The present disclosure is generally related to acoustic signal processing and analysis, and more particularly is related to in-wall multi-bounce material property detection and acoustic signal amplification.
Pipes and pipelines are commonly used in a variety of industries to transport fluids. For instance, water pipes transport potable and sewer water in urban areas, pipes are used to transport chemicals within factories, and pipelines are used within the oil and gas industry for transporting petroleum products within refineries or between various locations. To monitor the fluid within the pipes and pipeline, conventional technologies such as pressure gauges and various sensors are commonly used. More recently, acoustic-based sensors have been used to monitor the fluid or determine characteristics of the fluid.
For instance, acoustic signals are commonly used in assessing fluids and other materials within containers, such as containers and pipelines used to store oil and gas within the petroleum industry. There are many reasons to use acoustic waves for measurements of fluids or materials in a container or other type of enclosure. For instance, some containers are not easily accessible, such as underground storage tanks and large, multi-story fuel storage containers. Acoustic waves for measurements are also especially useful for metal enclosures and other non-transparent enclosures that encapsulate potentially hazardous materials, such as oil, gas, fuel, and various chemicals at different temperatures. These may be prevalent in processing plants, nuclear power stations, power grid transformers, and refineries.
In use, an acoustic sensor or transducer is positioned proximate to the container and an acoustic signal is transmitted into the container sidewall. The coupling of the transducer to the container is usually designed to minimize the impact of mounting the transducer to the container. When the signal crosses the sidewall of the container from the outside of the container to the inside, it loses significant amounts of energy, especially when the signal reaches the impedance barrier at the inside surface of the container sidewall. The loss of signal energy at the acoustic impedance barrier inside surface of the container sidewall is determined by one or more properties of the fluid material inside the container, as well as the properties of the material forming the sidewall of the container, and the temperature. For instance, in case of dense liquids, like crude oil, almost 80% to 90% of the energy of the acoustic wave is lost crossing the impedance barrier between crude oil and the sidewall of the container. Less dense liquids and gasses are prone to blocking even mode energy at the impedance barrier on the inside of the container.
In the case of liquids flowing through a pipeline, the fluid materials being transported often have a noticeably different acoustic impedance from the material used to form the pipeline wall, often a metal material, such as cast iron, steel, aluminum, or similar materials. This difference in acoustic impedance leads to significant reflection of an acoustic or ultrasound wave of an acoustic sensor which crosses this impedance barrier, and as a result, the strength of the transmitted signal into fluid can be lower than desired. With petroleum products specifically, this problem occurs due to petroleum paraffin wax deposits forming on the inside of the pipeline wall. Similarly, with gasses flowing through a pipe, the impedance barrier on the inside surface of the pipe wall can reflect most of the signal back into the pipe wall, thereby preventing accurate signal transmission.
Thus, a heretofore unaddressed need exists in the industry to address the aforementioned deficiencies and inadequacies.
Embodiments of the present disclosure provide an apparatus, system, and related methods for multi-bounce material property detection. Briefly described, in architecture, one embodiment of the system, among others, can be implemented as follows. The apparatus has a first acoustic transducer positioned on an exterior sidewall of a pipe carrying a quantity of fluid therein. An acoustic signal is transmitted by the first acoustic transducer into the sidewall of the pipe from an exterior surface thereof. At least a portion of the acoustic signal reflects off an interior surface of the sidewall of the pipe. A second acoustic transducer is positioned on the exterior sidewall of the pipe. The reflected acoustic signal is received at the second acoustic transducer. The reflected acoustic signal provides an indication of a material property of the pipe or a material within the pipe.
The present disclosure can also be viewed as providing methods for multi-bounce material property detection. In this regard, one embodiment of such a method, among others, can be broadly summarized by the following steps: positioning a first acoustic transducer on an exterior sidewall of a pipe carrying a quantity of fluid therein; transmitting an acoustic signal with the first acoustic transducer into the sidewall of the pipe from an exterior surface thereof; reflecting at least a portion of the acoustic signal off an interior surface of the sidewall of the pipe; positioning a second acoustic transducer on the exterior sidewall of the pipe; and receiving the reflected acoustic signal at the second acoustic transducer, wherein the reflected acoustic signal provides an indication of a material property of the pipe or a material within the pipe.
The present disclosure can also be viewed as providing an apparatus for in-wall, multi-bounce acoustic signal amplification. Briefly described, in architecture, one embodiment of the apparatus, among others, can be implemented as follows. A vessel contains a quantity of material. First and second acoustic transducers are positioned on a sidewall of the vessel, wherein the first acoustic transducer is positioned at a different location along the sidewall than the second acoustic transducer. A first acoustic signal is transmitted into the sidewall of the vessel from the first acoustic transducer, wherein the first acoustic signal reflects between an interior surface of the sidewall and an exterior surface of the sidewall. A second acoustic signal is transmitted into the sidewall of the vessel from the second acoustic transducer, wherein the second acoustic signal is phase synchronized with the first acoustic signal, and wherein the second acoustic signal amplifies the first acoustic signal.
The present disclosure can also be viewed as providing methods for in-wall, multi-bounce acoustic signal amplification. In this regard, one embodiment of such a method, among others, can be broadly summarized by the following steps: providing a vessel containing a quantity of material; positioning first and second acoustic transducers on a sidewall of the vessel, wherein the first acoustic transducer is positioned at a different location along the sidewall than the second acoustic transducer; transmitting a first acoustic signal into the sidewall of the vessel from the first acoustic transducer; reflecting the first acoustic signal between an interior surface of the sidewall and an exterior surface of the sidewall; phase synchronizing a second acoustic signal with the first acoustic signal; and transmitting the second acoustic signal into the sidewall of the vessel from the second acoustic transducer, whereby the second acoustic signal amplifies the first acoustic signal.
Other systems, methods, features, and advantages of the present disclosure will be or become apparent to one with skill in the art upon examination of the following drawings and detailed description. It is intended that all such additional systems, methods, features, and advantages be included within this description, be within the scope of the present disclosure, and be protected by the accompanying claims.
Many aspects of the disclosure can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the present disclosure. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
To improve over the shortcomings of the conventional devices, as discussed in the Background, the subject disclosure is directed to an apparatus, system, and related methods for multi-bounce material property detection which can be used to analyze, assess, or otherwise determine the material property state of pipes, pipelines, and other structures for transporting and/or holding fluids, such as holding vessels, containers, or the like. The subject disclosure is also directed to an apparatus, system, and related methods for using multi-bounce techniques for acoustic signal amplification, which can provide improvements and benefits when acoustic signal sensing techniques are used with dense materials and liquids, such as crude oil.
Improved multi-bounce material property detection can provide substantial benefits over the current use of acoustic signals for material detection. To this end, with reference first to
The first acoustic transducer 20 or acoustic sensor transmits an acoustic signal 50 into the sidewall 44 of the pipe 40 from the exterior surface 42 thereof. This acoustic signal 50 may be a sheer wave which travels through the sidewall 44 of the pipe 40 and reflects multiple times from both surfaces of the pipe 40 sidewall 44, e.g., at the interfaces of the pipe, from and between the exterior surface 42 of the sidewall 44 and the interface with the air 16, and from the interior surface 46 of the sidewall 44 and the interface with the fluid 12. A second acoustic transducer 30 is positioned on the exterior surface 42 of the sidewall 44 of the pipe 40 and it receives the reflected acoustic signal 50A. The reflections from the inner surface 46 of the sidewall 44 are due to a lower impedance of material, namely, the wall material of the pipe 40, commonly cast iron or a similar metal, versus the material of the fluid 12 or gas within the pipe 40 at that interface. Similarly, the reflections of the reflected acoustic signal 50A from the outside surface 42 of the pipe 40 relative to the air 16 or atmosphere exterior of the pipe 40 are due to an impedance difference therebetween at that interface.
When the acoustic signal 50 is transmitted, the waves of the acoustic signal 50 experience phase change when reflecting from a lower impedance barrier on inside surface 46 of the sidewall 44, but they do not change phase when reflecting from exterior surface 42 abutting the outside air 16. This phase change can be determined upon receipt of the reflected acoustic signal 50A at the second acoustic transducer 30, and when the phase change is identified by the second acoustic transducer 30 (or another transducer or component of the apparatus 10), it is possible to determine whether the number of reflected signal 50A bounces within the sidewall 44 of the pipe 40 is an odd number or an even number. At the exterior surface 42 abutting the air 16, the reflection coefficient of the boundary may be determined by measuring the ambient temperature, humidity, and barometric pressure of air 16. These measurements may be used to calculate the reflection coefficient at this boundary.
It is noted that acoustic waves traveling in a solid material experience a phase reversal, which is a 180° change, when they reflect from a boundary with air. Acoustic waves traveling in air do not experience a phase change when they reflect from a solid material, but they do exhibit a 180° change when reflecting from a region of that material, or another material, with lower acoustic impedance. With the apparatus 10, this phase reversal is the same for the air and a liquid material 12 within the container, such that alter two reflections, the acoustic wave may be exactly in its original position.
At the interface between the inner surface 46 of the pipe 40 sidewall 44 and the fluid 12 within the pipe 40, it is noted that multiple signal reflections 50A of the original signal 50, which may be understood or referred to as bounces or echoes, may act to increase the effect from the impedance of the material in the pipe 40. The second transducer 30 is placed at a predetermined location on the exterior surface 42 of the pipe 40 to receive the reflected signal 50A. For example, the distance (D) between the first and second acoustic transducers 20, 30, and/or a location of the second transducer 30 irrespective of the first transducer 20, may be determined by the configuration of the apparatus 10. The second acoustic transducer 30 may also be moveable along the pipe 40, such as rotatable, movable in a linear direction, movable tangentially, or movable in another direction. With the position of the second transducer 30 known, it is possible to measure the properties of the fluid or gas material 12 inside of the pipe 40, as well as the properties of the sidewall 44 of the pipe 40, including thickness and detonation at the same time. Accordingly, this approach enables the measurement of a small signal difference of the reflected signal 50A, which can be used to determine, assess, or analyze the material properties of the pipe 40 or the fluid therein.
As a further illustration of the apparatus 10, in
The apparatus 10 may offer substantial benefits with materials within pipes 40 which enable a discernable difference in impedance barrier between the pipe 40 sidewall 44 and the material within the pipe. As an example, materials that fall in this category may be gasses where only approximately 0.01% of the acoustic signal 50 is penetrating the impedance barrier of the inside surface 46 of the sidewall 44 of the pipe 40. In the case of oil and gas pipelines 40, it has been found that with paraffin wax, a common material which creates deposits within the pipe 40, approximately 0.00002% of the longitudinal signal or approximately 0.00004% of the shear signal penetrates the sidewall 44 and transfers into the material 12 or deposits 14 within the pipe 40. The rest of the acoustic signal 50 is reflected back into the sidewall 44. It is possible to increase the signal 50 strength substantially, such as by 10 times or more as discussed relative to
Using a phase shift and frequency change to create a resonant wave, it is possible to measure the size of the sidewall 44 at the same time the apparatus is measuring the attenuation of the signal 50, including the reflected signal 50A from the interior surface 46 of the sidewall 44. The measurement of the sidewall 44 of the pipe 40 may be achieved using a first bounce or echo from the outside surface 42 of the sidewall 44 using longitudinal waves transmitted from a density transducer 60, as depicted in
It is noted that both the sending acoustic transducer 20 and the second transducer 30 which receives the reflected signal 50A are connected, such as through a wireless or wired connection 22, such that the two transducers 20, 30 are synchronized to measure the time of flight between the two locations of the transducers 20, 30. The delay in the synchronization between the transducers 20, 30 may be used to correct the time of flight computations. The connection 22 between the transducers 20, 30 may be part of a larger communication network which includes multiple pairs of transducers 20, 30. For example,
Relative to
It is also noted that multiple pairs of transducers 20, 30 can be used in an installation on the same pipe 40 to measure different parameters of the pipe 40, and the processing that the liquid 12 within the pipe 40 is going through. All of the pairs of transducers 20, 30 may be connected together, individually as pairs, or together with communication systems. For example, it may be possible to use the cloud network 80 of
As shown in
As is shown by block 102, a first acoustic transducer is positioned on an exterior sidewall of a pipe carrying a quantity of fluid therein. An acoustic signal is transmitted with the first acoustic transducer into the sidewall of the pipe from an exterior surface thereof (block 104). At least a portion of the acoustic signal is reflected off an interior surface of the sidewall of the pipe (block 106). A second acoustic transducer is positioned on the exterior sidewall of the pipe (block 108). The reflected acoustic signal is received at the second acoustic transducer, wherein the reflected acoustic signal provides an indication of a material property of the pipe or a material within the pipe (block 110). Any number of additional steps, functions, processes, or variants thereof may be included in the method, including any disclosed relative to any other figure of this disclosure.
To further improve the use of multi-bounce material property detection described relative to
With reference to
Two or more acoustic transducers 220, 222 are positioned on the sidewall 242 of the container 240, such as by being affixed to the exterior surface 244B of the container 240. The first acoustic transducer 220 is positioned at a different location along the sidewall 242 than the second acoustic transducer 222, such that there is a distance (D) between the transducers 220, 222 for the acoustic signal 250 transmitted from the first transducer 220 to bounce in the sidewall 242 prior to reaching the second transducer 222. The first acoustic transducer 220 transmits an acoustic signal 250 at a predetermined angle (θ1) into the sidewall 242 of the container 240. As can be seen, the signal 250 travels from the exterior surface 244B through the sidewall 242 and to the interior surface 244A. At the interior surface 244A, the signal 250 loses a portion of its energy, such as 10%, into the material 212, while the signal reflects or bounces back towards the exterior surface 244B. Here, at the exterior surface 244B, the signal 250 loses more energy, such as 1%, due to the exterior surface's 244B position abutting the air 214, and the signal 250 reflects back to the interior surface 244A. The signal 250 continues to bounce or reflect through the sidewall 242, losing portions of its energy at each reflection.
Eventually, the signal 250 reaches the second acoustic transducer 222, which is positioned on the exterior surface 244B of the sidewall 242. Here, the second acoustic transducer 222 transmits an additional acoustic signal 250A into the sidewall 242 of the container 240. The additional signal 250A is phase synchronized with the first acoustic signal 250, such that the second signal 250A acts to amplify or increase the amplitude of the first signal 250. Phase synchronization may include syncing by a single sine wave or a group of waves, such as a chirp for the signal maximum. Additionally, it is possible to use a synchronizing transducer sensor 230 along the exterior surface 244B of the sidewall 242 to synchronize the transmission of the additional signal 250A with the reflection of the first signal 250. The synchronizing transducer sensor 230 may be permanent or it may be used only at setup of the apparatus 210.
As depicted in
Additionally, it is noted that the process and control needs of the plant, factory, or setting where the apparatus 210 is installed may play a role in the apparatus 210 setup and the pattern of the signals 250, 250A that are used, including the number of beams and how many are at the same energy with decaying function and how many are boosted. For example,
With reference to
With regards to the acoustic waves, the types of waves that are sent from the acoustic transducers 220, 222 through the sidewall 242 can be shear and or longitudinal waves since the incidence angles can be set to match the conditions of the apparatus 210. Using this technique, shear wave signals can be amplified more than longitudinal waves. However, the absorption of the signal and the reflection may reduce the effectiveness of the signal amplification if too many signal reflections or bounces occur. Using sheer wave through the sidewall 242 of the container 240 may increase the amount of energy that is transmitted, commonly, by more than double. However, the shear waves are generated with smaller initial energy. The signals 250, 250A must be phase synchronized since their amplitudes are combined in the second acoustic transducer 222 before processing of the signal 250 and transmitting the second signal 250A. The wave physical properties may be used to amplify the signal 250 by superimposing the additional wave 250A, or even further waves, over time. It is noted that attenuation is one of the parameters most sensitive to the material parameters and temperature. Acoustic wave absorption, therefore, may be compensated for temperature and is measured at different frequencies.
Additionally, it is noted the second transducer 222 can be configured as a single transducer or multiple transducers, a transducer array or a movable transducer. To this end,
The movement ability of the second transducer 222 may be used to catch signals that reflect geometrically outside of a static second transducer 222 location, especially in the case of changing temperature or fluid composition of the material inside the container 240, and/or the need to send the signal in different directions. For instance, in
Further, the acoustic transducers 220, 222 may have the capability to rotate relative to the surface 244B of the container 240. In this way, it is possible to use multiple types of waves and to penetrate different distances inside the container 240 and/or change the path of the signal 250. Some types of containers 240 may require only planar movement on one side of the container 240, such as cuboid-shaped containers 240.
The number of the acoustic transducers 222 on the signal receiving side can be determined from the condition of the fluid inside the container 240 and the capabilities of each individual transducer 220, 222 to be moved. In one example, the one or more acoustic transducers 222 boosting the signal 250 from the initial transducer 220 may be situated in one linear path on the outside surface 244B of the container 240. In other examples, the acoustic transducers 220 may be positioned on an arched pathway, a spiral path around the axis of the container 240, especially in the case of use on a pipeline, or in another configuration.
As is shown by block 302, a container contains a quantity of material. First and second acoustic transducers are positioned on a sidewall of the container, wherein the first acoustic transducer is positioned at a different location along the sidewall than the second acoustic transducer (block 304). A first acoustic signal is transmitted into the sidewall of the container from the first acoustic transducer (block 306). The first acoustic signal is reflected between an interior surface of the sidewall and an exterior surface of the sidewall (block 308). A second acoustic signal is phase synchronized with the first acoustic signal (block 310). Transmitting the second acoustic signal into the sidewall of the container from the second acoustic transducer, whereby the second acoustic signal amplifies the first acoustic signal (block 312). Any number of additional steps, functions, processes, or variants thereof may be included in the method, including any disclosed relative to any other figure of this disclosure.
It should be emphasized that the above-described embodiments of the present disclosure, particularly, any “preferred” embodiments, are merely possible examples of implementations, merely set forth for a clear understanding of the principles of the disclosure. Many variations and modifications may be made to the above-described embodiment(s) of the disclosure without departing substantially from the spirit and principles of the disclosure. All such modifications and variations are intended to be included herein within the scope of this disclosure and the present disclosure and protected by the following claims.
This application claims benefit of U.S. Provisional Application Ser. No. 63/121,763 entitled, “Multi-Bounce Material Property Detection” filed Dec. 4, 2020, and U.S. Provisional Application Ser. No. 63/122,344 entitled, “In-Wall Multi-Bounce Acoustic Signal Amplification” filed Dec. 7, 2020, the entire disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2449054 | Chantlin | Sep 1948 | A |
3019650 | Swick | Feb 1962 | A |
3703829 | Dougherty | Nov 1972 | A |
3837218 | Flambard et al. | Sep 1974 | A |
3971962 | Green | Jul 1976 | A |
4065958 | Krylova et al. | Jan 1978 | A |
4118983 | Braznikov | Oct 1978 | A |
4121468 | Glover et al. | Oct 1978 | A |
4182177 | Prough | Jan 1980 | A |
4280126 | White | Jul 1981 | A |
4320659 | Lynnworth et al. | Mar 1982 | A |
4501146 | Greenhalgh | Feb 1985 | A |
4580448 | Skrgatic | Apr 1986 | A |
4596266 | Kinghom et al. | Jun 1986 | A |
4676098 | Erlenkämper et al. | Jun 1987 | A |
4852416 | Boone et al. | Aug 1989 | A |
4934191 | Kroening et al. | Jun 1990 | A |
4954997 | Dieulesaint et al. | Sep 1990 | A |
4977780 | Machida et al. | Dec 1990 | A |
5015995 | Holroyd | May 1991 | A |
5038611 | Weldon et al. | Aug 1991 | A |
5148700 | King | Sep 1992 | A |
5195058 | Simon | Mar 1993 | A |
5295120 | McShane | Mar 1994 | A |
5325727 | Miller et al. | Jul 1994 | A |
5415033 | Maresca, Jr. et al. | May 1995 | A |
5438868 | Holden et al. | Aug 1995 | A |
5460046 | Maltby | Oct 1995 | A |
5469749 | Shimada et al. | Nov 1995 | A |
5604314 | Grahn | Feb 1997 | A |
5770806 | Hiismaki | Jun 1998 | A |
5821427 | Byrd | Oct 1998 | A |
6035903 | Few et al. | Mar 2000 | A |
6151956 | Takahashi et al. | Nov 2000 | A |
6157894 | Hess et al. | Dec 2000 | A |
6192751 | Stein et al. | Feb 2001 | B1 |
6330831 | Lynnworth et al. | Dec 2001 | B1 |
6368281 | Solomon et al. | Apr 2002 | B1 |
6443006 | Degrave | Sep 2002 | B1 |
6470744 | Usui et al. | Oct 2002 | B1 |
6481287 | Ashworth et al. | Nov 2002 | B1 |
6513385 | Han | Feb 2003 | B1 |
6575043 | Huang et al. | Jun 2003 | B1 |
6578424 | Ziola et al. | Jun 2003 | B1 |
6631639 | Dam et al. | Oct 2003 | B1 |
6672163 | Han | Jan 2004 | B2 |
6925868 | Young et al. | Aug 2005 | B2 |
6938488 | Diaz et al. | Sep 2005 | B2 |
7085391 | Yamaya | Aug 2006 | B1 |
7114375 | Panetta et al. | Oct 2006 | B2 |
7246522 | Diaz et al. | Jul 2007 | B1 |
7299136 | DiFoggio et al. | Nov 2007 | B2 |
7330797 | Bailey | Feb 2008 | B2 |
7363174 | Kishiro et al. | Apr 2008 | B2 |
7624650 | Gysling | Dec 2009 | B2 |
7624651 | Fernald | Dec 2009 | B2 |
7656747 | Mandal | Feb 2010 | B2 |
7694570 | Dam et al. | Apr 2010 | B1 |
7962293 | Gysling | Jun 2011 | B2 |
7966882 | Greenwood | Jun 2011 | B2 |
8683882 | Jackson | Apr 2014 | B2 |
8820182 | Nikolay Nikolov et al. | Sep 2014 | B2 |
8850882 | Qu et al. | Oct 2014 | B2 |
8915145 | Van Orsdol | Dec 2014 | B1 |
9057677 | Field | Jun 2015 | B2 |
9557208 | Kuroda et al. | Jan 2017 | B2 |
9891085 | Muhammad et al. | Feb 2018 | B2 |
10122051 | Kuhne et al. | Nov 2018 | B2 |
10458871 | Norli | Oct 2019 | B2 |
10794871 | Blackshire et al. | Oct 2020 | B1 |
11020793 | De Monte et al. | Jun 2021 | B2 |
20020170753 | Clare | Nov 2002 | A1 |
20040079150 | Breed et al. | Apr 2004 | A1 |
20040173021 | Lizon et al. | Sep 2004 | A1 |
20040226615 | Morikawa et al. | Nov 2004 | A1 |
20050055136 | Hofmann et al. | Mar 2005 | A1 |
20050128873 | LaBry | Jun 2005 | A1 |
20050178198 | Freger et al. | Aug 2005 | A1 |
20050247070 | Arshansky et al. | Nov 2005 | A1 |
20060196224 | Esslinger | Sep 2006 | A1 |
20070068253 | Carodiskey | Mar 2007 | A1 |
20070157737 | Gysling et al. | Jul 2007 | A1 |
20070205907 | Schenk, Jr. | Sep 2007 | A1 |
20080092623 | Lynch et al. | Apr 2008 | A1 |
20090143681 | Jurvelin et al. | Jun 2009 | A1 |
20100111133 | Yuhas et al. | May 2010 | A1 |
20100199779 | Liu et al. | Aug 2010 | A1 |
20100242593 | Lagergren et al. | Sep 2010 | A1 |
20110029262 | Barkhouse | Feb 2011 | A1 |
20110072904 | Lam et al. | Mar 2011 | A1 |
20110120218 | Aldridge | May 2011 | A1 |
20110239769 | Schmitt et al. | Oct 2011 | A1 |
20110271769 | Kippersund et al. | Nov 2011 | A1 |
20110284288 | Sawyer et al. | Nov 2011 | A1 |
20120024067 | Oberdoerfer et al. | Feb 2012 | A1 |
20120055239 | Sinha | Mar 2012 | A1 |
20120259560 | Woltring et al. | Oct 2012 | A1 |
20120262472 | Garr et al. | Oct 2012 | A1 |
20120281096 | Gellaboina et al. | Nov 2012 | A1 |
20130002443 | Breed et al. | Jan 2013 | A1 |
20130068027 | Sullivan et al. | Mar 2013 | A1 |
20130080081 | Dugger et al. | Mar 2013 | A1 |
20130090575 | Rupp et al. | Apr 2013 | A1 |
20130120155 | Hagg | May 2013 | A1 |
20130128035 | Johns et al. | May 2013 | A1 |
20130213714 | Fulda | Aug 2013 | A1 |
20140020478 | Ao et al. | Jan 2014 | A1 |
20140027455 | Castellano et al. | Jan 2014 | A1 |
20140076415 | Dunki-Jacobs et al. | Mar 2014 | A1 |
20140107435 | Sharf et al. | Apr 2014 | A1 |
20140223992 | Harper et al. | Aug 2014 | A1 |
20140301902 | Fernald et al. | Oct 2014 | A1 |
20140375169 | Na et al. | Dec 2014 | A1 |
20150075278 | Dockendorff et al. | Mar 2015 | A1 |
20150212045 | Raykhman et al. | Jul 2015 | A1 |
20150247751 | Kutlik et al. | Sep 2015 | A1 |
20150260003 | McHugh et al. | Sep 2015 | A1 |
20150276463 | Milne et al. | Oct 2015 | A1 |
20150369647 | Kumar et al. | Dec 2015 | A1 |
20160025545 | Saltzgiver et al. | Jan 2016 | A1 |
20160041024 | Reimer et al. | Feb 2016 | A1 |
20160108730 | Fanini et al. | Apr 2016 | A1 |
20160146653 | Skelding | May 2016 | A1 |
20160169839 | Gottlieb et al. | Jun 2016 | A1 |
20160216141 | Leaders et al. | Jul 2016 | A1 |
20160320226 | Schaefer et al. | Nov 2016 | A1 |
20170002954 | Brown et al. | Jan 2017 | A1 |
20170010144 | Lenner et al. | Jan 2017 | A1 |
20170010145 | Lenner et al. | Jan 2017 | A1 |
20170010146 | Kassubek et al. | Jan 2017 | A1 |
20170059389 | Moore et al. | Mar 2017 | A1 |
20170082650 | Hies et al. | Mar 2017 | A1 |
20170087526 | Luharuka | Mar 2017 | A1 |
20170102095 | Kunita et al. | Apr 2017 | A1 |
20170097322 | Giese et al. | Jun 2017 | A1 |
20170199295 | Mandal | Jul 2017 | A1 |
20170202595 | Shelton, IV | Jul 2017 | A1 |
20170239741 | Furuta | Aug 2017 | A1 |
20170268915 | Gestner et al. | Sep 2017 | A1 |
20170309989 | Waelde et al. | Oct 2017 | A1 |
20180035603 | Kremmer et al. | Feb 2018 | A1 |
20180044159 | Crouse et al. | Feb 2018 | A1 |
20180080809 | Tokarev et al. | Mar 2018 | A1 |
20180149505 | Ploss et al. | May 2018 | A1 |
20180266874 | Montoya et al. | Sep 2018 | A1 |
20180299317 | Truong et al. | Oct 2018 | A1 |
20180306628 | Parrott et al. | Oct 2018 | A1 |
20180348169 | Lee et al. | Dec 2018 | A1 |
20190011304 | Cunningham et al. | Jan 2019 | A1 |
20190063984 | Bowley | Feb 2019 | A1 |
20190078927 | Takayama et al. | Mar 2019 | A1 |
20190137310 | Xiao et al. | May 2019 | A1 |
20190195629 | Vaissiere | Jun 2019 | A1 |
20190195830 | Tamura et al. | Jun 2019 | A1 |
20190272496 | Moeller | Sep 2019 | A1 |
20200018628 | Head et al. | Jan 2020 | A1 |
20200182736 | Kim et al. | Jun 2020 | A1 |
20200378283 | Zhang et al. | Dec 2020 | A1 |
20200378812 | Heim | Dec 2020 | A1 |
20200378818 | Heim et al. | Dec 2020 | A1 |
20210382014 | Xu et al. | Dec 2021 | A1 |
20220178879 | Bivolarsky et al. | Jun 2022 | A1 |
20220178881 | Bivolarsky et al. | Jun 2022 | A1 |
Number | Date | Country |
---|---|---|
105548370 | May 2016 | CN |
10 2010 029 254 | Dec 2011 | DE |
2450701 | May 2012 | EP |
2962096 | Aug 2019 | EP |
2192717 | Jan 1990 | GB |
200174618 | Mar 2000 | KR |
WO 8704793 | Aug 1987 | SU |
WO 8809895 | Dec 1988 | WO |
WO 2007149605 | Dec 2007 | WO |
WO 2014167471 | Oct 2014 | WO |
WO 2020136945 | Jul 2020 | WO |
Entry |
---|
Amjad, Umar et al, “Advanced signal processing technique for damage detection in steel tubes” Proceedings of SPIE, Health Monitoring of Structural and Biological Systems 2016, 980511 (Apr. 1, 2016);14 pgs. |
Amjad, Umar et al. “Change in time-to-flight of longitudinal (axisymmetric) wave modes due to lamination in steel pipes” Proceedings of SPIE vol. 8695, Health Monitoring of Structural and Biological Systems 2013, 869515 (Apr. 17, 2013); 10 pgs. |
Amjad, Umar et al., “Effects of transducers on guided wave based structural health monitoring” Proceedings of SPIE, vol. 10600, Health Monitoring of Structural and Biological Systems XII, 106000F (Apr. 23, 2018),10 pgs. |
Amjad, U. et al., “Generalized representations and universal aspects of Lamb wave dispersion relations” Proceedings of SPIE, vol. 7650, Health Monitoring of Structural and Biological Systems 2010, 76502F (Apr. 8, 2010), 9 pgs. |
Amjad, Umar et al., “Detection and quantification of pipe damage from change in time of flight and phase” Ultrasoncis vol. 62 (2015) pp. 223-236, Jun. 11, 2015, 14 pgs. |
Amjad, Umar et al., “Detection and quantification of diameter reduction due to corrosion in reinforcing steel bars” Structural Health Monitoring 2015, vol. 14(5) 532-543, 12 pgs. |
Amjad, Umar et al., “Detection and quantification of delamination in laminated plates from the phase of appropriate guided wave modes” Optical Engineering 55(1), Jan. 2016, 11 pgs. |
API: American Petroleum Institute Preliminary Program, Oct. 16-17, 2019, 5 pages. |
Gurkov, Andrey “Gigantic Druzhba oil pipeline paralyzed for weeks” May 7, 2019, 3 pages, https://www.dw.com/en/gigantic-druzhba-oil-pipeline-paralyzed-for-weeks/a-48638989. |
Hassanzadeh et al., “Investigation of factors affecting on viscosity reduction of sludge from Iranian crude oil storage tanks”, Petroleum Science, vol. 15, Jul. 2018, pp. 634-643. |
Kak et al., “Principles of Computerized Tomographic Imaging”, IEEE, 1988, Chapter 2, 48 pgs. |
Luck, Marissa “Deer Park fire a ‘blemish’ for the petrochemical industry's image” Houston Chronicle, Mar. 26, 2019, 3 pages https://www.houstonchronicle.com/business/energy/article/Deer-Park-fire-a-blemish-for-the-image-of-13717661.php. |
Pandey, “Ultrasonic attenuation in condensed matter”, Dissertation for V.B.S. Purvanchal University, 2009, Chapter 1, 36 pgs. |
Pluta et al., “Stress Dependent Dispersion Relations of Acoustic Waves Travelling on a Chain of Point Masses Connected by Anharmonic Linear and Torsional Springs” International Congress on Ultrasonics AIP Conf. Proc. 1433, 471-474 (2012); 5 pgs. |
Shelke, et al., “Mode-Selective Excitation and Detection of Ultrasonic Guided Waves for Delamination Detection in Laminated Aluminum Plates” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 58, No. 3, Mar. 2011, 11 pgs. |
“TOPS Terminal Operating Practices Symposium” Program Agenda, Apr. 11, 2018, 1 page. |
Zadler, et al., “Resonant Ultrasound Spectroscopy: theory and application”, Geophysical Journal International, vol. 156, Issue 1, Jan. 2004, pp. 154-169. |
Examination Report No. 1 issued in Australian Application No. 2020283140 dated Jan. 4, 2022, 6 pgs. |
Examination Report No. 1 issued in Australian Patent Application No. 2020302919, dated Feb. 15, 2022, 4 pgs. |
International Search Report and Written Opinion issued in PCT/US20/35404, dated Aug. 24, 2020, 11 pages. |
International Search Report and Written Opinion issued in PCT/US20/39966, dated Sep. 18, 2020, 13 pages. |
International Preliminary Report on Patentability issued in PCT/US20/35404 dated Nov. 16, 2021, 8 pgs. |
International Preliminary Report on Patentability issued in PCT/US20/39966 dated Dec. 28, 2021, 10 pgs. |
Notice of Allowance issued in U.S. Appl. No. 16/888,469, dated Dec. 23, 2020, 16 pgs. |
Notice of Allowance issued in U.S. Appl. No. 17/148,122 dated Jun. 16, 2021, 8 pgs. |
Notice of Allowance issued in U.S. Appl. No. 16/914,092 dated Oct. 28, 2021, 14 pgs. |
Office Action issued in Canadian Patent Application No. 3,140,008, dated Feb. 14, 2022, 4 pgs. |
Office Action issued in U.S. Appl. No. 16/888,469, dated Aug. 5, 2020, 8 pages. |
Office Action issued in U.S. Appl. No. 16/888,469, dated Sep. 8, 2020, 20 pages. |
Office Action issued in U.S. Appl. No. 16/914,092, dated Nov. 10, 2020, 22 pgs. |
Office Action issued in U.S. Appl. No. 16/914,092, dated Mar. 1, 2021, 25 pgs. |
Office Action issued in U.S. Appl. No. 16/914,092, dated Jun. 24, 2021, 24 pgs. |
Office Action issued in U.S. Appl. No. 17/148,122, dated Mar. 2, 2021, 26 pgs. |
U.S. Appl. No. 17/543,152, filed Dec. 6, 2021, Bivolarsky et al. |
U.S. Appl. No. 17/542,872, filed Dec. 6, 2021, Bivolarsky et al. |
International Search Report and Written Opinion issued in PCT/US21/61962 dated Feb. 16, 2022, 9 pgs. |
International Search Report and Written Opinion issued in PCT/US21/61924 dated Feb. 16, 2022, 9 pgs. |
International Search Report and Written Opinion issued in PCT/US21/62010 dated Feb. 16, 2022, 9 pgs. |
International Search Report and Written Opinion issued in PCT/US21/61970 dated Feb. 18, 2022, 17 pgs. |
International Search Report and Written Opinion issued in PCT/US21/61 925 dated Feb. 18. 2022, 9 pgs. |
International Search Report and Written Opinion issued in PCT/US21/61646 dated Feb. 25, 2022, 9 pgs. |
International Search Report and Written Opinion issued in PCT/US21/65664 dated Mar. 11, 2022, 9 pgs. |
International Search Report and Written Opinion issued in PCT/US21/62001 dated Mar. 9, 2022, 9 pgs. |
International Search Report and Written Opinion issued in PCT/US21/61926 dated Mar. 8, 2022, 9 pgs. |
Notice of Acceptance issued in Australian Application No. 2020302919 dated Mar. 2, 2022, 4 pgs. |
Notice of Acceptance issued in Australian Application No. 2020283140 dated Mar. 30, 2022, 4 pgs. |
Notice of Allowance issued in Canadian Application No. 3,140,008 dated May 5, 2022, 1 pg. |
Office Action issued in Australian Patent Application No. 2020283140, dated Mar. 18, 2022, 5 pgs. |
Office Action issued in U.S. Appl. No. 17/543,200, dated Mar. 9, 2022, 8 pages. |
Office Action issued in U.S. Appl. No. 17/542,461, dated Mar. 10, 2022, 18 pages. |
Office Action issued in U.S. Appl. No. 17/542,465, dated Mar. 11, 2022, 22 pages. |
Office Action issued in U.S. Appl. No. 17/566,020, dated Mar. 18, 2022, 20 pages. |
Office Action issued in U.S. Appl. No. 17/541,036, dated Mar. 31, 2022, 22 pages. |
Office Action issued in U.S. Appl. No. 17/543,152, dated Apr. 19, 2022, 17 pages. |
Office Action issued in U.S. Appl. No. 17/542,814, dated Apr. 25, 2022, 21 pages. |
Vermeersch, “Influence of substrate thickness on thermal impedance of microelectronic structures”, Microelectronics Reliability, 47, 2007, pp. 437-443. |
Office Action issued in U.S. Appl. No. 17/542,462, dated May 27, 2022, 28 pages. |
Office Action issued in U.S. Appl. No. 17/542,461, dated Jun. 27, 2022, 13 pages. |
Office Action issued in U.S. Appl. No. 17/566,020, dated Jul. 12, 2022, 20 pages. |
Office Action issued in U.S. Appl. No. 17/543,200, dated Jul. 20, 2022, 25 pages. |
Office Action issued in U.S. Appl. No. 17/746,622, dated Jul. 22, 2022, 19 pages. |
Office Action issued in U.S. Appl. No. 17/541,036, dated AUg. 9, 2022, 22 pages. |
Office Action issued in U.S. Appl. No. 17/746,640, dated Aug. 18, 2022, 19 pages. |
Notice of Allowance issued in U.S. Appl. No. 17/542,465, dated Jul. 11, 2022, 18 pages. |
Notice of Allowance issued in U.S. Appl. No. 17/543,152, dated Jul. 29, 2022, 16 pages. |
U.S. Appl. No. 17/540,021, filed Dec. 1, 2021, Heim et al. |
U.S. Appl. No. 17/541,036, filed Dec. 2, 2021, Heim et al. |
U.S. Appl. No. 17/5431,152, filed Dec. 6, 2021, Bivolarsky et al. |
U.S. Appl. No. 17/542,814, filed Dec. 6, 2021, Burcham et al. |
U.S. Appl. No. 17/542,461, filed Dec. 5, 2021, Burcham et al. |
U.S. Appl. No. 17/542,465, filed Dec. 5, 2021, Bivolarsky et al. |
U.S. Appl. No. 17/543,200, filed Dec. 6, 2021, Bivolarsky et al. |
U.S. Appl. No. 17/542,462, filed Dec. 5, 2021, Bivolarsky et al. |
U.S. Appl. No. 17/566,020, filed Dec. 30, 2021, Bivolarsky et al. |
U.S. Appl. No. 17/746,622, filed May 17, 2022, Bivolarsky et al. |
U.S. Appl. No. 17/746,640, filed May 17, 2022, Bivolarsky et al. |
Office Action issued in U.S. Appl. No. 17/542,814, dated Aug. 26, 2022, 22 pages. |
Office Action issued in U.S. Appl. No. 17/540,021, dated Sep. 15, 2022, 40 pages. |
Notice of Allowance issued in U.S. Appl. No. 17/543,200, dated Nov. 3, 2022, 16 pages. |
Number | Date | Country | |
---|---|---|---|
20220178881 A1 | Jun 2022 | US |
Number | Date | Country | |
---|---|---|---|
63122344 | Dec 2020 | US | |
63121763 | Dec 2020 | US |