The present invention relates to an in-vivo device for imaging; more specifically, the invention relates to a device for dealing with backscatter or stray light in an in-vivo imaging device.
Autonomous in-vivo imaging devices, such as swallowable or ingestible capsules or other devices may move through a body lumen, imaging as they move along. In-vivo imaging may require in-vivo illumination, for example, using one or more illumination sources positioned inside the in-vivo imaging device, behind a viewing window of the device.
In such imaging devices backscatter and/or stray light from surfaces inside the device may often present a problem and reduce the information in the image obtained.
In order to avoid backscatter, designers of in-vivo imaging devices place, illumination source(s) and optical systems and/or imagers in specific positions relative to the viewing window, calculated to reduce backscatter to a minimum.
There is a need for a device and method that may avoid the damaging effects of backscatter and/or stray light while not being limited to specific design and positioning of illumination sources in an in vivo imaging device.
Embodiments of the present invention include an in-vivo imaging device having one or more illumination sources, an optical system and an imager all positioned behind a window. According to some embodiments the device includes a structure, typically a physical barrier, designed to block light from the illumination source from reaching a specific known spot on the window. According to embodiments of the invention a known spot or area is the spot or area from which internal light reflected off the window will be directed to the light receiving means, such as the optical system or imager. According to some embodiments the optical system may include an iris and the known spot is the spot on the window from which internally reflected light will be directed to the iris. The known spot or area may be calculated for each device, taking into account the positioning of the illumination sources relative to other components of the optical system and/or relative to the viewing window.
There is thus provided, according to embodiments of the invention, a device and method for obtaining images that are essentially free of stray light or backscatter.
According to embodiments of the invention a barrier or backscatter blocker in the in vivo imaging device is positioned so as to prevent light from an illumination source internal to an in vivo imaging device from reaching a spot on the viewing window of the in vivo imaging device from which such light will be internally reflected to the imager of the in vivo imaging device.
A capsule viewing window may be dome-shaped, for example an optical dome or cover and may cover an end of the device, protecting optical elements such as illumination source(s), imager(s) and a lens holder, which may be behind the dome.
In some embodiments, a backscatter blocker may be formed and/or shaped such that it blocks stray light from the illumination sources from directly reaching and/or flooding the imager(s).
In accordance with some embodiments there is provided an in vivo imaging device comprising:
a viewing window behind which are positioned;
an illumination source;
an imager; and
a blocking element positioned to block light from the illumination source from reaching a pre-calculated point on an internal surface of the viewing window.
In accordance with some embodiments, the pre-calculated point is defined by a point of reflection on the internal surface.
In accordance with some embodiments, the point of reflection is defined on the internal surface by light from the illumination source reflected to the imager in the absence of the blocking element.
In accordance with some embodiments, the blocking element is located between the illumination source and the point of reflection.
In accordance with some embodiments, the in vivo imaging device has a longitudinal axis parallel to the blocking element.
In accordance with some embodiments, the longitudinal axis is perpendicular to the blocking element.
In accordance with some embodiments, the in vivo imaging device comprises a lens holder and the blocking element is located on the lens holder.
In accordance with some embodiments, the blocking element is in close proximity to the illumination sources.
In accordance with some embodiments, the blocking element and the lens holder form a single integral unit.
In accordance with some embodiments, the blocking element is distal the imager.
In accordance with some embodiments, the blocking element is proximal the imager.
The subject matter regarded as the invention is particularly pointed out and distinctly claimed in the concluding portion of the specification. The invention, however, both as to organization and method of operation, together with objects, features and advantages thereof, may best be understood by reference to the following detailed description when read with the accompanied drawings in which:
It will be appreciated that for simplicity and clarity of illustration, elements shown in the figures have not necessarily been drawn to scale. For example, the dimensions of some of the elements may be exaggerated relative to other elements for clarity. Further, where considered appropriate, reference numerals may be repeated among the figures to indicate corresponding or analogous elements.
The following description is presented to enable one of ordinary skill in the art to make and use the invention as provided in the context of a particular application and its requirements. Various modifications to the described embodiments will be apparent to those with skill in the art, and the general principles defined herein may be applied to other embodiments. Therefore, the present invention is not intended to be limited to the particular embodiments shown and described, but is to be accorded the widest scope consistent with the principles and novel features herein disclosed. In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be understood by those skilled in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, and components have not been described in detail so as not to obscure the present invention.
It will be appreciated that the terms “receiving unit” and “imaging unit” relate to any unit suitable for receiving, processing or further transmitting illumination rays remitted from a target or data derived from these rays. For example, an imager or camera, such as a Charge Coupled Device (CCD) camera or imager or a Complementary Metal Oxide Semiconductor (CMOS) imager or camera may be used; other suitable receiving or imaging units may be used. According to some embodiments the term “receiving unit” may include an optical element suitable for receiving, processing or further transmitting illumination rays remitted from a target. An optical element may include for example, a lens.
A system according to some embodiments of the invention may include an in-vivo sensing device transmitting information (e.g., images and/or other data) to a data receiver and/or recorder possibly close to or worn on a subject. A data receiver and/or recorder may of course take other suitable configurations. The data receiver and/or recorder may transfer the received information to a larger computing device, such as a workstation or personal computer, where the data may be further analyzed, stored, and/or displayed to a user. In other embodiments, each of the various components need not be required and or may be housed in alternate configurations; for example, an internal device may transmit or otherwise transfer (e.g., by wire) information directly to a viewing or processing system. In another example, the data receiver or workstation may transmit or otherwise transfer information to the in-vivo device. While in one embodiment the device may be an autonomous capsule, other configurations, such as an endoscope or trocar may be used.
It is noted that some embodiments of the present invention may be directed to an autonomous, typically ingestible in-vivo device. Other embodiments need not be ingestible. Devices or systems according to embodiments of the present invention may be similar to embodiments described in US application publication number 2001/0035902 published on 1 Nov. 2001 and/or in U.S. Pat. No. 5,604,531, each of which are assigned to the common assignee of the present invention and each of which are hereby fully incorporated herein by reference. Furthermore, a receiving and/or display system suitable for use with embodiments of the present invention may also be similar to embodiments described in US publication number 2001/0035902 and/or in U.S. Pat. No. 5,604,531. Devices and systems as described herein may have other configurations and other sets of components.
Reference is made to
Device 40 may include a transceiver 51 that may be capable of receiving wireless signals and transmitting wireless signals; in some embodiments transceiver 51 may be a transmitter only and only transmission may occur. According to some embodiments transceiver 51 may be used instead of transmitter 41. Transceiver 51 may also have other functions. In some embodiments, transceiver 51 and a processor 47 may be included in a single integrated circuit. In some embodiments, antenna 44 may be used for both the receipt and transmission of wireless signals by transceiver 51. In other embodiments there may be more than one antenna. In some embodiments, device 40 may transmit but not receive signals.
According to some embodiments, imager 46 may be fixed or otherwise attached to a substrate such as, for example, a circuit board 64 or directly positioned onto a substrate 56. According to another embodiment of the invention, the various components of the device 40 may be disposed on a circuit board including rigid and flexible portions; preferably the components are arranged in a stacked vertical fashion. In other embodiments, circuit board 64 may be further attached to a substrate 56, which may for example support illumination source(s) 42 and which may define a viewing direction 60 of device 40.
Window 54 may form space 52, so that illumination source(s) 42, imager 46, and/or lens holder 48 may be recessed behind window 54. In one embodiment, an imaging device may include more than one image sensor. For example, an additional optical system may be included in a direction opposite viewing direction 60, to form for example a double ended viewing device. Other configurations for including more than one imager 46 in device 40 and/or more than one viewing direction may be implemented. Device 40, and other devices disclosed herein, may be used to view lumens such as the gastrointestinal tract in a natural state and/or in an unmodified form, not using or requiring techniques such as insufflation.
Typically, located outside the patient's body in one or more locations may be an image receiver 12, a data processor 14, and an image monitor 18. Image receiver 12 may include an image receiver storage unit 16. Data processor 14 may include a processor and/or CPU 19 and a storage unit 21.
The window 54 may be, for example part of a housing 62 of the device 40 and may preferably be made of plastic, glass, ceramic or other transparent material. Typically, the in vivo area to be viewed may be illuminated and viewed through the window 54, and thus components such as the imager 46 and illumination elements 42 may be behind the window 54, within the device 40.
Main body or housing 62 may be in some embodiments the tube of an endoscope or trocar, and thus may extend further rearward than may be depicted in the device 40 of
Device 40 may typically be or may typically include an autonomous swallowable capsule, which may be self contained, but device 40 may have other shapes and need not be swallowable or autonomous (e.g., device 40 may have other configurations, such as that of an endoscope or trocar). Device 40 may be in the form of a capsule or other unit where all the components may be substantially contained within a container, housing, or shell, and where device 40 may not require any wires or cables to, for example, receive power or transmit information and may be autonomous. In one embodiment, all of the components may be sealed within the device body (the body or shell may include more than one piece); for example, an imager, illumination units, power units, and transmitting and control units, may all be sealed within the device body. Device 40 may communicate with an external receiving and display system to provide display of data, control, or other functions. For example, power may be provided by an internal battery or a wireless receiving system. Other embodiments may have other configurations and capabilities. For example, components may be distributed over multiple sites or units. Control information may be received from an external source.
Transmitter 41 may include control capability, for example controlling the various operations of device 40, although control capability, or one or more aspects of control may be included in a separate component. In some embodiments of the present invention, transmitter 41 may typically be an ASIC (application specific integrated circuit), but may be of other constructions; for example, transmitter 41 may be a processor executing instructions. Device 40 may include a processing unit separate from transmitter 41 that may, for example, contain or process instructions.
Typically, located outside the patient's body in one or more locations may be an image receiver 12, a data processor 14, and an image monitor 18. Image receiver 12 may typically include an antenna or antenna array and an image receiver storage unit 16. Data processor 14 may include a processor 19 and a storage unit 21. Image monitor 18 may display, inter alia, images recorded by, for example, device 40. Typically, data processor 14 and monitor 18 may be part of a personal computer or workstation, which may include standard components such as a processor 19, a memory, a disk drive, and input-output devices, although alternate configurations are possible. Data processor 14 may typically, as part of its functionality, act as a controller controlling the display of the images. Image monitor 18 may typically be a conventional video display, but may, in addition, be any other device capable of providing images or other data and may be of any size monitor including large projection size monitors. The image monitor 18 may present the image data, typically in the form of still and/or a stream of image frames, and in addition may present other information. In an exemplary embodiment, the various categories of information may be displayed in windows. Other displaying formats may be used. In other embodiments of the present invention, one or more of the components included in receiver 12 and data processor and/or workstation 14 may be packaged in alternate configuration and may be or may be included in a portable or stationary device, package, and/or housing.
In operation, imager 46 may capture images and may send data representing the images to transmitter 41, which may transmit data to image receiver 12 using, for example, electromagnetic radio waves. Image receiver 12 may transfer the image data to image receiver storage unit 16. After a certain period of time of data collection, the image data stored in storage unit 16 may be transferred to the data processor 14 or the data processor storage unit 21. For example, the image receiver 12 or image receiver storage unit 16 may be taken off the patient's body and may be connected to a personal computer or workstation that may include the data processor 14 via a standard data link, e.g., a serial, parallel, USB, or wireless interface. According to one embodiment the image data may then be transferred from the image receiver storage unit 16 to data processor storage unit 21. Data processor 14, including possibly dedicated software, may analyze the data and provide the analyzed data to the image monitor 18, where a user views the image data. Other configurations allow for real time viewing. Further, other methods of recording, transmitting, storing and viewing images recorded by imager 46 may be used.
Reference is now made to
In some embodiments of the present invention, imager 46 a lens holder 48 and/or lens 49 may be positioned at any location within the optical system 10, for example according to a manufacturer's instructions or a user such as a physician requirements, and employing different imaging devices with different optical design without the hindrance of backscatter interference.
The course of light rays emitted from illumination source(s) 42 will be followed as an example of the behavior of illumination rays in the optical system 10 according to some embodiment of the present invention. Light 256 may be emitted from an illumination source 42 for illuminating target 15. A percent of the light (represented by ray 217) may be internally reflected from the window 54 internal surface 54′ and may be propagated to, for example, the lens 49. A percent of the light 256 (represented by ray 258) may be incident on target 15 (e.g., an object or area in-vivo) and may be reflected or scattered from target 15 and received through aperture 48′ and/or lens 49 by imager 46.
According to some embodiments of the present invention it is possible to avoid the backscatter created from light reflecting, for example from the window 54 internal surface 54′ to the imager and lenses (represented by ray 217) by positioning blockers in different areas, such as, for example, on a lens holder, in the vicinity of the aperture 48′. For example, a blocker, such as a backscatter blocker 210, may be positioned, for example, above lens 49 so that it will block light rays, such as 217 that are expected to be incident on point 270 on window 54, from which point it is calculated that rays will be internally reflected and will reach the lens 49. That is, point 270 forms a geometrical point of reflection for a light ray incident on point 270 from illumination source 42 and reflected to the imager 46 (via aperture 48′ and lens 49), in the absence of backscatter blocker 210. Since the illumination source(s) 42 may be extended illuminations source(s), that is, non pin point illumination source(s), the point of reflection 270 may be an area, or region, of reflection. In general, the term “area of reflection” will be understood to include the limiting case of “point of reflection”. The longitudinal axis A may be perpendicular to backscatter blocker 210.
In actuality, the window 54 is a three dimensional structure. A schematic three dimensional representation of the optical system 10 of
As shown in
Reference is now made to
Blocking reflecting light rays, such as light ray 310′, from reaching specific areas in an in-vivo imaging device such as the optical dome 54 or housing 362 of device 40, will may not typically visibly affect the quantity or quality of light in the field of view (FOV) of an in-vivo imaging device such as the FOV 390 of device 40. This is due to the fact that a reflected light rays, such as light ray 310 have an obtuse angle in relation to a longitudinal axis L, thus, when not blocked they typically illuminate an area which is usually outside the FOV 390 of an in-vivo imaging device. For example, as shown in
Reference is now made to
The lower backscatter blocker with openings 473 may be manufactured and or fabricated, with a high degree of accuracy, as may be required, using well-known methods in the art, for example, etching and laser-cutting. Other suitable manufacturing processes may be used as well.
Reference is now made to
According to some embodiments of the present invention, the backscatter blocker 470 may be made from any suitable plastic, e.g. ABS, and manufactured by, for example injection molding or other suitable methods. In some embodiments of the present invention, backscatter blocker 470 may be non- transparent so that light may not penetrate through the backscatter blocker 470. Other suitable materials or methods may be used to manufacture backscatter blocker 470.
Reference is now made to
A method for blocking stray light in an in-vivo imaging device according to some embodiment of the present invention is shown in
It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Rather the scope of the present invention is defined only by the claims which follow.
This application is a continuation in part of U.S. patent application Ser. No. 11/319,769, filed on Dec. 29, 2006 and entitled In-Vivo Imaging Optical Device and Method, which is incorporated in its entirety herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3683890 | Beal | Aug 1972 | A |
3971362 | Pope et al. | Jul 1976 | A |
4178735 | Jackson | Dec 1979 | A |
4239040 | Hosoya et al. | Dec 1980 | A |
4262632 | Hanton et al. | Apr 1981 | A |
4278077 | Mizumoto | Jul 1981 | A |
4439197 | Honda et al. | Mar 1984 | A |
4646724 | Sato et al. | Mar 1987 | A |
4689621 | Kleinberg | Aug 1987 | A |
4803992 | Lemelson | Feb 1989 | A |
4819620 | Okutsu | Apr 1989 | A |
4844076 | Lesho et al. | Jul 1989 | A |
4936823 | Colvin et al. | Jun 1990 | A |
4940997 | Hamlin et al. | Jul 1990 | A |
5042486 | Pfeiler et al. | Aug 1991 | A |
5081041 | Yafuso et al. | Jan 1992 | A |
5109870 | Silny et al. | May 1992 | A |
5187572 | Nakamura et al. | Feb 1993 | A |
5193525 | Silverstein et al. | Mar 1993 | A |
5211165 | Dumoulin et al. | May 1993 | A |
5267033 | Hoshino | Nov 1993 | A |
5279607 | Schentag et al. | Jan 1994 | A |
5330427 | Weissenburger | Jul 1994 | A |
5368027 | Lubbers et al. | Nov 1994 | A |
5395366 | D'Andrea et al. | Mar 1995 | A |
5398670 | Ortiz et al. | Mar 1995 | A |
5429132 | Guy et al. | Jul 1995 | A |
5479935 | Essen-Moller | Jan 1996 | A |
5490969 | Bewlay et al. | Feb 1996 | A |
5495114 | Adair | Feb 1996 | A |
5549109 | Samson et al. | Aug 1996 | A |
5558640 | Pfeiler et al. | Sep 1996 | A |
5604531 | Iddan et al. | Feb 1997 | A |
5697384 | Miyawaki et al. | Dec 1997 | A |
5800350 | Coppleson et al. | Sep 1998 | A |
5819736 | Avny et al. | Oct 1998 | A |
5837196 | Pinkel et al. | Nov 1998 | A |
5892630 | Broome | Apr 1999 | A |
5913820 | Bladen et al. | Jun 1999 | A |
5929901 | Adair et al. | Jul 1999 | A |
5986693 | Adair et al. | Nov 1999 | A |
5993378 | Lemelson | Nov 1999 | A |
6043839 | Adair et al. | Mar 2000 | A |
6095970 | Tsuneo et al. | Aug 2000 | A |
6099482 | Brune et al. | Aug 2000 | A |
6149581 | Klingenstein | Nov 2000 | A |
6174291 | McMahon | Jan 2001 | B1 |
6228048 | Robbins | May 2001 | B1 |
6233476 | Stormmer et al. | May 2001 | B1 |
6240312 | Alfano et al. | May 2001 | B1 |
6285897 | Kilcoyne et al. | Sep 2001 | B1 |
6324418 | Crowley et al. | Nov 2001 | B1 |
6369812 | Lyriboz et al. | Apr 2002 | B1 |
6395562 | Hammock et al. | May 2002 | B1 |
6428470 | Thompson | Aug 2002 | B1 |
6475145 | Baylor | Nov 2002 | B1 |
6488694 | Lau et al. | Dec 2002 | B1 |
6632175 | Marshall | Oct 2003 | B1 |
6692430 | Adler | Feb 2004 | B2 |
6836377 | Kislev et al. | Dec 2004 | B1 |
7009634 | Iddan et al. | Mar 2006 | B2 |
7170677 | Bendall et al. | Jan 2007 | B1 |
7347817 | Glukhovsky et al. | Mar 2008 | B2 |
20010017649 | Yaron | Aug 2001 | A1 |
20010025135 | Naito et al. | Sep 2001 | A1 |
20010035902 | Iddan et al. | Nov 2001 | A1 |
20010051766 | Gazdzinski | Dec 2001 | A1 |
20020015952 | Anderson et al. | Feb 2002 | A1 |
20020103417 | Gazdzinski | Aug 2002 | A1 |
20020146368 | Meron et al. | Oct 2002 | A1 |
20020158976 | Vni et al. | Oct 2002 | A1 |
20020173718 | Frisch et al. | Nov 2002 | A1 |
20020177779 | Adler et al. | Nov 2002 | A1 |
20030018280 | Lewkowicz et al. | Jan 2003 | A1 |
20030020810 | Takizawa et al. | Jan 2003 | A1 |
20030023150 | Yokoi et al. | Jan 2003 | A1 |
20030028078 | Glukhovsky | Feb 2003 | A1 |
20030045790 | Lewkowicz et al. | Mar 2003 | A1 |
20030114742 | Lewkowicz et al. | Jun 2003 | A1 |
20030130562 | Barbato et al. | Jul 2003 | A1 |
20030167000 | Mullick et al. | Sep 2003 | A1 |
20030171648 | Yokoi et al. | Sep 2003 | A1 |
20030171649 | Yokoi et al. | Sep 2003 | A1 |
20030171652 | Yokoi et al. | Sep 2003 | A1 |
20030195415 | Iddan | Oct 2003 | A1 |
20030208107 | Refael | Nov 2003 | A1 |
20030214579 | Iddan | Nov 2003 | A1 |
20030214580 | Iddan | Nov 2003 | A1 |
20030216622 | Meron et al. | Nov 2003 | A1 |
20030227547 | Iddan | Dec 2003 | A1 |
20040027459 | Segawa et al. | Feb 2004 | A1 |
20040254455 | Iddan et al. | Dec 2004 | A1 |
20050124858 | Matsuzawa et al. | Jun 2005 | A1 |
20050259098 | Trisnadi et al. | Nov 2005 | A1 |
20060264709 | Fujimori et al. | Nov 2006 | A1 |
20060287580 | Jo et al. | Dec 2006 | A1 |
20070191683 | Fujimori | Aug 2007 | A1 |
Number | Date | Country |
---|---|---|
2929429 | Feb 1980 | DE |
34 40 177 | Jun 1986 | DE |
1 263 055 | Dec 2002 | EP |
2 688 997 | Oct 1993 | FR |
126727 | Oct 1998 | IL |
143258 | May 2001 | IL |
143259 | May 2001 | IL |
5745833 | Mar 1982 | JP |
4109927 | Apr 1992 | JP |
4144533 | May 1992 | JP |
5015515 | Jan 1993 | JP |
6114037 | Apr 1994 | JP |
6285044 | Oct 1994 | JP |
7111985 | May 1995 | JP |
7289504 | Nov 1995 | JP |
2000342522 | Dec 2000 | JP |
2001091860 | Apr 2001 | JP |
2001095755 | Apr 2001 | JP |
2001095756 | Apr 2001 | JP |
2001104241 | Apr 2001 | JP |
2001104242 | Apr 2001 | JP |
2001104243 | Apr 2001 | JP |
2001104244 | Apr 2001 | JP |
2001104287 | Apr 2001 | JP |
2001112709 | Apr 2001 | JP |
2001112710 | Apr 2001 | JP |
2001112740 | Apr 2001 | JP |
2001137182 | May 2001 | JP |
2001224553 | May 2001 | JP |
2001224551 | Aug 2001 | JP |
2001231744 | Aug 2001 | JP |
2001245844 | Sep 2001 | JP |
2000342524 | Jun 2002 | JP |
2000342525 | Jun 2002 | JP |
2002010990 | Nov 2002 | JP |
2004-121843 | Apr 2004 | JP |
2004-129948 | Apr 2004 | JP |
2005-193053 | Jul 2005 | JP |
2003-275171 | Sep 2009 | JP |
WO 9932028 | Jul 1999 | WO |
WO 0076391 | Dec 2000 | WO |
WO 0108548 | Feb 2001 | WO |
WO 0110291 | Feb 2001 | WO |
WO 0150941 | Jul 2001 | WO |
WO 0165995 | Sep 2001 | WO |
WO 0169212 | Sep 2001 | WO |
WO 02054932 | Jul 2002 | WO |
WO 02055984 | Jul 2002 | WO |
WO 02067593 | Aug 2002 | WO |
WO 02094337 | Nov 2002 | WO |
WO 03003706 | Jan 2003 | WO |
WO 03011103 | Feb 2003 | WO |
WO 2004028336 | Apr 2004 | WO |
WO 2004035106 | Apr 2004 | WO |
WO 2004045395 | Jun 2004 | WO |
WO 2005053517 | Jun 2005 | WO |
Entry |
---|
U.S. Appl. No. 09/807,892, filed Jun. 6, 2001, Meron et al. |
U.S. Appl. No. 10/166,025, filed Jun. 11, 2002, Lewkowicz et al. |
U.S. Appl. No. 10/213,345, filed Aug. 7, 2002, Glukhovsky. |
U.S. Appl. No. 10/200,548, filed Jul. 23, 2002, Glukhovsky et al. |
U.S. Appl. No. 10/724,109, filed Dec. 1, 2003, Glukhovsky et al. |
U.S. Appl. No. 60/297,761, filed Jun. 14, 2001, Lewkowicz et al. |
U.S. Appl. No. 60/379,735, filed May 14, 2002, Iddan. |
U.S. Appl. No. 60/379,752, filed May 14, 2002, Iddan. |
U.S. Appl. No. 60/414,338, filed Sep. 30, 2002, Iddan. |
BBC News Online—Pill camera to ‘broadcast from the gut’, Feb. 21, 2000, www.news.bbc.co.uk, printed Oct. 22, 2002. |
Bio-Medical Telemetry: Sensing and Transmitting Biological Information from Animals and Man, R. Stuart Mackay, John Wiley and Sons, New York, 1970, pp. 244-245. |
Evaluation of the heidelberg pH capsule: Method of Tubeless Gastric Analysis, Yarbrough, III et al., The American Journal of Surgery, vol. 117, Feb. 1969, pp. 185-192. |
Heidelberger Kapsel—ein Kleinstsender fur die pH-Messung im Magen, Lange, et al., Telefunken-Zeitung, Jg 36 (1963) Heft 5, pp. 265-270. |
“In Pursuit of the Ultimate Lamp”, Craford et al., Scientific American, Feb. 2001. |
International Search Report of PCT/IL02/00391, dated May 19, 2003. |
International Search Report for PCT/IL99/0554 dated Apr. 4 2000. |
Katgraber F, Glenewinkel F, Fischler S, Int J. Legal Med 1998; 111(3) 154-6. |
Manual of Photogrammetry, Thompson (Ed.), Third Edition, Volume Two, Copyright 1944, 1952, 1966 by the American Society of Photogrammetry. |
“New Smart Plastic has Good Memory” —Turke, European Medical Device Manufacturer, devicelink.com. |
“Robots for the Future” —Shin-ichi, et al. http://jin.jcic.or.jp/nipponaia13/sp05 html. printed Nov. 29, 2001. |
www.pedinc.com Personal electronic devices, © 1997. |
www.rfnorkia.com—NORIKA3, printed on Jan. 1, 2002. |
Supplementary Partial European Search Report, Mar. 9, 2004. |
“The Heidelburg pH Capsule System Telemetric Fasting Gastric Analysis”, Heidelburg International. Incorporated. |
“The Radio Pill”, Rowlands, et al., British Communications and Electronics, Aug. 1960, pp. 598-601. |
Video Camera to “TAKE” —RF System Lab, Dec. 25, 2001. |
Wang, et al., “Integrated Micro-Instrumentation for Dynamic Monitoring of the Gastro-Intestinal Tract”, Presented at IEEE Instrumentation and Measurement Technology Conference, May 2002, Anchorage, Ak, USA, www.see.ed.ac.uk/Naa.publications.html. |
“Wellesley Company Sends Body Montiors into Space” —Crum, Boston Business Journal, 1998. |
“Wireless Transmission of a Color Television Moving Image from the Stomach using a Miniature CCD Camera, Light Source and Microwave Transmitter. ” Swain CP, Gong F, Mills TN. Gastrointest Endosc 1997;45:AB40, vol. 45, No. 4, 1997. |
www.jason.net/tinycam.htm, © 2001, printed Dec. 19, 2001. |
www.middleeasthealthmag.com/article2.htm—Review proves the value of computers, © 2001, printed Nov. 29, 2001. |
International Search Report of Application No. PCT/IL07/01553 issued on Jun. 24, 2008. |
European Search Report, issue Jun. 16, 2010, for European Patent Application No. 06126922.1. |
International Search Report Application No. PCT/IL07/01553 Issued on Jun. 24, 2008. |
Office Action of U.S. Appl. No. 11/319,769 Mailed on Jun. 18, 2008. |
Office Action of U.S. Appl. No. 10/437,436 Mailed on Mar. 16, 2009. |
Office Action issued for Japanese Application No. 2006-357455, dated Feb. 27, 2012. |
Number | Date | Country | |
---|---|---|---|
20070232852 A1 | Oct 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11319769 | Dec 2005 | US |
Child | 11645787 | US |