Information
-
Patent Grant
-
6247979
-
Patent Number
6,247,979
-
Date Filed
Tuesday, August 18, 199826 years ago
-
Date Issued
Tuesday, June 19, 200123 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 440 53
- 440 57
- 440 60
- 440 61
-
International Classifications
-
Abstract
An inboard/outboard boat drive having a housing with first and second ends and a cavity passing between the housing first and second ends. The first end of housing is pivotally mounted on the boat stern. The drive includes an input drive shaft for coupling to an engine mounted within the boat, an intermediate drive shaft disposed within the housing cavity, a first universal joint coupling the input device shaft and the intermediate drive shaft, together with an output drive shaft coupled to a propulsion element and a second universal joint coupling the intermediate drive shaft and the output drive shaft.
Description
TECHNICAL FIELD
The present invention relates to a direct boat drive, and in particular to an inboard/outboard boat drive which couples an inboard engine to a propeller enabling steering and trim adjustment.
BACKGROUND OF THE INVENTION
Many boats are driven by internal combustion engines, which may be of the inboard or outboard type. Outboard engines are typically pivotally mounted on the stern of the boat allowing for steering without the need for a separate rudder, and enabling adjustment of the angle between the propeller drive and the hull for changes in boat trim. The pivotal mounting also allows boats fitted with such outboard engines to run up on to beaches with the propeller pivoted above the lower surface of the hull, preventing damage thereof.
Inboard engines are typically attached through a transmission or gearbox directly to the propeller shaft, and are necessarily mounted toward the center of the boat with a long propeller shaft to allow the propeller to minimize the drive angle between the propeller shaft and hull waterline. Such installations are necessarily bulky, and installation of the engine toward the center of the hull provides undesirable weight distribution characteristics in planing type hulls, which ideally have the heavy engine installed toward the rear of the boat.
To provide inboard engine installations with the advantages of outboard engine installations detailed above, inboard/outboard installations have been developed. These installations couple an inboard engine mounted within the hull of the boat to a drive assembly and propeller arrangement similar to that of an outboard engine installation, the engine essentially being connected through a ‘leg’ to the propeller. The engine can thus be mounted toward the rear of the boat, and steering and trim control provided in a compact installation.
The mechanical system through which the power is transmitted usually consists of a drive-train of complex gearing, together with a number of joint systems so as to achieve steering and a measure of trim control. Such systems are mechanically complex and intrinsically inefficient. The power which may be transmitted through such devices is limited by the physical size of the devices, requiring the use of multiple engines and drives for high performance boats.
OBJECT OF THE INVENTION
It is the object of the present invention to overcome or substantially ameliorate at least some of the above disadvantages.
SUMMARY OF THE INVENTION
There is disclosed herein an inboard-outboard boat drive comprising:
a housing having a first end, a second end and a cavity passing between said housing first and second ends;
pivotal mounting means for pivotally mounting said housing first end on a stern section of a boat, enabling pivotal movement about a pivot point;
an input drive shaft having first and second ends, said first end being adapted to be coupled to an engine mounted in said boat;
an intermediate drive shaft disposed within said cavity and having a first end towards said housing first end and a second end towards said housing second end;
a first universal joint coupling said input drive shaft second end to said intermediate drive shaft first end, said first universal joint being disposed about said pivot point to enable pivotal movement of said intermediate drive shaft about said pivot point;
an output drive shaft having first and second ends, said output drive shaft second end being adapted to be coupled to a propulsion element; and
a second universal joint coupling said intermediate shaft second end to said output shaft first end.
Generally, each of said first and second universal joints is a constant velocity universal joint.
Typically said pivotal mounting means comprises a semi-spherical joint in the general form of a ball and socket arrangement.
Typically said semi-spherical joint includes:
a semi-spherical female socket member provided at said housing first end and adapted to be fastened to said stern section, and
a semi-spherical male ball type member disposed within said semi-spherical socket member. In such an arrangement the cavity passes through said semi-spherical male ball type member such that said first universal joint is generally concentrically positioned within said semi-spherical male ball type member and about said pivot point.
Preferably separate steering and trim control elements are mounted on said housing for steering and trim control.
Preferably said trim control element is a hydraulic ram.
Alternatively a control lever is mounted on said semi-spherical ball-type member for steering and/or trim control.
Preferably said input shaft is mounted in bearings disposed within a bearing housing fastened to, or integral with, said semi-spherical female socket member.
Preferably said output shaft is mounted in bearings disposed within said cavity towards said housing second end.
Preferably a seal is provided in said cavity at said housing second end.
BRIEF DESCRIPTION OF THE DRAWINGS
Preferred forms of the present invention will now be described by way of example with reference to the accompanying drawings wherein:
FIG. 1
is a partially sectioned side view of the inboard/outboard boat drive.
FIG. 2
is a partially sectioned side view of the semi-spherical joint of the inboard/outboard boat drive of
FIG. 1
FIG. 3
is side view of the housing of the inboard/outboard boat drive of FIG.
1
.
FIG. 4
is a partially sectioned side view of another semi-spherical joint and control mechanism of an inboard/outboard boat drive.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The inboard/outboard boat drive
1
of the preferred embodiment is provided with a housing
2
having first and second ends
2
a
,
2
b
and a cavity
3
passing between the housing first and second ends
2
a
,
2
b.
The housing first end
2
a
is pivotally mounted on a stern section (transom)
4
of a boat when installed via pivotal mounting means
5
, enabling the housing
2
to pivot about a pivot point P.
An input drive shaft
6
having first and second ends
6
a
,
6
b
is adapted to be coupled at its first end
6
a
to an engine (not shown) mounted in the boat. The input drive shaft
6
is typically coupled to the engine through a gearbox or other such transmission, possibly via a half shaft (also known as a jack shaft) which enables soft mounting of the engine on rubber engine mounts.
An intermediate drive shaft
8
having first and second ends
8
a
,
8
b
is disposed within the housing cavity
3
with its first end
8
a
towards the housing first end
2
a
and its second
15
end
8
b
toward the housing second end
2
b
. A first universal joint
9
, typically a constant velocity universal joint, couples the input shaft second end
6
b
to the intermediate drive shaft first end
8
a
. The first universal joint
9
is disposed about the pivot point P to enable pivotal movement of the intermediate drive shaft
8
about the pivot point P without jamming when the housing
2
is pivoted.
An output drive shaft
10
having first and second ends
10
a
,
10
b
is coupled at its first end
9
a
to the intermediate shaft second end
8
b
via a second universal joint
11
. The second universal joint
11
is also typically a constant velocity universal joint. The output drive shaft second end
8
b
is coupled when installed to a propulsion element such as a propeller
12
which may be a screw propeller or similar. Here the pivotal mounting means
5
comprises a semi-spherical joint
5
in the general form of a ball and socket type arrangement. A semi-spherical female socket member
5
a
of the semi-spherical joint
5
is fastened to the boat stern section
4
via bolts
13
through flange sections
14
of the socket member
5
a
. The socket member
5
a
comprises upper and lower halves which are fastened together via mating flanges on the exterior of each socket member
5
a
half.
A corresponding semi-spherical male ball type member Sb of the semi-spherical joint is provided on the housing first end
2
a
and is captively received in the semi-spherical female socket member
5
a
. Fastening of the two socket member
5
a
halves together about the ball type member
5
b
ensures the ball type member
5
b
is captively held whilst being able to universally pivot within the semi-spherical female socket member
5
a
about the pivot point P. The housing cavity
3
passes through the semi-spherical male ball type member
5
b
at the housing first end
2
a.
The arrangement could alternatively be configured with a male ball type member being fastened to the stern section
4
and a cooperating female socket member being provided on the housing first end
2
a.
The arrangement enables mounting of the engine toward the rear of the boat thereby freeing up space toward the center of the boat and providing favorable weight distribution characteristics for planing type hulls.
The input drive shaft
6
is here rotatably mounted on the semi-spherical socket member
5
a
by means of two bearing races
15
disposed within a bearing housing
16
. The bearing races
15
utilized in the preferred embodiment are shielded sealed bearing races to minimize maintenance requirements and possible leakage of lubricants. The bearing races
15
are separated within the bearing housing by a tubular spacer
17
. The bearing housing
16
is fastened to the semi-spherical socket member
5
a
by means of fasteners
18
. The bearing races
15
may alternatively be fixed within the hull of the boat separate from the socket member
5
a
. A flanged coupling member
19
is secured to the first end
6
a
of the input shaft for coupling with the engine output shaft or a jack/half shaft.
The first constant velocity joint
9
is here arranged within the cavity
3
concentrically within the semi-spherical male ball type member
5
b
such that it pivots about the pivot point P. The first constant velocity joint
9
transmits engine torque from the input drive shaft
6
to the intermediate drive shaft
8
through a range of angles between the longitudinal axes thereof as the housing
2
and intermediate drive shaft
8
are pivoted about the pivot point P. A rubber boot
20
encloses the open end of the constant velocity joint to prevent the ingress of foreign matter and the leakage of lubricants. A similar rubber boot
23
is provided at the second constant velocity joint
11
.
The output shaft
10
is mounted within the housing cavity
3
toward the second end of the housing
2
b
by bearing races
21
in a similar manner to the input shaft
6
. A seal
22
at the outlet of the cavity
3
inhibits the ingress of water into the cavity
3
and prevents the egress of any lubricant therefrom. The propeller
12
is fastened to the second end
10
b
of the output shaft
10
by means of a nut
24
threaded onto the output shaft
10
.
The bearing races
21
associated with the output shaft
10
fix the longitudinal axis thereof, keeping it in a fixed relationship to the longitudinal axis of the intermediate drive shaft
8
. The second constant velocity joint
11
hence is not required to pivot as per the first constant velocity joint
9
, but merely enables transfer of torque at an offset angle between the intermediate drive shaft
8
and output drive shaft
10
.
The entire drive assembly hence enables torque to be transmitted from the engine, through the input, intermediate and output drive shafts
6
,
8
,
10
to the propeller
12
so as to provide a propulsive force to drive the boat.
Control of the inboard/outboard boat drive
1
is provided in a first embodiment by means of a control lever
25
. The control lever
25
is mounted on the semi-spherical ball type member
5
b
via a threaded pin
26
fastened to the ball type member
5
b
. The pin
26
protrudes through an aperture
27
provided in the semi-spherical socket member
5
a
to allow some freedom of movement between the ball and socket members
5
b
,
5
a
. In an alternative embodiment, the lever
25
may be integrally formed with the ball-type member
5
b
. Movement of the control lever
25
results in pivoting of the ball type member
5
b
within the socket member
5
a
about the pivot point P, causing the housing
2
to also pivot about the pivot point P. Rather than utilizing a control lever
25
, pivotal movement may be imparted directly to the ball type member
5
b
or directly to the housing
2
.
The control lever
25
is attached to control means for pivoting the housing
2
about the pivot point P. Pivoting of the housing
2
in a vertical plane adjusts the angle of attitude of the drive axis of the propeller
12
, which corresponds to the longitudinal axis of the output drive shaft
10
, with respect to the boat hull, thereby adjusting the trim of the boat. The housing
2
can also be pivoted upward above the lower surface of the hull to enable the boat to be run up on to beaches without damaging the propeller
12
. In the preferred embodiment such vertical pivoting is achieved by means of a hydraulic ram. Pivoting of the housing
2
in a horizontal plane provides for steering of the boat. A conventional rack and pinion or cable steering system may be utilized to provide for such steering. The housing
2
may be pivoted in horizontal and vertical planes at the same time to provide for concurrent trim and steering adjustment.
The housing
2
is provided with an anti-cavitation plate
27
and a large rudder
28
to provide for improved steering performance and directional stability. A streamlined, tapered cone fairing
29
is also incorporated into the housing. The fairing extends and tapers toward the front of the housing
2
generally co-axially with the output shaft
10
. The fairing aids the maintenance of a streamlined flow of water across the housing
2
and onto the propeller blades at high speed so as to reduce the problem of propeller “blow out”.
In a second embodiment as depicted in
FIG. 4
, control of the inboard/outboard boat drive
1
is provided by separate steering and trim control elements
101
and
102
mounted on the housing
2
rather than the semi-spherical ball type member
5
b
. The steering element
101
is pivotally mounted on a pivot pin
103
by means of a bearing
104
. A steering control lever
105
extends forward from the bearing
104
through the stern section/transom
4
and into the hull where a steering input is applied to lever
105
to pivot the steering element about the pivot pin
103
. A plate
106
extends rearwardly from the bearing
104
and is located between opposing arms
107
of a generally Y shaped fork member
108
, the base
109
of which is fixed to the housing
2
. Pivoting of the steering element
101
about the pivot pin
103
causes the plate
106
to act upon one of the fork member opposing arms
107
to thereby pivot the housing
2
. The pivot pin is mounted on two lugs
110
,
111
protruding from the rear of the transom
4
such that an extension of the axis of the pivot pin
103
passes through the pivot point P, thereby enabling steering articulation of the housing
2
about the pivot point P. A stiffening flange
112
is here formed along the top of the
12
mm thick plate
106
to prevent the plate from bending under service loads.
An arcuate slot
113
is provided in the plate
106
, the arc defining the center line of the slot
113
being centred at the pivot point P. A pin
114
passes through the slot
113
between the opposing arms
107
of the fork member
108
. This arrangement allows the housing
2
to freely pivot in a vertical plane about the pivot point P, trimming the drive, without jamming the steering mechanism.
Trim control is achieved by means of the trim control element
102
which is here a hydraulic telescoping ram. the upper end of the hydraulic ram
102
is attached to an extension of the pivot pin
103
, whilst the lower end is attached to the housing
2
by means of a lug and pin arrangement
115
. Retraction of the ram
102
raises the housing
2
whilst extension of the ram lowers the housing
2
.
The embodiment of
FIG. 4
also depicts an alternate form of semi-spherical female socket member
105
a
. The socket member
105
a
has a main body
130
moulded in a single piece, here from an engineering plastics material such as acetal plastic. The main body
130
incorporates a bearing housing portion
116
for the bearing races
15
. The main body
130
forms a hemisphere in which the male ball type member
5
b
may be inserted, before securing a ring
131
of the socket member
105
a
to the open end of the main body
130
over the ball type member
5
b
, thereby captively holding the ball type member
5
a
within the socket member
105
a.
Claims
- 1. An inboard-outboard boat drive for mounting on a boat, said drive comprising:a housing having a first end, a second end and a cavity passing between said housing first and second ends; pivot means mountable on the stern section of the boat for pivoting said housing first end on the stern section of the boat, enabling pivotal movement about a pivot point with the pivot means mounted on the boat; an input drive shaft having first and second ends, said first end being adapted to be coupled to an engine mounted in said boat; an intermediate drive shaft disposed within said cavity and having a first end towards said housing first end and a second end towards said housing second end; first joint means, comprising a first constant velocity joint, for coupling said input drive shaft second end to said intermediate drive shaft first end; said first joint being disposed about said pivot point to enable pivotal movement of said intermediate drive shaft about said pivot point; an output drive shaft having first and second ends, said output drive shaft second end being adapted to be coupled to a propulsion element; second joint means, comprising a second constant velocity joint, for coupling said intermediate shaft second end to said output shaft first end and for enabling transfer of torque at an offset angle between the intermediate drive shaft and the output drive shaft; and bearing means disposed between the housing and the output shaft for mounting the output shaft in the housing and for maintaining the output shaft in a fixed relationship to a longitudinal axis of the intermediate drive shaft.
- 2. The inboard-outboard boat drive of claim 1, wherein said pivot means comprises a spherically shaped joint in the general form of a ball and socket arrangement.
- 3. The inboard-outboard boat drive of claim 2 wherein said spherically shaped joint includes:a spherically shaped female socket member provided at said housing first end and adapted to be fastened to said stern section, and a spherically shaped male ball member disposed within said spherically shaped socket member, and further wherein said cavity passes through said spherically shaped male ball member such that said first joint is generally concentrically positioned within said spherically shaped male ball member and about said pivot point.
- 4. The inboard-outboard boat drive of claim 1 wherein separate steering and trim control elements are mounted on said housing for steering and trim control.
- 5. The inboard-outboard boat drive of claim 4 wherein said trim control element is a hydraulic ram.
- 6. The inboard-outboard-boat drive of claim 3 wherein a control lever is mounted on said spherically shaped member for steering and/or trim control.
- 7. The inboard-outboard boat drive of claim 4 wherein said input shaft is mounted in bearings disposed within a bearing housing fastened to, or integral with, said spherically shaped female socket member.
- 8. The inboard-outboard boat drive of claim 1 wherein said output shaft is mounted in bearings disposed within said cavity towards said housing second end.
- 9. The inboard-outboard boat drive of claim 1 wherein a seal is provided in said cavity at said housing second end.
- 10. A boat comprising a bow section, a stern section, an engine, a propulsion element and the inboard-outboard drive of claim 1, the housing first end of the drive being pivotally mounted on the stern section of the boat at the pivot means, the first end of the input drive shaft being coupled to the engine, and the output drive shaft second end being coupled to the propulsion element.
Priority Claims (2)
Number |
Date |
Country |
Kind |
PO8696 |
Aug 1997 |
AU |
|
PP2855 |
Apr 1998 |
AU |
|
US Referenced Citations (4)
Foreign Referenced Citations (1)
Number |
Date |
Country |
0407630 |
Jan 1991 |
EP |