This application is a national stage entry of PCT/AU2011/000232, filed Mar. 2, 2011, which claims priority to AU Application No. 2010900875, filed Mar. 2, 2010.
The present invention relates to an incendiary machine, in particular, but not exclusively, for aerial dispensing of incendiary capsules.
It is known to drop incendiaries from aircraft including helicopters, light planes and unmanned or remote controlled air craft. One known incendiary is in the form of a small ball (approximately 32 mm in diameter) filled with a quantity of potassium permanganate powder or granules. A semi-automatic dispenser is available having a hopper which holds a supply of balls and feeds the balls sequentially to a chute where they are injected with a volume of glycol. The potassium permanganate and glycol react exothermically to generate a flame. Applicant has previously developed an alternate apparatus for initiating and dispensing incendiaries. This apparatus is described in International publication no. WO 2004/041365. Following extensive research and experimentation, Applicant has made further developments in the area of aerial incendiary delivery.
In one aspect the invention provides an incendiary machine comprising:
The control system may be configured to selectively enable an operator to dispense primed incendiaries either: automatically at a user defined rate; or, manually on each manual operation of a control button or switch.
The control system may comprise a user interface enabling a user to set a rate of automatically dispensing primed incendiaries.
The control system may comprise at least one incendiary sensor for detecting the presence of an incendiary belt in the machine.
The control system may be configured to prevent operation of the priming system when the at least one incendiary sensor fails to detect the presence of an incendiary belt in the machine.
The control system may be operable to perform a LOAD function wherein the control system operates the feed and dispensing system to load a belt of incendiaries to a position where priming system is capable of priming the capsules.
The control system may be operable to perform a PRIME function which primes the priming system with priming fluid prior to feeding of the belt to the region.
The priming system may comprise an injection device capable of piercing the capsules to deliver the priming liquid to the capsules.
The feed and dispensing system may comprise a blade commonly mounted with the injection device and arranged to separate a capsule from the belt substantially simultaneously with the injection device injecting the priming liquid into the capsule.
The feed and dispensing may comprise a carousel provided with a plurality of recesses for seating respective capsules in the belt.
The feed and dispensing may comprise a channel extending from an inlet for the belt to the carousel and a biased plate arranged to bias a capsule into a recess of the carousel.
The incendiary machine may comprise a drive system arranged to drive the feed and dispensing system, the drive system comprising a first motor under the control of the control system.
The drive system may comprise a plurality of cogs mounted on respective shafts and operatively coupled together where torque imparted by the first motor to one of the cogs drives the operatively coupled cogs.
A first cog may be coupled with the carousel and a second cog may be coupled to the blade and injection device, and the drive system may further comprise an endless belt coupling the first cog to the second cog wherein torque from the first motor drives both the carousel and the blade and injection device.
The incendiary machine may comprise a pump motor operable to drive the pump, wherein the control system is operable to control the first motor and pump motor independently of each other.
The incendiary machine may comprise a housing in which the feed and dispensing system and the priming system are housed and a frame arranged to demountably support the housing and to support an incendiary belt feed.
The incendiary machine according may comprise a tray pivotally coupled to the frame and on which the incendiary belt feed is supported.
A second aspect of the invention provides an incendiary machine comprising:
The control system may be configured to selectively enable an operator to dispense primed incendiaries either: automatically at a user defined rate; or, manually on each manual operation of a control button or switch.
The control system may comprise a user interface enabling a user to set a rate of automatically dispensing primed incendiaries.
The control system may comprise at least one incendiary sensor for detecting the presence of an incendiary belt in the machine.
The control system may be configured to prevent operation of the priming system when the at least one incendiary sensor fails to detect the presence of an incendiary belt in the machine.
The control system may be operable to perform a LOAD function wherein the control system operates the feed and dispensing system to load a belt of incendiaries to a position where priming system is capable of priming the capsules.
The control system may be operable to perform a PRIME function which primes the priming system with priming fluid prior to feeding of the belt to the region.
Embodiments of the present invention will now be described by way of example only with reference to the accompanying drawings in which:
With reference to the accompanying drawings and in particular
Referring to FIGS. 1 and 3-6 the machine 10 is seen as comprising a dispenser housing 30 which houses the feed and dispensing system 12, the priming system 20, and the control system; and a frame 32 on which the dispenser housing 30 is disposed. The frame is also configured to support a box 34 holding an incendiary feed supply of one or more incendiary belts 14. The frame 32 has a step configuration having a first portion 36 on which the housing 30 is demountably supported and a second portion 38 which lies in a parallel plane to the portion 36 but is off set below the portion 36 and on which the box 34 is supported. A tilting tray 40 is pivotally coupled to the frame portion 38. Tray 40 is provided with upstanding walls 42a, 42b, 42c and 42d (hereinafter referred to in general as “walls 42”) within which the box 34 is seated on the tray 40. The walls 42a and 42b are relatively low in height and contiguous with each other extending about adjacent edges of the tray 40. The wall 42c extends along another edge of the tray 40 between the walls 42b and 42d and is on a side of the tray 40 adjacent the housing 30. The wall 42c is convexly curved when viewed in a direction from wall 42a to wall 42c. The curvature of the wall 42c is such that an upper edge 44 of the wall 42c lies in close proximity to though slightly spaced from the first frame portion 36. The spacing is arranged so as to minimise the likelihood of the belt 14 getting caught between the tray 40 and the frame 32.
As is best seen in
The upper portion 36 is a rectangular frame comprising bars 50a, 50b, 50c (shown in
A pair of curved bars 66a and 66b lie on opposite sides of the frame 32 and extend between the frame portions 36 and 38. The bar 66a extends from an end of the bar 64b to the bar 50a at a location in board of the cross bar 52. The curved bar 66b extends from an end of the bar 64b to the bar 50c in board of the cross bar 52. The curved bars 66a and 66b are of a shape arranged to seat in a door way of a Bell 206 Jet Ranger or Bell 206L Long Ranger aircraft.
However, when the machine 10 is being used in a different type of aircraft such a Eurocopter AS350 or other helicopter with a flat floor in order to ensure proper seating of the frame 32 an adapter plate 68 (see
An upstanding and bent handling frame portion 72 is attached to the frame portion 38 from a location adjacent the bar 64c. The frame 72 initially extends generally upwardly in a direction of the tray 40 and thereafter extends at an obtuse angle away from the tray 40.
A drop tube 74 is demountably coupled by a pin 76 to the tube 56 and extends downwardly to a location outside of the aircraft which carries the machine 10.
The box 34 is held on the tray 40 by a strap 78 and holds a drum or roller on which the belt 14 is wound. It is envisaged that the belt 14 is a continuous belt wound about the roller and may comprise for example 1000 end to end joined incendiary capsules 16.
With reference to
The feed and dispensing system 12 also includes a cutting blade 94 which is able to separate individual capsules 16 from the belt 14 in the region 18 prior to the separated capsules 16 entering the chute 28. The blade 94 is eccentrically supported on a rotating wheel 96 so that as the wheel 96 rotates the blade 94 undergoes a reciprocating up and down motion. The wheel 96 is located so that the cutting blade 94 when at the top of its reciprocating motion coincides with the location of and extends into a slot 92 and thereby cuts a leading capsule 16 from the belt 14. As explained herein after, a belt and cog system ensures synchronisation between the rotation of the carousel 80 and the wheel 96 and thus the reciprocation of the blade 94 to ensure that the blade 94 reaches a top of its travel when in alignment with a slot 92.
With reference to
The plate 110 is biased radially toward carousel 80 by a spring (not shown) which extends about a portion of a circular bar 118 which in turn is coupled to a slide block 120. The bar 118 passes through a lug 122 and is formed with a flange 124 at an end distant the slide block 120. The spring which biases the shoe 110 is retained between the lug 122 and the flange 124. The slide block 120 is able to slide linearly in a track (not shown) which also extends in the radial direction of a carousel 80.
Priming system 20 comprises the pump 22 and the injection device 24 which may take the form of a hypodermic needle. Injection device 24 is mounted on the same rotating wheel 96 as the cutting blade 94. The pump 22 pumps glycol from a glycol tank held within the housing 30 on a side of the plate 90 opposite the pump 22 to the injection device 94. To this end, a first conduit 1 provides fluid communication between the pump 22 and glycol tank, while a second conduit 128 provides fluid communication with the injection device 24. The injection device 24 is located relative to the blade 94 so that when the blade 94 is received within a slot 92 to cut the leading capsule 16 from the belt 14, the injection device 24 pierces the separated capsule 16 to allow an injection of ethylene glycol into the capsule.
Motor 132 drives a main drive shaft 136 which is supported at spaced apart locations by bearings 138a and 138b. A cog 140 is mounted on the drive shaft 136 between the bearings 138a and 138b. A second shaft 144 (see
An endless toothed belt 166 shown in phantom line in
As previously mentioned, the machine 10 has a tank for storing a supply of ethylene glycol and a tank for holding a supply of water. Although the tanks are not shown in the accompanying drawings, openings 170 and 172 for the glycol and water tanks respectively are depicted in
A belt insertion guide 184 is formed on a side wall 186 of the housing 30 to assist in guiding the belt 14 of incendiaries 16 into the automatic feeder 98 and in particular the channel 100. The guide 184 is in the form of a hemispherical block where an outer circumferential surface 188 is relieved or recessed to have a progressively reduced radius for an arc of approximately 90° thereby forming a rebated surface 190 which leads to the opening 102.
The housing 30 is also provided with a door 192 shown best in
The control system 26 comprises a processor (not shown) which controls the motors 132 and 134 and is responsive to inputs from various sensors and switches of the machine 10. Power for operation of the control system 26 and the motors 132 and 134 is provided by an external power supply, typically from the aircraft on which the machine 10 is carried. A power supply socket 196 is provided on the top surface 178 of the housing 30 to facilitate connection with the power supply.
The sensors incorporated in the control system 26 include level sensors (not shown) for the glycol tank and water tank; a door sensor (not shown) which senses whether the door 192 is opened or shut; a torque or load sensor (not shown) for the motor 132; and a pair of incendiary belt sensors 19a and 198b (see
A master power switch 206 is in the form of an aviation two way switch. This provides power to the controller 26 and motors 132 and 134 upon activation, assuming of course that a cable for supplying power is connected via the socket 196 to the machine 10. On activation of the master switch 206, the pendant 200 will light, indicating that the machine 10 is powered. Directly below the master power switch 208 there is provided a glycol stop switch 208. When the switch 208 is depressed, the feed and dispensing system 12, and the priming system 20 are immediately stopped rendering the capsules 16 harmless. If the glycol stop switch 208 has been depressed, the machine 10 will not operate until the switch 208 is reset. The switch 208 is a rotary type push switch and in order to,reset must be turned until it pops back up.
Beneath the glycol switch 208 there is provided input devices in the form of a load button 210, an unload button 212, and in between a prime button 214 (see
The unload button 212 when activated enables the incendiary belt 14 to be extracted from the machine 10. Typically the unload button 212 will be activated when a mission or operation is complete, or in between drop zones. The unload button 212 is only active if the glycol stop switch 208 is activated, the remote pendant 200 is blank, and the belt 14 is of sufficient length so that its presence is sensed by the sensor 198a. Prime button 214 is located between the buttons 210 and 212 and when pressed operates the pump motor 134 and thus the pump 22 to pump ethylene glycol to the injection device 24. The prime button 214 is depressed to reprime the pump 22 and the injection device 24 in the event that they have been drained of glycol. When these have been primed, and the button 214 is operated, a flow of ethylene glycol should be evident from the tip of the injection device 24.
When the manual button 216 is depressed, the machine 10 will drop one primed incendiary capsule 16 every time a GO button 222 on the pendant 200 is pressed. The pendant 200 is provided with two stop buttons 224r or 224l (hereinafter referred to in general as “stop buttons 224”). The stop button 224r is on the right hand side of the pendant 200, while the stop button 224l is on the left hand side of the pendant 200, with the GO button 222 between the two stop buttons. The controller 26 is programmed to stop operation of the machine 10 to the extent that it ceases to drop capsules 16 when either of the stop buttons 224 is pressed. Assuming that either of the buttons 218i,218d is pressed to select a desired drop rate, pressing the GO button will activate the machine 10 to drop primed incendiary capsules 16 at the designated drop rate. If it is desired to switch to manual mode, one of the stop buttons 224 is depressed and the manual button 216 is depressed. Now upon each depression the GO button 220 a single capsule is primed, cut from the belt 14 and dropped. An indicator light 226 is associated with the manual button 216, and an indicator light 228 is associated with the drop rate buttons 218i and 218d. The lights 226 and 228 illuminate each time the associated buttons are depressed.
A tally display 230 is provided on the pendant 200 to provide an indication of the number of incendiary capsules dropped. The tally display 230 is associated with a Day button 232 and a Pack button 234. Each of the buttons 232 and 234 has a respective associated indicator light 236 and 238. By pressing the Day button 232, the tally display 230 will display a running total of the incendiary capsules dropped before the day or mission. When a user pushes the Day button 232, the associated indicator light 236 is illuminated. Alternately, by pressing the Pack button 234, the tally display 230 will provide a display of the number of incendiary capsules dropped from the current incendiary capsule belt 14. Pressing of the Pack button 234 is acknowledged or indicated by illumination of the indicator lamp 238.
The tally display 230 is also coupled with the control system 26 to display fault messages to a user. For example, as previously described, the machine 10 includes a sensor for sensing the torque or load on the motor 132. If this torque or load is at abnormal levels, the machine 10 is stopped and a message “JAM” is displayed in the tally display 230. The pendant 200 is, also provided with a drop indicator lamp 240, a fault indicator lamp 242, a glycol level indicator lamp 244 and a water level indicator lamp 246. The drop indicator lamp 240 illuminates whenever an incendiary capsule is dropped. The level indicator lamps 224 and 246 illuminate whenever the respective glycol or water tanks are less than one quarter full.
The fault indicator lamp 242 is illuminated when the control system 26 and associated sensors detect a fault in the machine 10. The nature of the fault is displayed in the tally display 230.
If the glycol stop button 208 has not been depressed, then the control system conducts an operation 206 to determine whether or not the motor 132 is under an unusual torque or load. If this is the case, then the control system 26 conducts an operation 262 to cause the tally display 230 to display the message “JAM”, and an operation 264 to cause the fault lamp 242 on the pendant 200 to illuminate.
If there is no unusual torque or load on the motor 132, then the pendant 200 enters an activated state 266 in which the buttons and switches on the pendant 200 may be operated and acted upon by the controller 26 and machine 10. In addition, the prime button 214 which is located on the upper surface 178 of the housing 30 also becomes active. Upon pressing the prime button 214, the control system 26 performs an interrogation step 268 in which it interrogates the sensors 198a and 198b to determine whether or not an incendiary belt 14 is loaded into the machine 10. If not, the control system 26 enters a state 270 in which it prevents the priming system 20 from priming the pump 22 and the injection device 24. However, if it is determined that there is a belt 14 in the machine 10, the control system 26 enters a state 272 where it enables the priming system 20 to operate the pump 22 for a limited duration, for example for one quarter of a turn of the pump 22, in order to prime the pump 22 and the injection device 24. The prime button 214 may be held down to effect multiple consecutive quarter turns of the pump in order to fully prime the pump 22 and the injection device 24. This is indicated or can be verified by the visual ejection of glycol from the injection device 24.
By depressing the drop rate buttons 218i and 218d, the control system 26 enters a state 271 in which it operates the drop display 220 to display the selected drop rate for the incendiaries 16. The control system also enters the drop rate into a register 274.
On depressing the manual button 216, the control system 26 at step 275 operates the drop rate display 220 to display a series of dashes in each character location of the display 220. Additionally, the controller 26 conducts an operation 276 in which it sets the feed and dispensing system 12 and the priming system 20 to prime and separate one capsule 16 from the belt 14 for each depression of the GO button 222. This operating procedure for the feed and dispensing system 12 and the priming system 20 is also logged in the register 274. The register 274 will either hold the desired drop rate of capsule, or hold an indication that capsules are to be dropped at a rate of one for each depression of the GO button 222.
The register 274 is linked with the GO button 222 so that when the GO button 222 is depressed, the control system 26 enters a state 278 where actions stored in register 274 are acted upon by the machine 10. Thus, if the machine 10 is in the automatic mode where capsules are dropped at a rate set by the drop rate buttons 218i and 218d, the machine 10 operates to dispense primed capsules 16 at the selected drop rate. However if the machine 10 is in the manual mode, then it operates to dispense one primed capsule 16 for each depression of the GO button 222.
Upon depression of either of the stop buttons 224i or 224r, the machine enters a stop state 280 where the control system 26 functions to complete the current dispensing cycle and then immediately stops operation of the feed and dispensing system 12 and the priming system 20 to thereby prevent dispensing of any further capsules 16.
When depressing the Day button 232, the control system 26 drives the tally display 230 to depict the number of capsules 16 dispensed on that day or for a particular mission. This tally is a tally of drops since the previously reset of the day count. Holding the Day button in a depressed state for five seconds causes the controller at step 284 to clear the day count shown in the tally display 230.
On pressing the Pack button 234 the controller 26 performs an operation 286 where it drives the tally display 230 to display the number of capsules 16 used from the box of capsules 34. Holding down the Pack button 234 for an extended period of time such as five seconds causes the controller 26 to perform an operation 288 where it clears or resets the PACK count.
In one example of use of the machine 10, the machine 10 may be fitted to a helicopter with the housing 10 mounted on the frame portion 36, the box 34 of capsules supported on the frame portion 38, and the frame 32 fixed to the helicopter by use of one or more straps with a machine 10 orientated so that when the drop tube 74 is attached to the tube 56 on the frame 32, the drop tube depends vertically down from a location outside of the helicopter. Box 34 is held on the tray 40 by the strap 78. The glycol and water tanks are filled by removal of the corresponding tank caps 174 and 176. Machine 10 is supplied with power from the helicopter by coupling of a power cable from a power supply of the helicopter to the power supply socket 196. When the helicopter is airborne an operator may then turn on the machine 10 using the master switch 206.
Prior to loading machine 10 with belt 14, the priming system 20 may itself be primed by pressing of the prime button 214 to ensure that the pump 22 and the injection device 24 are filled with glycol prior to operation of the machine 10 to dispense capsules 16. To initially load the belt 14 into the machine 10, an operator pushes a leading end of the belt 14 through the opening 102 and the channel 100 to the automatic feeder 110. Assuming the carousel 80 is turning, the auto feeder 98 operates to bias a leading capsule 16 on the belt 14 into an adjacent recess 82 of the carousel 80. As the belt is consumed, it unrolls from different locations on the roller held within the box 34. Due to the pivotal nature of the tray 40, the tray and box are able to tilt to minimise the twist in the belt 14 as well as the angle at which the belt extends from the opening 102 to the point of departure from the roller on which the belt 14 is wound.
An operator may push the drop rate buttons 218i and 218d to select a drop rate of capsules. On pressing the GO button the motor 132 will be operated and controlled by the control system 26 to rotate the carousel 80 at the required speed in order to provide the selected drop rate. If however the manual button 216 has been pressed then only a single capsule will be cut, primed and dropped from each pressing of the GO button 222. However, the control system 26 is also sensitive to the inputs of the drop sensors 198a and 198b. In the event that no capsule is sensed by the sensor 198b, the controller 26 will enable the motor 132 to operate to rotate the carousel 80 and indeed also rotate the wheel 96 causing reciprocating motion of the injection device 24 and the cutter 94, but it will not operate the motor 134 and therefore no glycol will be pumped by the priming system 20.
Now that an embodiment of the invention has been described in detail it will be obvious to those of ordinary shill in the art that numerous modifications and variations may be made without departing form the basic inventive concepts. For example the plate 110 for biasing capsules in the recesses 84 is,shown as separate from the channel and movable linearly in a radial direction referenced to the carousel 80. However in one variation depicted in
All such medications and variations together with other that would be obvious to persons of ordinary skill in the art are deemed to be within the scope of the present invention the nature of which is to be determined by the above description and the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2010900875 | Mar 2011 | AU | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/AU2011/000232 | 3/2/2011 | WO | 00 | 11/12/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/106835 | 9/9/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1332022 | Becker | Feb 1920 | A |
1632414 | Nosan | Jun 1927 | A |
1721883 | Louis et al. | Jul 1929 | A |
2278949 | Sabini | Apr 1942 | A |
2347163 | Kraft et al. | Apr 1944 | A |
2442381 | Short | Jun 1948 | A |
2646786 | Henry | Jul 1953 | A |
3448654 | Crabtree et al. | Jun 1969 | A |
3519221 | Kifor | Jul 1970 | A |
3780655 | Allen et al. | Dec 1973 | A |
3951068 | Schroeder | Apr 1976 | A |
3979850 | Schiessl et al. | Sep 1976 | A |
4015355 | Schiessl et al. | Apr 1977 | A |
4141274 | Gerber | Feb 1979 | A |
4696347 | Stolov et al. | Sep 1987 | A |
5168123 | Lee | Dec 1992 | A |
5267501 | Shillig | Dec 1993 | A |
5783768 | Jacobson | Jul 1998 | A |
5997667 | Jacobson | Dec 1999 | A |
6877433 | Stevenson | Apr 2005 | B1 |
7083000 | Edwards et al. | Aug 2006 | B2 |
7210537 | McNeil | May 2007 | B1 |
7275529 | Boys | Oct 2007 | B2 |
7451679 | Stevenson et al. | Nov 2008 | B2 |
20030006319 | Silverstein et al. | Jan 2003 | A1 |
20070007021 | Regan | Jan 2007 | A1 |
20100101401 | Toeckes et al. | Apr 2010 | A1 |
Number | Date | Country |
---|---|---|
245244 | Jan 1926 | GB |
2004041365 | May 2004 | WO |
2008104061 | Sep 2008 | WO |
2009059367 | May 2009 | WO |
Entry |
---|
Aug. 10, 2000, RD 436051 A (Anonymous) abstract. |
Feb. 9, 2004, International Search Report PCT/AU2003/001477. |
Sep. 9, 2011, International Search Report PCT/AU2011/000232. |
2004, Premo MK III Aerial Ignition System, Operations Handbook, SN 0308-394AF, Year of Manufacture: 2004. |
Number | Date | Country | |
---|---|---|---|
20130061738 A1 | Mar 2013 | US |