causing symptoms of dyspnea and pulmonary edema.
Normal left ventricular end diastolic pressure (LVEDP) is in the range of about 6-12 mm Hg, and the upper end of this range can increase to above 35 mm Hg during conditions of heart failure involving diastolic dysfunction, as a direct result of the left ventricle needing relatively high hydrostatic filling pressures in order to achieve the necessary left ventricular end diastolic volume (LVEDV) for an appropriate cardiac output. Accordingly, an important objective of the present invention is to significantly reduce the hydrostatic pressure in the left ventricle during the diastolic stage of the cardiac cycle, thereby, improving diastolic function of the left ventricle of the heart, while minimally disturbing systolic function of the heart. In particular, fulfilling this objective includes sufficiently reducing left ventricular end diastolic pressure (LVEDP), preferably, down to the normal range of about 6-12 mm Hg, during ventricular diastole of the heart.
In addition to the present invention primarily applied for treating subjects having symptoms of diastolic heart failure, by reducing intraluminal hydrostatic pressure (LV filling pressure) of the left ventricle during the ventricular diastolic stage of the cardiac cycle, thereby, improving diastolic function of the left ventricle of the heart, while minimally disturbing systolic function of the heart, the present invention can be used in a variety of other cardiac related and/or non-related monitoring applications, such as pressure measurement applications, and, therapeutic applications, such as in drug delivery applications. For example, the device of the present invention can be used together with an apparatus for time controlled drug delivery or release to the body, in general, and, to the cardiac region, in particular.
It is to be understood that the phraseology and terminology employed herein are for the purpose of description and should not be regarded as limiting. For example, in describing the present invention, the key functionality terms ‘elasticity’ and ‘resiliency’, and, the corresponding variant terms ‘elastic’ and ‘resilient’, are considered synonyms, and for the purpose of brevity, while maintaining clarity of description, the terms ‘elasticity’ and ‘elastic’, are solely used hereinafter, however, it is to be fully understood that the corresponding synonymous terms ‘resiliency’ and ‘resilient’, respectively, are equally applicable.
The component parts, operation, and implementation of an anatomically compatible and physiologically compatible in vivo device for improving diastolic function of the left ventricle of the heart according to the present invention are better understood with reference to the following description and accompanying drawings. Throughout the following description and accompanying drawings, like reference numbers refer to like elements.
The device of the present invention utilizes the physicochemical property and behavior of elasticity or resiliency, in a relatively simple manner, in appropriately constructed and configured elastic or resilient components of the device operatively connected to the external surface of a wall region of the left ventricle, for exerting an elastic or resilient type of the expansive force or pressure to the wall region of the left ventricle, for reducing intracardiac hydrostatic pressure during ventricular diastole of the heart, thereby, improving diastolic function of the left ventricle of the heart, while minimally disturbing systolic function of the heart.
The ventricular device of the present invention may be constructed from either a single type of material, or, from a plurality of different types of materials. Preferably, the ventricular device is constructed from a single type of elastic material, which when appropriately formed, is self-expandable. For example, such material is selected from the group consisting of a pure metal, a metal alloy, and, combinations thereof. Exemplary pure metals are tungsten, platinum, and, titanium. Exemplary metal alloys are nitinol, and, stainless steel.
The ventricular device of the present invention, in general, and, the at least one elastic component, in particular, have dimensions of length, height, and, width, depth, or thickness, each on the order of microns to centimeters, in the range of between about 10 microns to about 8 cm.
The geometry, shape, form, and, dimensions, and, elastic strength, of the ventricular device, in general, and, the at least one elastic component, in particular, are specifically determined, in part, according to the desired or necessary extent or degree of elasticity, for properly and optimally performing the critical function of potentially exerting both radially outward and tangential forces or pressures (in a range of about 5-40 mm Hg, preferably, about 10 mm Hg) to the outer wall surface of the left ventricle, in order to properly fulfill the main objective of sufficiently reducing intracardiac hydrostatic pressure during ventricular diastole of the heart, thereby, improving diastolic function of the left ventricle of the heart, while minimally disturbing systolic function of the heart. This includes sufficiently reducing left ventricular end diastolic pressure (LVEDP), preferably, down to the normal range of about 6-12 mm Hg, during ventricular diastole of the heart.
Following are description and accompanying drawings for describing and illustrating, respectively, various embodiments of the device of the present invention.
Referring again to the drawings,
The embodiments of the device depicted in
In the case of wires, industrial bending machinery may be used to bend the wire into the desired shape.
In the case of tubes a “cut out” method may be used. In this type of method, selected areas of the metal of the tube are removed, for example, by laser cutting, until only the desired geometry, shape, and dimensions, remain.
Exemplary dimensions of the embodiments of the device depicted in
One preferable embodiment of such connecting means includes the use of a plurality of open-ended tubes constructed of a biocompatible material, said tubes being connected to the external surface of the heart by means of surgical sutures or suture clips or any other suitable conventional means, such that said tubes are disposed in an essentially longitudinal orientation. Tubes of any suitable biocompatible material may be used; preferred materials include Dacron and polytetrafluorethylene (PTFE). Preferably, the tubes have an internal diameter in the range of 0.2-1.4 cm and a length in the range of 1-5 cm. Suitable Dacron tubes originally intended for use as arterial grafts are highly suitable for this purpose, and may be commercially obtained from C. S. Bard, Inc., Murray Hill, N.J., USA.
The embodiments of the device of the invention described hereinabove and depicted in
Preferably, base element 14 is self-expanding, in order to facilitate the use of minimally invasive insertion procedures such as those described above.
Techniques and equipment of thoracoscopy deployment are well taught about in the prior art, however, for enabling implementation of the method and device of the present invention, an example is provided herein.
In a further preferred embodiment of the device of the invention, the elastic component comprises a wire spring 30, wherein said spring is formed such that it contains along its length one or more angled portions, each of said angled portions being approximately v-shaped or u-shaped, as indicated in
As indicated in
In the embodiment depicted in
While the inventors do not wish to be bound by a particular hypothesis or any other theoretical considerations, it is to be understood that the aforementioned essentially circular loops 52 function in the following manner: during every contraction of the ventricle the device is constricted, causing each loop to expand (against its basal state), thus causing a force directed towards reversing the contraction, and expanding the ventricle. The sum of these forces is a normally-acting force, or in other words a radially-outward, expansive force, which assists in the filling or expansion of the ventricle during the diastolic phase of the cardiac cycle. This allows filling of the ventricle with lower filling pressures, thus assisting the diastolic function of the ventricle to which said device is attached.
Thus, any of the wire spring devices of the present invention may, for example, be surgically connected to the external surface of the left or right ventricle, preferably by means of one or more specialized connection elements all of which will be described in more detail hereinbelow. During systolic contraction of the heart muscle, the wire spring will be placed in a compressed state, absorbing potential energy, which in turn will be transformed into kinetic energy during the diastolic phase, thereby assisting in the filling of the left ventricle. This will significantly reduce the hydrostatic pressure in the left ventricle during the diastolic phase of the cardiac cycle, thereby, improving diastolic function of the left ventricle of the heart, while minimally disturbing systolic function of the heart. In particular, fulfilling this objective includes sufficiently reducing left ventricular end diastolic pressure (LVEDP), preferably, down to the normal range of about 6-12 mm Hg, during ventricular diastole of the heart.
As mentioned hereinabove, the presently-discussed embodiment of the device of the present invention may be connected or attached to the external surface of the heart by the use of any suitable conventional material or means, including (but not restricted to) biocompatible pins, biocompatible needles, biocompatible spikes, biocompatible screws, biocompatible clamps, biocompatible glue, biocompatible adhesion, surgical sutures, and, combinations thereof, having dimensions of length, height, and, width, depth, or thickness, each on the order of microns to centimeters, in the range of between about 10 microns to about 8 cm. In addition, the present invention also provides certain novel connecting elements that may be used to attach the above-described device to the external surface of the heart in a manner such that said device is held in close apposition to said external surface, thus resulting in maximal transduction of the potential energy of the elastic component into the expansive kinetic energy used to assist in diastolic filling of the left ventricle.
One preferable type of connecting means for use with the wire spring embodiment of the presently-described device involves the use of one or more open-ended Dacron or polytetrafluorethylene (PTFE) tubes (as described hereinabove), said tubes being connected to the external surface of the heart by any suitable means including, but not limited to, surgical sutures and suture clips. The tubes are disposed in an essentially longitudinal orientation, such that vertically-orientated end sections of the wire spring can be inserted therein. Preferably, the tubes have an internal diameter in the range of 0.2-1.4 cm and a length in the range of 1-5 cm.
Metal wires used for constructing this embodiment of the device of the invention include (but are not limited to) stainless steel 316 and NITINOL (Nickel Titanium) wires, both of which are biocompatible and are readily available from commercial suppliers (e.g. Allvac Inc., Monroe, N.C.). Preferably, wires having diameters in the range of 0.1 mm to 2 mm are used in the construction of the wire spring device.
The presently-discussed embodiment may be manufactured by taking a 10-40 cm length of metal wire and bending it into the desired shape (e.g. as depicted in
In another particularly preferred embodiment, the present invention provides a further novel attachment mechanism, wherein said mechanism comprises the following three main components:
1. The Hollow Element.
The device which is to be attached, or a part of it, is inserted into the internal space of the hollow element. The hollow space allows movement of the inserted device in a plane composed of X and Y axes, which are lateral axes, but does not allow free movement on the Z axis. This permits a device that is attached to the external surface of a ventricle of the heart to be used in situations where it is required to apply only Normal forces to the ventricular surface (forces in the Z direction, as shown in
Exemplary materials for the hollow element are biocompatible fabrics, biocompatible mesh, biocompatible plastics and biocompatible metals. Particularly preferred materials are Gortex and Dacron. While the hollow element may be manufactured in any suitable form, in a particularly preferred embodiment, said hollow element is a Gortex tube, similar to the tubes used as arterial grafts.
2. The Rigid Element.
The rigid element serves three important purposes:
Exemplary materials for the rigid element are biocompatible plastics and biocompatible metals.
One example of a preferred material is silicon. In a preferred embodiment, the attachment mechanism comprises one or more silicon extrusions (the rigid elements) embedded into a Gortex tube (the hollow element) of the type commonly used as arterial grafts.
3. The Fastener
The fastener is the element that adheres, attaches or fastens the complete attachment mechanism (with the device inserted into the hollow element) onto the target tissue or organ area. A preferred example of such a fastener, depicted in
The spiral tip may have a sharp point at its distal end, and further may have a spiral tip at its proximal end. Twisting the hub causes the spiral tip to be drawn into the attachment surface (ventricular surface). The hub abuts the surface when the spiral tip has been fully inserted, thereby preventing the fastener from being pushed too deeply under the surface, and avoiding any possible tissue injury.
The fasteners may be applied singly, typically in spaced-apart patterns on the hollow element. Exemplary materials for the fastener include biocompatible metals and biocompatible plastics. Particularly preferred materials include stainless steel and Nitinol.
In a particularly preferred embodiment, the attachment mechanism comprises a stainless steel spiral fastener inserted into a Silicon extrusion (rigid element) which is in turn embedded into a Gortex tube (hollow element) of the type employed as arterial grafts.
In another preferred embodiment of this invention the attachment mechanism is essentially a ring on the end of a spiral fastener. The device to be attached is inserted into the ring.
In this example, approximately two rotations fully engaged the spiral fastener inside the ventricular surface, leaving the hub pressed against the Gortex hollow element. In other examples the spiral fastener may be designed such that one rotation, or more than two rotations will be needed in order to fully engage the fastener.
In the inventors' in vivo studies performed with the embodiment depicted in
In addition to the connecting means described hereinabove, the present invention also encompasses the use of several other types of connecting elements which may be used for connecting the various embodiments of the presently-claimed in vivo device to the external ventricular wall.
One such type of connecting element is the cardiac girdle depicted in
The cardiac girdle may be made from any suitable biocompatible material. Examples of such materials include Dacron and polytetrafluorethylene (PTFE), both of which possess the required mechanical strength in order to function as connecting means, and which may be woven into meshes.
A cardiac girdle, as described above, may be inserted into the thoracic cavity and used to connect an in vivo device of the invention to the external ventricular wall in the following manner:
The heart is surgically exposed following midline sternotomy and pericardiotomy. The heart is then measured in various dimensions (apex to base, circumference at base and midway between base and apex) in order to assist with selection of an in vivo device and cardiac girdle of an appropriate size. The girdle may then be attached to the external ventricular wall by means of pinning, gluing or suturing. In the latter case, the cardiac girdle is sutured to the myocardium using multiple partial-thickness (deep) interrupted stitches, taking care not to compromise any of the epicardial coronary arteries. When pinning is used, the fabric may be attached to the myocardium using e.g. multiple star-like, splitting non-retractable tacking pins, avoiding the epicardial coronary arteries. The in vivo device, constricted temporarily to the heart size by means of a constriction mechanism, is now positioned on the external surface of the heart and locked within the girdle by means of closure of the aforementioned tabs or straps, to form retaining loops. The constriction mechanism is removed from the device to allow the device to exert expansive and tangential forces on the external ventricular wall. Following attachment of the girdle and device, the heart is observed in order to ascertain that detachment of the fabric patch of the girdle from the myocardium has not occurred at any point. Final fixation of the device within the girdle is now performed using interrupted stitches.
Another type of connecting element is the cardiac anchor, three preferred embodiments of which are illustrated in
1. A wall-connecting element 48 for attachment of the anchor to the left ventricular wall. This element may be connected to said ventricular wall by a transmural or an intramural attachment mechanism. In addition, the wall-connecting element may also be attached to the ventricular wall by means of biocompatible glue, pins, hooks, sutures or any other convenient means.
2. A device-connecting element 50 for attachment of an in vivo device of the present invention to the anchor. This element may take one of several different forms including, for example, a ring, into which the device is attached or sutured. It may also incorporate a locking mechanism. In addition, biocompatible glue, pins, hooks or sutures etc. may also be used for attaching the anchor to the in vivo device.
In one preferred embodiment, as illustrated in
In another preferred embodiment (
A particular advantage of the cardiac anchor connecting element is the fact that a series of such elements may be used to connect, a plurality of in vivo devices (for example wire spring devices as described hereinabove) to the external ventricular wall. In this case, each of such spring devices is attached by its lateral ends to the heart by means of a pair of cardiac anchors. Each individual device will then be able to exert forces on its anchor pair, in such a way as to increase the linear separation distance between each member of said pair. Consequently, when the anchors are brought closer to each other during systolic movement of the ventricle, the spring will be compressed, thus storing potential energy. During diastole, this potential energy will be released as kinetic energy, thereby exerting radial expansive and tangential forces on the external wall of the filling ventricle. For example, the spring may be connected to its anchor pair during end diastole (when the left ventricle is filled to its greatest extent). During systolic contraction of the heart muscle, such a spring will be placed in a compressed state, absorbing potential energy, which in turn will be transformed into kinetic energy during the diastolic phase, thereby assisting in the filling of the left ventricle.
A further advantage of the cardiac anchor element, as described hereinabove, is the fact that it permits the presently disclosed and claimed in vivo devices to be used with a range of different sized hearts, and/or in hearts with aberrant morphology. For example, if a coronary artery is found to be located in an unusual position which might otherwise interfere with the placement of an in vivo device of the invention, said device can be conveniently positioned away from said artery.
In addition to the anatomical flexibility which is acquired by the use of cardiac anchors as connecting elements, said anchors further permit the use of standard in vivo devices for treating ventricles that require either relatively small or relatively large diastolic-assisting forces to be exerted thereon. This is achieved by varying the number of cardiac anchors attached to the ventricular wall, thereby permitting flexibility in the number of spring devices that may be anchored therein. Due to the ease with which the anchors and spring devices may be added, it is possible to continuously monitor the effect of the device on ventricular pressure changes, and to alter the number of springs used in response to said monitoring.
Another advantage of the cardiac anchors described herein is the fact that, due to their small size and elongated shape, they may be easily inserted into an endoscopic delivery mechanism, thus enabling the insertion of the in vivo device of the invention by use of minimally-invasive methods.
A further, significant, advantage of the use of cardiac anchors as the connecting means for the in vivo devices of the present invention is related to the fact that said anchors may be attached to the ventricular wall in various different geometries. Typically, a line of such cardiac anchors may be arranged in a horizontally-disposed line, thus exerting tangential forces on the ventricular wall in a horizontal direction. However, if so required, the anchors may be so attached such that the device is orientated in other directions, thus permitting said device to exert tangential forces in said other directions, in accordance with individual clinical requirements.
The following non-limiting working example illustrates the insertion and use of the in vivo device of the present invention in a healthy mammalian subject.
A healthy sheep, (12 month, 31 Kg) was anesthetized (induction with xylazine+ketamine+valium; intubation and maintenance of anesthesia with enflurane; monitoring with ECG and saturation). A left thoracotomy incision was made and the chest was entered through the 5th intercostal space. The pericardium was opened widely to allow access to the left ventricle. A fluid filled catheter was inserted into the left ventricle via the left atrial appendage and mitral valve, to allow continuous left ventricular pressure measurement and data acquisition to a PC. The distance from the base to the apex was 5-6 cm.
After recording stable LV pressures, three segments of 8 mm diameter Dacron tube-grafts (3 cm-long each) were sutured to the LV free wall, using multiple interrupted stitches of 5/0 prolene. One segment was placed just left and parallel to the LAD coronary artery, avoiding a large diagonal branch; another segment was placed parallel to the FDA coronary artery (on its LV aspect) and the third segment was sutured midway between the two previous segments, ensuring that no damage was done to a large marginal branch of the CX coronary artery. The basal end of each graft was set approximately 1.5 cm from the AV groove, whereas the apical end was set approximately 1 cm from the apex. The heart was allowed to recover from the surgical manipulations and stable hemodynamics were achieved, with normal LV pressures.
Before the insertion of each device into the three Dacron tubes, stable LV pressures were recorded. Pressure data was recorded again after the placement of the device within its tubes (after stabilization), and repeated after device removal. Eight different wire spring devices were tested in separate experiments.
There was some patchy discoloration of the LV free wall after suturing of the Dacron tubes. However, this was transient and did not interfere with systolic blood pressure and parameters of cardiac output such as peripheral perfusion and urinary output.
Nine applications of 8 different devices according to the present invention, of various designs and elastic forces, were tested (device #1 was tested twice). The cumulative time in which different devices were attached to the LV surface was approximately 90 minutes, and the changing of devices required multiple manipulations on the Dacron tubes. Despite these interventions the tubes remained attached firmly throughout the experiment. It should be noted that systolic LV pressure was not impaired by any of the devices tested (data not shown). Clinical parameters of perfusion were also satisfactory throughout the experiment.
While the invention has been described in conjunction with specific embodiments and examples thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
154141 | Jan 2003 | IL | national |
Number | Date | Country | |
---|---|---|---|
Parent | 10543406 | Feb 2006 | US |
Child | 13211455 | US |