Incandescent lamp with integral voltage converter

Information

  • Patent Grant
  • 6445133
  • Patent Number
    6,445,133
  • Date Filed
    Monday, July 23, 2001
    23 years ago
  • Date Issued
    Tuesday, September 3, 2002
    22 years ago
Abstract
An incandescent lamp is designed to operate at lower than the AC line voltage and includes a voltage conversion circuit for lowering the line voltage to the operating voltage of the lamp. The circuit includes an output transformer which is disposed in the screw base of the lamp, the remainder of the circuit, which is high-temperature-intolerant, being disposed outside the base and the envelope of the lamp. In a reflectorized embodiment of the lamp, the high-temperature-intolerant portion of the circuit is disposed adjacent to the mouth of the reflector envelope on the outer surface thereof and, in a non-reflectorized bulb embodiment, the high-temperature-intolerant portion is disposed between the envelope and a skirt which is connected to the base.
Description




BACKGROUND




This application relates to low-voltage incandescent lamps of the type with tungsten filaments and, in particular, to lamps of the type having voltage-conversion circuitry built into the lamp.




It is known to provide incandescent lamps which operate at a voltage below the standard AC line voltage, typically 120 VAC. For example, lamps operating at 12 volts are known for a variety of applications. In some instances, a specialized fixture is provided for such lamps, the fixture including conversion circuitry for converting the AC line voltage to the operating voltage of the lamp.




It is also known to provide low-voltage lamps which are designed to be powered from standard AC line sockets or fixtures. In such lamps, the voltage conversion circuitry is incorporated into the lamp itself. Such a lamp is disclosed, for example, in U.S. Pat. No. 4,998,004, in which the conversion circuitry is disposed in the base and inside the envelope of the lamp. The lamp disclosed in that patent is a 40-watt incandescent bulb designed to operate at 15 volts. The wattage of the lamp is necessarily low because, at higher wattages, the temperature generated in the lamp may be damaging to the voltage conversion circuitry. In converting the line voltage to a lower voltage, the lamp current is increased, generating greater heat from the filament. In a halogen lamp, this high temperature is necessary in order to keep the halogen in cycle. The heat is conducted by the filament leads, is convected from the wall of the halogen capsule and is radiated from the filament, so that the temperature inside the envelope and the base builds up to a substantial level. For example, it has been found that for a 50-watt halogen lamp with reflector and lens, operated in a base-up configuration inside a recessed can fixture, the temperature inside the lamp base will reach in excess of 120° C. Many electronic components do not operate well at such temperatures. Additionally, the voltage conversion circuitry used in the lamp of U.S. Pat. No. 4,998,044 can itself generate additional heat.




In U.S. Pat. No. 6,147,457 there is disclosed a low-voltage incandescent lamp with an inverter driven by a control circuit which generates less heat than the conversion circuitry of the lamp of U.S. Pat. No. 4,998,044, but it does not solve the temperature problem, since most of the heat generated by a low-voltage lamp is generated by the filament.




The high temperatures which can be experienced in a low-voltage lamp affect not only semiconductor performance, but also the lifetime of electrolytic capacitors. If the lamp is one, such as a parabolic aluminized reflector (“PAR”) halogen lamp, with a replaceable halogen capsule, the useful life of the conversion circuitry should be several times the life of the replaceable capsule and such lifetimes are not possible at the high temperatures experienced in low-voltage lamps, particularly when operated in a base-up configuration, except at very low wattages.




When the lamp is operated in a base down or horizontal configuration, heat buildup is less of a problem, so that high-heat-intolerant circuit components could be incorporated in the base of the lamp, except for the fact that the normal base does not typically have adequate room to accommodate the entire conversion circuitry.




SUMMARY




This application discloses an improved low-voltage incandescent lamp which avoids the disadvantages of prior lamps while affording additional structural and operating advantages.




An important aspect is the provision of a low-voltage incandescent lamp with a built-in voltage conversion circuit which can withstand high-temperature applications.




In connection with the foregoing aspects, a further aspect is the provision of a lamp of the type set forth which mounts high-temperature-intolerant portions of the conversion circuit at a location remote from the base.




In connection with the foregoing aspects, a further aspect is the provision of a lamp of the type set forth, wherein the high-temperature-intolerant portion of the conversion circuit is disposed externally of the lamp.




A still further aspect is the provision of the lamp of the type set forth which may be provided in reflectorized or non-reflectorized form and is mountable in a standard 120 VAC socket.




Certain ones of these and other aspects may be attained by providing an incandescent lamp adapted to be powered from a fixture connected to an ordinary source of AC line voltage, comprising: a base for connection into an associated fixture, an envelope having a light-transmitting portion connected to the base, a voltage conversion circuit for converting the AC line voltage to a lower output voltage, the conversion circuit having a high-temperature-tolerant portion disposed in the base and a high-temperature-intolerant portion disposed outside the envelope and the base, and a light-generating filament disposed in the envelope and adapted to be coupled to the output voltage for being powered thereby.











BRIEF DESCRIPTION OF THE DRAWINGS




For the purpose of facilitating an understanding of the subject matter sought to be protected, there are illustrated in the accompanying drawings embodiments thereof, from an inspection of which, when considered in connection with the following description, the subject matter sought to be protected, its construction and operation, and many of its advantages should be readily understood and appreciated.





FIG. 1

is a side elevational view in partial section of a PAR halogen lamp embodiment;





FIG. 2

is a perspective view of a non-reflectorized incandescent bulb;





FIG. 3

is a schematic circuit diagram of the conversion circuit of the lamps of

FIGS. 1 and 2

; and





FIG. 4

is a schematic circuit diagram of the integrated circuit portion of the conversion circuit of FIG.


3


.











DETAILED DESCRIPTION




Referring to

FIG. 1

, therein is illustrated a lamp


10


, in the nature of a PAR incandescent lamp designed to operate at a lower voltage than the AC line voltage supplied to the socket in which the lamp is designed to be mounted. The lamp


10


has a standard Edison-type screw base


11


having an externally threaded metal shell


12


, the lower end of which is separated by an insulator


13


from a conductive button terminal


14


, in a known manner. The base


11


is connected to an envelope


15


, which may be formed of a suitable glass material and has an end wall


16


and an internally reflectorized, generally frustoconical side wall


17


, terminating at its distal end in an annular flange


18


which defines a wide mouth


19


. Disposed in the envelope


15


is a halogen capsule


20


, which includes a filament


21


having terminals


22


which extend through openings in the end wall


16


. The mouth


19


is closed by a suitable light-transmitting lens


25


, all in a known manner.




Referring also to

FIG. 3

, the lamp


10


also has integrated therein a voltage conversion circuit


30


which includes a seven-pin integrated circuit


31


, pins


3


and


4


of which are connected to a primary coil


32


of a positive feedback transformer


33


. A primary coil


34


of the transformer


33


is connected across pins


5


and


6


of the IC


31


. The transformer


33


also has a secondary coil


35


, one terminal of which is connected to pin


4


of the IC


31


, and the other terminal of which is connected to one terminal of the primary winding


36


of an output transformer


37


, the other terminal of which winding is connected to pin


7


of the IC


31


. The output transformer


37


has a secondary winding


38


.




It is a significant aspect of the invention that the voltage conversion circuit


30


is separated into two portions, a high-temperature-intolerant portion


60


which includes the IC


31


and the positive feedback transformer


33


, and a high-temperature-tolerant portion


65


, which comprises the output transformer


37


. As can be seen in

FIG. 1

, the portion


65


is disposed in the base


11


of the lamp


10


, the secondary winding


38


of the transformer


37


being connected to the terminals


22


of the filament


21


. The primary winding


36


of the transformer


37


is connected via conductors


61


and


62


to the portion


60


of the conversion circuit


30


, which latter portion is disposed along the outer surface of the envelope


15


adjacent to the mouth


19


. As can be seen in

FIG. 1

, the conductors


61


and


62


may be incorporated in a cable


63


which runs along the side surface of the envelope


15


, and which also carries conductors


64


and


66


which connect pins


1


and


2


of the IC


31


to the base terminals


13


and


14


. Accordingly, the output transformer


37


, which may be relatively bulky, is disposed in the base


11


, since it can tolerate the high temperatures which may be experienced there, while the portion


60


of the conversion circuit


30


is spaced from the base


11


at a lower-temperature portion of the lamp


10


where it will not be adversely affected by the heat which builds up in the base


11


, even in base-up configurations.




Referring to

FIG. 4

, the details of the integrated circuit


31


, which are fairly conventional, are illustrated. An inductor


40


and a capacitor


41


are connected across the pins


1


and


2


to eliminate electromagnetic interference. The junction between the inductor


40


and the capacitor


41


, and pin


2


comprise the input terminals of a rectifying diode bridge including diodes


42


-


45


, the output of the bridge being connected to a half-bridge inverter circuit which includes capacitors


46


and


47


connected in series across the output terminals of the rectifying bridge and transistors


48


and


49


connected in series across the rectifying bridge output. In particular, the collector of the transistor


48


is connected to one output terminal of the bridge rectifier, while its emitter is connected through a resistor


50


to the collector of the transistor


49


, the emitter of which is connected through a resistor


51


to the other output terminal of the bridge rectifier. Also connected across the output terminals of the bridge rectifier are the series connection of a resistor


52


and a capacitor


53


, the junction between which is connected through a resistor


54


and a diac


55


to a trigger input of the transistor


49


. The junction between the resistor


52


and the capacitor


53


is also connected through a diode


56


to the collector of the transistor


49


and to pin


4


of the IC


31


. The bases of the transistors


48


and


49


are respectively connected through resistors


57


and


58


to pins


3


and


5


of the IC


31


. The junction between capacitors


46


and


47


is connected to pin


6


, while the lower output terminal of the bridge rectifier is connected to pin


7


.




In operation, the input AC line voltage is rectified by the diode bridge rectifier. The oscillation of the half bridge inverter is triggered by the diac


55


, which is charged by the resistor


52


and the capacitor


53


. Resistors


50


and


51


are used to stabilize the operating point of the transistors


48


and


49


, while resistors


57


and


58


limit the base current of the transistors. The diode


56


makes sure that the capacitor


53


is fully discharged after the transistors are triggered into oscillation.




Referring now to

FIG. 2

, there is illustrated an incandescent lamp


70


having a standard Edison-type screw base


71


with conventional terminals


13


and


14


. Connected to the base


71


is a light-transmitting bulb envelope


72


which contains a filament


73


. The high-temperature-tolerant portion


65


of the voltage conversion circuit


30


is disposed in the base


71


, while the hightemperature-intolerant portion


60


thereof is disposed along the outside of the envelope


72


and within an enveloping skirt


75


which is connected to the base


71


and serves as an additional heat sink for heat which builds up in the base


71


.




While two specific types of incandescent lamps have been illustrated, it will be understood that the principles of the invention may be applied to incandescent lamps with other types of envelopes, either reflectorized or non-reflectorized. In a typical embodiment the voltage conversion circuit


30


may convert a standard 120 VAC supply line voltage to a lamp operating voltage in the range of from about 12 to about 15 volts, but it will be appreciated that the principles of the invention apply to lamps operating at any desired voltage less than the AC line voltage.




The matter set forth in the foregoing description and accompanying drawings is offered by way of illustration only and not as a limitation. While particular embodiments have been shown and described, it will be obvious to those skilled in the art that changes and modifications may be made without departing from the broader aspects of applicants' contribution. The actual scope of the protection sought is intended to be defined in the following claims when viewed in their proper perspective based on the prior art.



Claims
  • 1. An incandescent lamp adapted to be powered from a fixture connected to an ordinary source of AC line voltage, comprising:a base for connection into an associated fixture, an envelope having a light-transmitting portion connected to the base, a voltage conversion circuit for converting the AC line voltage to a lower output voltage, the conversion circuit having a high-temperature-tolerant portion disposed in the base and a high-temperature-intolerant portion disposed outside the envelope and the base, and a light-generating filament disposed in the envelope and adapted to be coupled to the output voltage for being powered thereby.
  • 2. The lamp of claim 1, wherein the base is a screw-type base for screwing into an internally threaded socket.
  • 3. The lamp of claim 1, wherein substantially the entire envelope is light-transmitting.
  • 4. The lamp of claim 1, wherein the envelope includes a light-transmitting lens.
  • 5. The lamp of claim 1, wherein the high-temperature-tolerant portion includes an output transformer.
  • 6. The lamp of claim 5, wherein the high-temperature-intolerant portion includes an integrated circuit.
  • 7. The lamp of claim 1, wherein the filament is disposed in a halogen capsule.
  • 8. An incandescent lamp adapted to be powered from a fixture connected to an ordinary source of AC line voltage, comprising:a base for connection into an associated fixture, an aluminized reflector envelope connected to the base and diverging therefrom to a wide mouth, a voltage conversion circuit for converting the AC line voltage to a lower output voltage, the conversion circuit having a high-temperature-tolerant portion disposed in the base and a high-temperature-intolerant portion disposed outside the envelope and the base, and a light-generating filament disposed in the envelope and adapted to be coupled to the output voltage for being powered thereby.
  • 9. The lamp of claim 8, wherein the base is a screw-type base for screwing into an internally threaded socket.
  • 10. The lamp of claim 8, wherein the high-temperature-intolerant portion is disposed adjacent to the mouth of the envelope.
  • 11. The lamp of claim 8, wherein the envelope includes a light-transmitting lens closing the mouth.
  • 12. The lamp of claim 8, wherein the high-temperature-intolerant portion includes a positive feedback transformer.
  • 13. The lamp of claim 8, wherein the high-temperature-intolerant portion includes an integrated circuit.
  • 14. The lamp of claim 8, wherein the high-temperature-tolerant portion includes an output transformer.
  • 15. The lamp of claim 8, wherein the filament is disposed in a halogen capsule.
  • 16. An incandescent lamp adapted to be powered from a fixture connected to an ordinary source of AC line voltage, comprising:a base for connection into an associated fixture, a light-transmitting envelope connected to the base, a voltage conversion circuit for converting the AC line voltage to a lower output voltage, the conversion circuit having a high-temperature-tolerant portion disposed in the base and a high-temperature-intolerant portion disposed outside the envelope and the base, and a light-generating filament disposed in the envelope and adapted to be coupled to the output voltage for being powered thereby.
  • 17. The lamp of claim 16, and further comprising a skirt connected to the base and encircling an adjacent portion of the envelope for cooperation therewith to accommodate the high-temperature-intolerant portion therebetween.
  • 18. The lamp of claim 16, wherein the high-temperature-intolerant portion includes a positive feedback transformer.
  • 19. The lamp of claim 18, wherein the high-temperature-intolerant portion includes an integrated circuit.
  • 20. The lamp of claim 16, wherein the high-temperature-tolerant portion includes an output transformer.
US Referenced Citations (10)
Number Name Date Kind
2587169 Kivari Feb 1952 A
3355612 Peek Nov 1967 A
3525012 Dimitracopoulos et al. Aug 1970 A
4112336 Rios Sep 1978 A
4443778 Mewissen Apr 1984 A
4464607 Peil et al. Aug 1984 A
4682276 Miller Jul 1987 A
4998044 Nilssen Mar 1991 A
5585697 Cote et al. Dec 1996 A
6147457 Lohn et al. Nov 2000 A