Incorporating rapid cooling in tissue fusion heating processes

Information

  • Patent Grant
  • 7708735
  • Patent Number
    7,708,735
  • Date Filed
    Tuesday, July 19, 2005
    19 years ago
  • Date Issued
    Tuesday, May 4, 2010
    14 years ago
Abstract
An electrode sealing assembly for use with an electrosurgical instrument for sealing tissue includes first and second jaw members which are movable from a first position in spaced relation relative to one another to at least one second position for grasping tissue. The jaw members include electrically conductive sealing plates designed to selectively transmit electrosurgical energy to tissue disposed between the sealing plates. The jaw members also include a thermoelectric cooling plate having a first surface in direct contact with an outer surface of the sealing plate. The thermoelectric cooling plate includes first and second electrical connections on opposite sides of the jaw member. The first connection is configured to selectively transmit a first electrical potential and the second connection is configured to selectively transmit a second electrical potential such that heat generated by the sealing plates is transferred away from the tissue via the thermoelectric cooling plate.
Description
BACKGROUND

1. Technical Field


The present disclosure relates to electrosurgical instruments used for open and endoscopic surgical procedures for sealing or fusing tissue. More particularly, the present disclosure relates to a bipolar forceps for sealing vessels, vascular tissues and soft tissues having an electrode sealing assembly which is designed to limit and/or reduce by rapid cooling thermal spread to adjacent tissue structures.


2. Related Prior Art


Electrosurgical forceps utilize both mechanical clamping action and electrical energy to effect hemostasis by heating the tissue and blood vessels to coagulate and/or cauterize vessels or tissue. However, certain surgical procedures may require sealing blood vessels or vascular tissue rather than just simply effecting hemostasis. “Vessel sealing” or “Tissue Fusion” is defined as the process of liquefying the collagen, elastin and ground substances in the tissue so that it reforms into a fused mass with significantly-reduced demarcation between the opposing tissue structures. In contrast, the term “cauterization” is defined as the use of heat to destroy tissue (also called “diathermy” or “electrodiathermy”) and the term “coagulation” is defined as a process of desiccating tissue wherein the tissue cells are ruptured and dried. Coagulation of small vessels is usually sufficient to permanently close them. Larger vessels or tissue need to be “sealed” to assure permanent closure.


Numerous electrosurgical instruments have been proposed in the past for various open and endoscopic surgical procedures. However, most of these instruments cauterize or coagulate tissue and are normally not designed to provide uniformly reproducible pressure on the blood vessel or tissue which, if used for sealing purposes, would result in an ineffective or non-uniform seal. For example, U.S. Pat. No. 2,176,479 to Willis, U.S. Pat. Nos. 4,005,714 and 4,031,898 to Hiltebrandt, U.S. Pat. Nos. 5,827,274, 5,290,287 and 5,312,433 to Boebel et al., U.S. Pat. Nos. 4,370,980, 4,552,143, 5,026,370 and 5,116,332 to Lottick, U.S. Pat. No. 5,443,463 to Stern et al., U.S. Pat. No. 5,484,436 to Eggers et al. and U.S. Pat. No. 5,951,549 to Richardson et al., all relate to electrosurgical instruments for coagulating, cauterizing, and cutting vessels or tissue.


Many of these instruments include blade members or shearing members which simply cut tissue in a mechanical and/or electromechanical manner and are relatively ineffective for vessel sealing purposes. Other instruments generally rely on clamping pressure alone to procure proper sealing thickness and are often not designed to take into account gap tolerances and/or parallelism and flatness requirements which are parameters which, if properly controlled, can assure a consistent and effective tissue seal. For example, it is known that it is difficult to adequately control thickness of the resulting sealed tissue by controlling clamping pressure alone for either of two reasons: 1) if too much force is applied, there is a possibility that the two poles will touch and energy will not be transferred through the tissue resulting in an ineffective seal; or 2) if too low a force is applied, a thicker less reliable seal is created.


Commonly-owned U.S. Application Serial Nos. PCT Application Serial No. PCT/US01/11340 filed on Apr. 6, 2001 by Dycus, et al. entitled “VESSEL SEALER AND DIVIDER”, U.S. application Ser. No. 10/116,824 filed on Apr. 5, 2002 by Tetzlaff et al. entitled “VESSEL SEALING INSTRUMENT” and PCT Application Serial No. PCT/US01/11420 filed on Apr. 6, 2001 by Tetzlaff et al. entitled “VESSEL SEALING INSTRUMENT” teach that to effectively seal tissue or vessels, especially large vessels, two predominant mechanical parameters must be accurately controlled: 1) the pressure applied to the vessel; and 2) the gap distance between the conductive tissue contacting surfaces (electrodes). As can be appreciated, both of these parameters are affected by the thickness of the vessel or tissue being sealed. Accurate application of pressure is important for several reasons: to reduce the tissue impedance to a low enough value that allows enough electrosurgical energy through the tissue; to overcome the forces of expansion during tissue heating; and to contribute to the end tissue thickness which is an indication of a good seal.


It has been found that using electrosurgical instruments to seal tissue may result in some degree of so-called “thermal spread” across adjacent tissue structures. “Thermal spread” refers generally to the heat transfer traveling along the periphery of the electrically conductive surfaces. This can also be termed “collateral damage” to adjacent tissue. As can be appreciated, reducing the thermal spread during an electrical procedure reduces the likelihood of unintentional or undesirable collateral damage to surrounding tissue structures which are adjacent to an intended treatment site. Reducing the collateral damage to surrounding tissue or maintaining the viability of surrounding tissue after the sealing process is known to promote tissue healing and decrease overall healing time by stimulating/improving healing response. Controlling tissue cooling may also reduce adhesion or buildup of tissue on the electrodes and also assist during the formation of the tissue seal, e.g., cross-linking or other chemical bonding, during the reformation or renaturation of collagen.


Instruments which include dielectric coatings disposed on the outer surfaces are known and are used to prevent tissue “blanching” at points normal to the sealing site. In other words, these coatings are primarily designed to reduce accidental burning of tissue as a result of incidental contact with the outer surfaces of the end effectors. So far as is known, these coatings are not designed or intended to reduce collateral tissue damage or thermal spread to adjacent tissue (tissue lying along the tissue plane).


Commonly-owned U.S. patent Ser. No. 10/474,168 entitled “ELECTROSURGICAL INSTRUMENT WHICH REDUCES COLLATERAL DAMAGE TO ADJACENT TISSUE” filed on Oct. 3, 2003 by Buysse et al. relates to an instrument which is configured to control or regulate the electrical field around the electrically conductive sealing surfaces to reduce stray current concentrations which can result in thermal spread to adjacent tissue structures.


Thus, a need exists to develop an electrosurgical instrument which includes an electrode sealing assembly which can seal vessels and tissue consistently and effectively and reduce the undesirable effects of thermal spread across or to adjacent tissue structures by utilizing a thermally conductive, electrically non-conductive material.


In addition, in tissue fusion applications that utilize energy to treat tissue, the need exists to maximize and enhance tissue strength at the tissue fusion site and minimize detrimental tissue effects to adjacent or surrounding tissue structures.


SUMMARY

It is an object of the present disclosure to provide an electrode sealing assembly designed for use with an electrosurgical instrument for sealing tissue which rapidly cools during or after tissue fusion heating processes.


The present disclosure generally relates to an electrode sealing assembly for use with an electrosurgical instrument for sealing tissue. The electrode sealing assembly includes first and second jaw members which are movable from a first position in spaced relation relative to one another to at least one second position for grasping tissue therebetween. The jaw members include electrically conductive sealing plates disposed in opposing relation to one another. At least one jaw member includes a thermoelectric cooling plate having a first surface in direct contact with an outer surface of the sealing plate. The thermoelectric cooling plate include first and second electrical connections disposed on opposite sides of the thermoelectric cooling plate. The first connection is configured to selectively transmit a first electrical potential and the second connection is configured to selectively transmit a second electrical potential such that heat generated by the sealing plates is transferred away from the tissue via the thermoelectric cooling plate.


The heat sink may be configured to be coupled to an ultimate heat sink for transferring heat from the jaw member(s). The heat sink may include a coolant line disposed therethrough. The coolant line may be configured to receive a coolant to transfer heat from the thermoelectric cooling plate. In one embodiment, the coolant is a thermally conductive, non-electrically conductive fluid which may be one of the group consisting of air, nitrogen, carbon dioxide, and 3M™ Fluorinert™ Electronic Liquid FC-7 (available from 3M Company, St. Paul, Minn.).


In one particularly useful embodiment, the present disclosure relates to an electrode sealing assembly designed for use with an electrosurgical instrument for sealing tissue. The electrode sealing assembly includes first and second electrode jaw members which are movable from a first position in spaced relation relative to one another to at least one second position for grasping tissue therebetween. The jaw members include sealing plates disposed in opposing relation relative to one another. Each jaw member includes a cooling line disposed therethrough which is configured to convey a cooling liquid therethrough to absorb heat from the sealing plates during or after sealing.


The cooling line may be configured to be coupled to a second or an ultimate heat sink for transferring heat from the jaw member(s). In addition, the coolant line may be configured to receive a coolant to transfer heat from the jaw member(s). In one embodiment, the coolant is a thermally conductive, non-electrically conductive fluid.


In another particularly useful embodiment, the present disclosure relates to an electrode sealing assembly designed for use with an electrosurgical instrument for sealing tissue, which includes: first and second jaw members being movable from a first position in spaced relation relative to one another to at least one second position for grasping tissue therebetween. Each of the jaw members includes: an insulating housing having at least one electromechanical interface; and an electrically conductive sealing plate having at least one corresponding electromechanical interface which mates with the electromechanical interface of the insulating housing. The insulating housing has a coolant duct disposed therethrough which is configured to transport a coolant to the insulating housing to dissipate heat away from surrounding tissue.


In another embodiment, the coolant duct is configured to transport the coolant through one or more nozzle(s) disposed on an upper surface of the insulating housing. The nozzle(s) are configured to discharge the coolant to an environment proximate the electrode sealing assembly. In another embodiment, the coolant duct is configured to transport the coolant through the insulating housing to an ultimate heat sink.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the subject instrument are described herein with reference to the drawings wherein:



FIG. 1A is a perspective view of an endoscopic bipolar forceps which is configured to support an electrode sealing assembly according to the present disclosure;



FIG. 1B is a perspective view of an open bipolar forceps which is configured to support the electrode sealing assembly according to the present disclosure;



FIG. 2A is an enlarged, perspective view of the electrode sealing assembly according to the present invention;



FIG. 2B is an enlarged, perspective view of the embodiment shown in FIG. 2A with parts separated;



FIG. 3 is an enlarged, perspective view of an alternate, simplified embodiment of the electrode sealing assembly with parts separated according to the present disclosure;



FIG. 4 is an enlarged, perspective view of an alternate embodiment of the electrode sealing assembly showing an active cooling system designed to reduce thermal spread during activation;



FIG. 5A is an enlarged view of a seal utilizing a conventional vessel sealing instrument with a conventional electrode sealing assembly;



FIG. 5B is an enlarged view of a seal utilizing a vessel sealing instrument having the electrode sealing assembly according the present disclosure;



FIG. 6 is a schematic, end view of an alternate electrode sealing assembly which may be utilized to reduce thermal spread during activation;



FIG. 7 is a schematic, end view of another alternate electrode sealing assembly which may be utilized to reduce thermal spread during activation;



FIG. 8A shows a perspective view of a sealed tissue area of an end-to-end anastomosis utilizing a straight electrode sealing assembly according to the present disclosure;



FIG. 8B shows a perspective view of a sealed tissue area of an end-to-end anastomosis utilizing a curved electrode sealing assembly according to the present disclosure;



FIG. 9A shows an end view of the jaw members of an electrode sealing assembly which are configured to support an alternate embodiment of an electrode cooling assembly according to the present disclosure;



FIG. 9B shows a perspective view of the jaw members according to FIG. 9A;



FIG. 9C shows a top perspective view of the jaw members of an electrode sealing assembly which are configured to support still another embodiment of an electrode cooling assembly according to the present disclosure;



FIG. 9D shows a bottom perspective view of the jaw members according to FIG. 9C.



FIG. 10A shows an end view of jaw members of an electrode sealing assembly which are configured to support yet another alternate embodiment of an electrode cooling assembly according to the present disclosure;



FIG. 10B shows a perspective view of the jaw members according to FIG. 10A;



FIG. 11 shows a perspective view of the jaw members of an electrode sealing assembly which are configured to support yet another alternate embodiment of an electrode cooling assembly according to the present disclosure;



FIG. 12 is an enlarged, perspective view of yet another alternate embodiment of the electrode sealing assembly of FIG. 4 showing an active cooling system designed to reduce thermal spread during activation;



FIG. 13A is a cross-sectional end view of an embodiment of a cooling line for an electrode cooling assembly;



FIG. 13B is a cross-sectional end view of an alternate embodiment of a cooling line for an electrode cooling assembly;



FIG. 14A is a perspective view of the endoscopic bipolar forceps of FIG. 1A which is configured to support the cooling lines of FIG. 4, FIG. 10A, FIG. 10B, FIG. 11, and FIG. 12; and



FIG. 14B is a perspective view of the open bipolar forceps of FIG. 1B which is configured to support the cooling lines of FIG. 4, FIG. 10A, FIG. 10B, FIG. 11, and FIG. 12.





DETAILED DESCRIPTION

It has been found that by providing a thermally conductive and electrically non-conductive material adjacent to the electrically conductive sealing surfaces, surgeons can more readily and more easily produce a consistent, high quality seal and effectively reduce thermal spread across or to adjacent tissue. For the purposes herein the term “thermal spread” refers generally to the heat transfer (heat conduction, heat convection or electrical current dissipation) dissipating along the periphery of the electrically conductive or electrically active surfaces to adjacent tissue. This can also be termed “collateral damage” to adjacent tissue and is further discussed in commonly owned, co-pending PCT Patent Application PCT/US04/13273 entitled “ELECTROSURGICAL INSTRUMENT WHICH REDUCES THERMAL DAMAGE TO ADJACENT TISSUE” which is incorporated herein by reference in its entirety.


It is envisioned that the configuration of the thermally conductive material which surrounds the perimeter of the electrically conductive surface will effectively absorb heat during electrosurgical activation (or thermally dissipate the heat during electrosurgical activation) and generally restrict heat travel to areas between the opposing electrically conductive surfaces. In other words, the material acts like a so called “heat sink”. As mentioned above, the thermally conductive material is also electrically non-conductive which also restricts current concentrations to between the two opposing surfaces.


It is important to note that this is different from dielectrically coating the outer surfaces of the instrument to prevent tissue “blanching” at points normal to the sealing site. These coatings are not designed or intended to reduce collateral tissue damage or thermal spread to adjacent tissue (tissue lying along the tissue sealing plane).


It is contemplated that by providing a thermally conductive material adjacent to the electrically conductive surface, the thermally conductive path is altered thereby influencing the thermal spread/collateral damage to adjacent tissue structures. In addition, the thermally conductive, electrically non-conductive material also isolates the two electrically opposing poles (i.e., electrodes) from one another thereby reducing the possibility that tissue or tissue fluids can create an unintended bridge or path for current travel to adjacent tissue. The thermally conductive material and electrically conductive sealing surface may be dimensioned such that the current is concentrated at the intended sealing site between the opposing electrically conductive surfaces as explained in more detail below.


It is contemplated that by providing additional cooling of the electrosurgical jaw members of the bipolar forceps such as by solid state cooling via thermoelectric coolers (TEC) based on the Peltier effect, the thermal spread/collateral damage to adjacent tissue structures may also be further reduced. It is further contemplated that additional cooling may be provided to the electrosurgical jaw members via a cooling duct passing internally through the jaw members.


Referring now to FIGS. 1A and 1B, two bipolar forceps 10 and 10′ are shown; a first forceps 10 for use with endoscopic surgical procedures and a second forceps 10′ for use with open surgical procedures. For the purposes herein, either an endoscopic instrument or an open instrument may be utilized for supporting the electrode sealing assembly according to the present disclosure. Obviously, different electrical and mechanical connections and considerations apply to each particular type of instrument, however, the novel aspects with respect to the electrode sealing assembly and its operating characteristics remain generally consistent with respect to both the open or endoscopic designs of FIGS. 1A and 1B. Forceps 10 and 10′ are shown by way of example and other electrosurgical forceps are also envisioned which may support the electrode sealing assembly of the present disclosure. In the drawings and in the description which follows, the term “proximal”, as is traditional, will refer to the end of the forceps 10, 10′ which is closer to the user, while the term “distal” will refer to the end which is further from the user.



FIG. 1A shows one example of an endoscopic vessel sealing instrument 10 which is configured to support an electrode sealing assembly 100. More particularly, forceps 10 generally includes a housing 20, a handle assembly 30, a rotating assembly 80, a trigger assembly 70 and the end effector assembly 100 which mutually cooperate to grasp, seal and, if warranted, divide tissue. The forceps 10 includes a shaft 12 which has a distal end 14 dimensioned to mechanically engage the end effector assembly 100 and a proximal end 16 which mechanically engages the housing 20 proximate the rotating assembly 80.


Forceps 10 also includes a plug 300 which connects the forceps 10 to a source of electrosurgical energy, e.g., an electrosurgical generator (not shown) via an electrical cable 310. Handle assembly 30 includes a fixed handle 50 and a movable handle 40. Handle 40 moves relative to fixed handle 50 to actuate the end effector assembly 100 and enable a user to grasp and manipulate tissue 400 (See FIG. 6). More particularly, the end effector assembly 100 includes a pair of opposing jaw members 110 and 120 which move in response to movement of the handle 40 from an open position wherein the jaw members 110 and 120 are disposed in spaced relation relative to one another, to a clamping or closed position wherein the jaw members 110 and 120 cooperate to grasp tissue therebetween.


The housing 20 encloses a drive assembly (not shown) which cooperates with the movable handle 40 to impart movement of the jaw members 110 and 120 from the open position to the clamping or closed position. The handle assembly 30 can generally be characterized as a four-bar mechanical linkage which provides a unique mechanical advantage when sealing tissue between the jaw members 110 and 120. For example, once the desired position for the sealing site is determined and the jaw members 110 and 120 are properly positioned, handle 40 may be compressed fully to lock the jaw members 110 and 120 in a closed position against the tissue. The details relating to the inter-cooperative relationships of the inner-working components of forceps 10 are disclosed in commonly-owned U.S. patent application Ser. No. 10/284,562 and U.S. patent application Ser. No. 10/460,926 which are both incorporated in their entirety by reference herein. When the jaw members 110 and 120 are fully compressed about the tissue, the forceps 10 is now ready for selective application of electrosurgical energy.


Experimental results suggest that the magnitude of pressure exerted on the tissue by the electrically conductive sealing surfaces 112, 122 of the jaw members 110 and 120, respectively, is important in assuring a proper surgical seal. Pressures within a working range of about 3 kg/cm2 to about 16 kg/cm2 and, preferably, within a working range of about 6 kg/cm2 to about 13 kg/cm2 have been shown to be effective for sealing various tissue types. Most preferably, the pressures are within a working range of about 4.5 kg/cm2 to about 8.5 kg/cm2 to optimize sealing.


An open forceps 10′ for use in connection with traditional open surgical procedures and is shown by way of example in FIG. 1B. Open forceps 10′ includes a pair of elongated shaft portions 12a′, 12b′ each having a proximal end 16a′ and 16b′, respectively, and a distal end 14a′ and 14b′, respectively. The forceps 10′ includes jaw assembly 100′ which attaches to the distal ends 14a′ and 14b′ of shafts 12a′ and 12b′, respectively. Jaw assembly 100′ includes an upper jaw member 110′ and a lower jaw member 120′ which are movable relative to one another to grasp tissue therebetween.


Each shaft 12a′ and 12b′ may include a handle 17a′ and 17b′ disposed at the proximal end 16a′ and 16b′ thereof which each define a finger hole 18a′ and 18b′, respectively, therethrough for receiving a finger of the user. As can be appreciated, finger holes 18a′ and 18b′ facilitate movement of the shafts 12a′ and 12b′ relative to one another which, in turn, pivot the jaw members 110′ and 120′ from the open position wherein the jaw members 110′ and 120′ are disposed in spaced relation relative to one another for manipulating tissue to a clamping or closed position wherein the jaw members 110′ and 120′ cooperate to grasp tissue therebetween.


A ratchet 30′ is included for selectively locking the jaw members 110′ and 120′ relative to one another at various positions during pivoting. Preferably, each position associated with the cooperating ratchet interfaces 30′ holds a specific, i.e., constant, strain energy in the shaft members 12a′ and 12b′ which, in turn, transmits a specific closing force to the jaw members 110′ and 120′. It is envisioned that the ratchet 30′ may include graduations or other visual markings which enable the user to easily and quickly ascertain and control the amount of closure force desired between the jaw members 110′ and 120′. One of the shafts, e.g., 12b′, includes a proximal shaft connector Mange 19′ which is designed to connect the forceps 10′ to a source of RF energy (not shown) via an electrosurgical cable 310 and plug 300. The details relating to the inner-working electrical connections and various components of forceps 10′ are disclosed in commonly-owned U.S. patent application Ser. No. 10/369,894 which is incorporated in its entirety by reference herein.


As mentioned above, two mechanical factors play an important role in determining the resulting thickness of the sealed tissue and effectiveness of the seal, i.e., the pressure applied between opposing jaw members 110′ and 120′ and the gap between the opposing jaw members 110′ and 120′ during the sealing process. Applying the correct force is also important for other reasons: to reduce the impedance of the tissue to a low enough value that allows enough current through the tissue; and to overcome the forces of expansion during the heating of the tissue in addition to contributing towards creating the required seal thickness necessary for a good seal.


For the purposes herein, electrode assemblies 100 and 100′ include the same general configuration and are designed to reduce thermal spread to adjacent tissue. However, certain modifications may have to be made to each electrode sealing assembly 100 (or 100′) to fit the electrode sealing assembly 100 (or 100′) to a specific support structure for an open or endoscopic instrument. By controlling the intensity, frequency and duration of the RF energy applied to the tissue, the user can selectively seal the tissue as needed for a particular purpose. As can be appreciated, different tissue types and the physical characteristics associated with each tissue type may require different electrical sealing parameters.



FIGS. 2A and 2B show enlarged views of the lower jaw 120 of the electrode sealing assembly 100 (or 100′) according to the present disclosure. As can be appreciated a second jaw 110 with similar components as described below is positioned in opposition to jaw member 120. Only the elements of jaw member 120 are described herein, however, jaw member 110 also includes identical or similar elements which are designed to accomplish similar purposes such that bipolar electrosurgical energy can be conducted through tissue held between the two jaw members 110 and 120 to effect a seal.


More particularly, lower jaw member 120 includes an insulated outer housing 114 which supports a thermally conductive, electrically non-conductive material 128 and electrically conductive sealing surface or sealing plate 122. As best seen in FIG. 2B, insulating housing 114 includes a support surface 115 which houses an electrode support step 127. Support step 127 includes a series of electromechanical interfaces 125a, 125b and 125c which matingly engage a set of corresponding interfaces 123a, 123b and 123c which depend from sealing plate 122. The outer periphery of the support step 127 is also preferably dimensioned to matingly engage the thermally conductive material 128 as will be explained in more detail below.


Each electromechanical interface, e.g., 125a, is electrically connected to an electrical potential by way of wire 160 which extends to the generator (not shown). It is envisioned that other electrical configurations are plausible as is known in the art and the above is shown by way of example. For example, electrically conductive tubes or plates may be utilized within the jaw members 110 and 120 to supply current to the sealing plate 122.


Support surface 115 also includes a series of notches 137, 121a, 121b and screw holes 138 which secure the insulating housing 114 to the electrode sealing assembly 100. For example, and as best shown in FIG. 2A, the support surface 115 includes a pair of flanges 139a and 139b which project laterally from the distal end of the support surface 115 and which are each dimensioned to receive the head of a screw 135a and 135b, respectively. In turn, the screws 135a and 135b secure the support surface to the electrode sealing assembly 100. A proximal notch 137 mates with another screw (not shown) to position the end of the support surface 115 on the electrode sealing assembly 100. Other apertures, e.g., 138, may also be utilized to align and/or secure the support surface 115 on the electrode sealing assembly 100 during the manufacturing process.


Thermally conductive material 128 is may be made from two laterally-opposing segments 128a and 128b which mate to encompass the sealing plate 122 and the support step 127 as best seen in FIG. 2A. A series of set screws or pegs 142 secure the two thermally conductive segments 128a and 128b about the sealing plate 122 and about the support step 127 once assembled. As mentioned above, the thermally conductive material 128 is designed to effectively absorb or thermally dissipate the heat during electrosurgical activation and generally restrict heat travel to areas between the opposing sealing plates 122. In other words, the material acts like a “heat sink” to limit thermal damage to surrounding tissue.


As mentioned above, the thermally conductive material 128 is also electrically non-conductive which also restricts current concentrations to between the two opposing sealing plates 122. The thermally conductive material 128 may be made from a material having a high thermal conductivity value or “k” value and minimum electrical conductively, e.g., anodized aluminum. Alternatively, the thermally conductive material 128 may also be made from or combined with a semi-resilient or elastomeric material so as not to inflict mechanical damage to the tissue during compression. Mechanical damage may also be diminished by minimizing the overall tissue contact area of the thermally conductive material 128 (See, e.g., FIG. 3). Alternatively, a spring loaded system (not shown) designed to apply pressures below critical tissue pressure limits may be employed to reduce mechanical damage of the tissue when under compression.


Other compression-reducing systems are also envisioned to avoid over-compression of tissue adjacent the sealing plates 122 and between the opposing thermally conductive materials 128, e.g., rubber-like inserts, foam or the like. Other examples of thermally conductive and electrically non-conductive materials which can be utilized to minimize thermal damage to surrounding tissue include, but are not limited to: thermally conductive plastic materials which dissipate heat along a preferred isothermal profile to the surrounding environment resulting in a lower maximum temperature and reduced formation of hot spots. Examples of such materials are commonly sold under the trademark CoolPoly® by Cool Polymers, Inc., of Rhode Island and composite materials such as ALO2.


As mentioned above, the thermally conductive material 128 includes two segments 128a and 128b which mate about the sealing plate 122 and the support step 127. More particularly, each segment 128a and 128b includes a tissue contacting surface 143a and 143b with a recessed portion 129a and 129b, respectively, along an inner peripheral edge of the tissue contacting surface 143a and 143b such that, once the two segments 128a and 128b are assembled they form a slot 141 for seating the sealing plate 122 therein. The sealing plate 122 is typically seated to lie generally flush with or below the tissue contacting surfaces 143a, 143b of the thermally conductive segments 128a and 128b. It is also envisioned that the thickness (or height relative to the insulating housing 114) of the thermally conductive material 128 proximate the recessed portions 129a, 129b is about equal to the height of the step 127 plus the thickness of the sealing plate 122 such that, once assembled, the sealing plate 122 and the thermally conductive material 128 lie substantially flush or below within the sealing plane.


The thermally conductive segments 128a and 128b may also include a series of fin-like extensions 145a, 145b, 145c and 146a, 146b, 146c, respectively, which extend laterally therefrom. It is envisioned that the fin-like extensions 145a, 145b, 145c and 146a, 146b, 146c further absorb or dissipate heat emanating from the sealing plates 122 during or after activation. The fins 145a, 145b, 145c and 146a, 146b, 146c may also be shaped and dimensioned to facilitate manufacturing and assembly, i.e., the fins 145a, 145b, 145c and 146a, 146b, 146c may be shaped to include slots 132 therein which allow passage of one or more screws 135a, 135b which attach the insulating housing 114 to the underlying electrode sealing assembly 100.


As mentioned above, the sealing plate 122 is electromechanically connected to the underlying insulating housing 114 by virtue of a series of electro-mechanical interfaces 123a, 123b and 123c which project outwardly therefrom to mate with a series of corresponding electromechanical interfaces 125a, 125b and 125c. It is envisioned that the electromechanical interfacing elements 123a, 123b, 123c and 125a, 125b, 125c maintain electrical continuity from the insulating housing 114 to the sealing plate 122. As mentioned above, once assembled and interfaced with the insulating housing 114, the thermally conductive material 128 encapsulates and further secures the sealing plate 122 atop the insulating housing 114.


A series of stop members 150a, 150b and 150c may be disposed on the tissue contacting surfaces or the inner-facing surfaces of the electrically conductive sealing plates 122 (and/or the opposite sealing plate 112 (See FIG. 1A) on jaw member 110) to facilitate gripping and manipulation of tissue and to define a gap distance between opposing jaw members 110 and 120 (or 110′ and 120′) during sealing. In order to achieve a desired spacing between the electrically conductive plates 112, 122 of the respective jaw members 110, 120, (i.e., gap distance) and apply the required force to properly seal tissue, at least one jaw member 110 or 120 includes at least one stop member or stop members, e.g., 150a, 150b and 150c, which limit the movement of the two opposing jaw members 110 and 120 relative to one another. The stop members, e.g., 150a, extends from the sealing plate or tissue contacting surface 122 a predetermined distance according to the specific material properties of the stop member 150a (e.g., compressive strength, thermal expansion, etc.) to yield a consistent and accurate gap distance during sealing. The gap distance between opposing sealing surfaces 112, 122 (and the sealing surface (not shown) of jaw member 110) during sealing preferably ranges from about 0.001 inches to about 0.006 inches and, preferably, between about 0.002 inches and about 0.003 inches. For larger tissue structures such as bowel, lung or intestine the gap distance ranges from about 0.001 inches to about 0.012 inches and preferably from about 0.005 inches to about 0.007 inches.


Stop members 150a-150c are typically made from an insulative material, e.g., parylene, nylon and/or ceramic. The stop members 150a-150c can be disposed on one or both of the jaw members 110 and 120 and may be dimensioned in a variety of different shapes and sizes, e.g., longitudinal, circular, ridge-like, etc.


The non-conductive stop members 150a-150c are molded onto the sealing plates 112 and 122 (e.g., overmolding, injection molding, etc.), stamped onto the sealing plates 112 and 122, deposited (e.g., plasma deposition) onto the sealing plates 112 and 122 and/or thermally sprayed onto the surface of the sealing plates 112 and 122 (e.g., a ceramic material may be thermally sprayed) to form the stop members 150a-150c. Many different configurations for the stop members 150a-150c are discussed in detail in commonly-assigned, co-pending U.S. Application Serial No. PCT/US01/11413 entitled “VESSEL SEALER AND DIVIDER WITH NON-CONDUCTIVE STOP MEMBERS” by Dycus et al. which is hereby incorporated by reference in its entirety herein.


It is also envisioned that the thermally conductive material 128 may be dimensioned thicker than the height of step 127 and the thickness of the sealing plate 122 such that the thermally conductive material 128 acts like a stop member for maintaining a gap distance between the sealing plates 122 during activation.


In addition to keeping the pressure within a working range (i.e., about 3 kg/cm2 to about 16 kg/cm2) and the gap distance within a specified range (i.e., about 0.001 inches to about 0.012 inches for large tissue structures) the electrical power should be kept within the range of about 1 W to about 350 W, about 1 Vrms to about 400 Vrms and about 0 Amps to about 5.5 Amps.


Thermal spread on each side of the sealing plates 122 is ideally kept to less than about 2 mm and preferably to less than about 0.5 mm to promote tissue healing. However, when sealing larger or well-vascularized tissue structures, thermal spread is acceptable to about 5 mm. It is envisioned that maintaining the viability of tissue surrounding or adjacent the sealing site or fused tissue area will promote healing.



FIGS. 3 and 4 show alternate embodiments of lower jaw members 220 and 320 of the electrode sealing assembly 100 which may be utilized to reduce thermal spread to adjacent tissue during activation. More particularly, FIG. 3 shows a lower jaw member 220 which includes the same insulating housing 114 and sealing plate 122 configuration of FIGS. 2A and 2B. The thermally conductive material 228 is modified to have a reduced width which, as mentioned above, reduces the overall tissue contacting surface of the thermally conductive material 128. It is envisioned that mechanical damage may be diminished or at least maintained below critical tissue pressure limits by minimizing the overall tissue contact area of the thermally conductive material 128. Much in the same fashion as described above with respect to FIGS. 2A and 2B, the thermally conductive material 228 is secured about the sealing plate 122 and the step 127 by a series of screws 242 which mate into apertures 240 and 241 in segments 228a and 228b. As can be appreciated, the overall required width of the thermally conductive material 228 may be dependent upon type of tissue being sealed or the thickness of the tissue being sealed. Step 127 may include a reliefed portion 126 disposed therein which seats or aligns the sealing plate 122 during assembly.



FIG. 4 shows yet another possible configuration of the lower jaw member 320 of the electrode sealing assembly 100 (or 100′) designed to reduce thermal spread to adjacent tissue. In this embodiment, a thermally conductive material is not utilized as the heat absorbing material or heat sink, but, rather, an active cooling system 340 surrounds the sealing plate 122 to reduce heat dissipation to surrounding tissue. More particularly, insulating housing 314 includes a series of ducts or tubes 355, 355a and 355b disposed therethrough. The coolant ducts 355a, 355b are configured to transport a coolant 370 to the insulating housing 314 to dissipate heat away from surrounding tissue adjacent the sealing plates 122 to actively cool the tissue during activation which reduces thermal spread.


The coolant ducts 355, 355a, 355b supply active cooling liquid (preferably, non-electrically conductive cooling liquid) or gas (e.g., air) 370 through at least one of a series of nozzles or ports 350a and 350b disposed on an upper surface 330 of the insulating housing 314. The nozzles or ports 350a and 350b are located immediately adjacent the sealing plate 122 and extend longitudinally on opposite sides thereof, i.e., ports 350a extend along one side of the sealing plate 122 and ports 350b extend along the opposite side of the sealing plate 122. The nozzles or ports 350a and 350b are configured to discharge the coolant 370 to an environment proximate the electrode sealing assembly 100 (or 100′).


As can be appreciated, the sealing system 340 supplies coolant (liquid or gas (e.g., air)) 370 to the tissue areas adjacent the sealing plates 122 to actively cool the tissue during activation which reduces thermal spread. With respect to this particular embodiment and compared to the embodiments of FIGS. 2A-3, the insulating housing 314 encapsulates the sealing plate 122 by virtue of a mechanical connection or manufacturing process, e.g. stamp molding or injection molding.



FIGS. 5A and 5B show a side-by-side comparison of the resulting tissue seals 420 and 420′ utilizing a prior vessel sealing instrument (See FIG. 5A) and a vessel sealing instrument designed to reduce thermal spread to adjacent tissue 400 according to the present disclosure (See FIG. 5B). More particularly and with respect to FIG. 5A, there is some notable thermal damage 430 to adjacent tissue 400 proximate the tissue seal 420. FIG. 5B shows the resulting seal 420′ utilizing one of the various electrode assemblies 100-(or 100′) described herein. A more uniform and narrower seal 420′ is evident with a significant reduction of thermal damage 430′ to adjacent tissue 400. It is envisioned that reducing thermal damage to adjacent tissue 400 can improve healing especially in sensitive tissue areas, e.g., small and large intestines. As mentioned above, the thermal spread is preferably kept to about 2 mm with sensitive large tissues and vessels and about 5 mm with non-sensitive tissues and vessels.



FIG. 6 shows an alternative electrode sealing assembly 500 which is also designed to reduce thermal spread to adjacent tissue. More particularly, electrode sealing assembly 500 includes upper and lower jaws 510 and 520, respectively, which each include a thermally conductive, electrically insulative material 530a and 530b, e.g., a so-called “cool polymer” material, disposed on (or within) the respective tissue sealing plates, 512 and 522. The cool polymers 530a, 530b may be centrally disposed within each sealing plate 512 and 522, respectively. It is envisioned that the cool polymers 530a and 530b will act as heat sinks (i.e., absorb heat) during activation which will limit the thermal spread to adjacent tissue 400. Examples of cool polymers include thermally conductive plastic materials which dissipate heat in a more isothermal profile to the surrounding environment resulting in a lower maximum temperature and reduced formation of hot spots such as materials commonly sold under the trademark CoolPoly® by Cool Polymers, Inc., of Rhode Island. Alternatively, certain known ceramic materials may also be used to reduce tissue effects.



FIG. 7 shows yet another electrode sealing assembly 600 which is also designed to reduce thermal spread to adjacent tissue 400. More particularly, electrode sealing assembly 600 includes upper and lower jaw members 610 and 620, respectively which are designed to engage tissue 400 therebetween. Each of the jaw members 610 and 620 includes a recessed portion 630 and 640, respectively which is dimensioned to allow bulging portions 450a and 450b of the tissue 400 to bulge into each respective jaw member 610 and 620 when the tissue 400 is under compression. It is envisioned that the moisture in the less-compressed tissue bulges 450a and 450b essentially acts as a heat sink to absorb heat during activation and reduce thermal spread to surrounding tissue.


It is envisioned that the jaw members 110 and 120 may be curved in order to reach specific anatomical structures and promote more consistent seals for certain procedures. For example, it is contemplated that dimensioning the jaw members 110 and 120 at an angle of about 45 degrees to about 70 degrees is preferred for accessing and sealing specific anatomical structures relevant to prostatectomies and cystectomies, e.g., the dorsal vein complex and the lateral pedicles. Other angles may be preferred for different surgical procedures.


For example and as best shown in FIGS. 8A and 8B, it may be preferable to use a curved jaw member (not shown) for an end-to-end anastomosis of bowel tissues. FIG. 8A shows the resulting seal 420 of an end-to-end anastomosis of two bowel segments 400a and 400b utilizing a straight pair of jaw members. FIG. 8B shows a resulting seal 420′ of an end-to-end anastomosis of two bowel segments 400a′ and 400b′ utilizing a curved pair of jaw members. As can be appreciated the resulting seal 420′ from the curved pair of jaw members tends to more closely conform to the general contours of the two tissue segments 400a′ and 400b′ which is envisioned will promote tissue healing around the anastomosis site.


It is also envisioned that the jaw members 110 and 120 may be tapered which is advantageous for two reasons: 1) the taper will apply constant pressure for a constant tissue thickness at parallel; 2) the thicker proximal portion of each jaw member 110 and 120 will resist bending due to the reaction force of the tissue 400.


It is also envisioned that the above forceps 10 (or 10′) may be utilized in connection with a closed-loop RF control system which optimizes sealing based upon pre-surgical conditions or changes in physical or electrical conditions during sealing. One example of a closed-loop control system is described in commonly-owned U.S. patent application Ser. No. 10/427,832 filed on May 1, 2003 entitled “METHOD AND SYSTEM FOR CONTROLLING OUTPUT OF RF MEDICAL GENERATOR” and commonly-owned U.S. patent application Ser. No. 10/835,657 filed on Apr. 30, 2004 entitled “METHOD AND SYSTEM FOR PROGRAMMING AND CONTROLLING AN ELECTROSURGICAL GENERATOR SYSTEM” which are both incorporated in their entirety by reference herein. In general, the closed-loop control, system includes a user interface for allowing a user to select at least one pre-surgical parameter, such as the type of surgical instrument operatively connected to the generator, the type of tissue and/or a desired surgical effect. A sensor module is also included for continually sensing at least one of electrical and physical properties proximate the surgical site and generating at least one signal relating thereto.


The closed loop control system also includes a control module for continually receiving or monitoring surgical parameters and each of the signals from the sensor module and processing each of the signals in accordance with a desired surgical effect using a microprocessor, computer algorithm and/or a look-up table. The control module generates at least one corresponding control signal relating to each signal from the sensor module(s), and relays the control signal to the electrosurgical generator for controlling the generator. The closed loop system may be employed in a feedback circuit or part of a surgical method for optimizing a surgical seal. The method includes the steps of: applying a series of electrical pulses to the surgical site; continually sensing electrical and physical properties proximate the surgical site; and varying pulse parameters of the individual pulses of the series of pulses in accordance with the continually-sensed properties. Alternatively, the signal may be continuous.


It is also contemplated that the sealing surfaces 122 of the jaw members 110 and 120 can be made from or coated with non-stick materials to reduce tissue adhesion. Alternatively, the jaw members 110 and 120 may be surface treated, roughened, to reduce sticking, e.g., bead blasting, stamping. When utilized on the sealing surfaces 122, these materials provide an optimal surface energy for eliminating sticking due in part to surface texture and susceptibility to surface breakdown due to electrical effects and corrosion in the presence of biologic tissues. It is envisioned that these materials exhibit superior non-stick qualities over stainless steel and should be utilized on the forceps 10 (or 10′) in areas where the exposure to pressure and RF energy can create localized “hot spots” more susceptible to tissue adhesion. As can be appreciated, reducing the amount that the tissue “sticks” during sealing improves the overall efficacy of the instrument. Controlling tissue cooling may also reduce adhesion or buildup of tissue on the electrodes and also assist during the formation of the tissue seal, e.g., cross-linking or other chemical bonding, during the reformation or renaturation of collagen.


The non-stick materials may be manufactured from one (or a combination of one or more) of the following “non-stick” materials: nickel-chrome, chromium nitride, MedCoat 2000, Inconel 600, tin-nickel or various nitride coatings which include, but are not limited to, TiN, ZrN, TiAlN and CrN. For example, high nickel chrome alloys, Ni200, Ni201 (˜100% Ni) may be made into electrodes or sealing surfaces by metal injection molding, stamping, machining or any like process. Also and as mentioned above, the sealing surfaces 122 may also be “coated” with one or more of the above materials to achieve the same result, i.e., a “non-stick surface”.


It is further envisioned that thermal spread may be reduced by altering the physical dimensions of the insulating housing 114. For example, in some cases it may be preferable to manufacture the insulating housing 114 from a variety of materials (either alone or in combination) which include: nylons and syndiotactic polystryrenes such as QUESTRAe manufactured by DOW Chemical; Polybutylene Terephthalate (PBT); Polycarbonate (PC); Acrylonitrile Butadiene Styrene (ABS); Polyphthalamide (PPA); Polymide, Polyethylene Terephthalate (PET); Polyamide-imide (PAI); Acrylic (PMMA); Polystyrene (PS and HIPS); Polyether Sulfone (PES); Aliphatic Polyketone; Acetal (POM) Copolymer; Polyurethane (PU and TPU); Nylon with Polyphenylene-oxide dispersion; and Acrylonitrile Styrene Acrylate.


It is also contemplated that only one of the two jaw members 110 and 120 may include one of the aforedescribed mechanisms or configurations for reducing thermal spread. For example and with reference to FIGS. 2A, 2B and 3, it is contemplated that only the lower jaw member 120, 220 may include the thermally conductive material 128, 228 disposed between the insulating housing 114 and the sealing plate 122. With reference to FIG. 4, only the lower jaw member 320 may include the active cooling system 340. With reference to FIG. 6, only the top jaw member 510 may be configured to house a cool polymer 530a for reducing thermal spread to adjacent tissue 400. Likewise and with reference to FIG. 7, only the upper jaw member 610 may include a recessed area 630 for receiving bulging tissue 450a. It is further contemplated that the above configurations may be used in combination to reduce thermal spread to adjacent tissue. For example, a cool polymer 530a may be used in combination with the thermally conductive material 128 of FIG. 2A or used in replace of the thermally conductive material 128 of FIG. 2A depending upon a particular purpose.


It is envisioned that the forceps 10 or 10′ may be designed such that it is fully or partially disposable depending upon a particular purpose or to achieve a particular result. For example, electrode sealing assembly 100 may be selectively and releasably engageable with the distal end 14 of the shaft 12 and/or the proximal end 16 of shaft 12 may be selectively and releasably engageable with the housing 20 and the handle assembly 30. In either of these two instances, the forceps 10 would be considered “partially disposable” or “reposable”, i.e., a new or different electrode sealing assembly 100 (or electrode sealing assembly 100 and shaft 12) selectively replaces the old jaw assembly 110 as needed.


Another embodiment of an electrode cooling system for an electrode assembly 700 according to the present disclosure is illustrated in FIG. 9A. More particularly, FIG. 9A shows an end view of a distal end of lower electrode jaw member 720 and a distal end of upper electrode jaw member 710 of electrode assembly 700 adapted for use as a bipolar forceps 10. The upper electrode jaw member 710 includes upper electrically insulating portions 711a, 711b joined at edges 713a, 713b to contact electrically conductive seal plates 712a, 712b. The lower electrode jaw member 720 includes lower electrically insulating portions 721a, 721b joined at edges 723a, 723b to contact electrically conductive seal plates 722a, 722b. A knife blade 702 is shown disposed within a knife slot 704 formed by inward lateral side edges 706a and 706b of the electrically conductive seal plates 712a and 712b and by inward lateral side edges 708a and 708b of the electrically conductive seal plates 722a and 722b. The jaw members 710 and 720 have a generally U-shaped cross-section with a generally flat central portion 710a, 710b, 720a, 720b, in the electrically conductive seal plates 712a, 712b, and 722a, 722b, respectively.


During the tissue sealing process, heat Q is generated on inner surface 727a, 727b in the generally flat central portion 710a, 710b of electrically conductive seal plates 712a and 712b. Similarly, heat Q′ is generated on inner surface 729a, 729b in the generally flat central portion 720a, 720b of electrically conductive seal plates 722a and 722b.


At least one of the jaw members 710 and 720 includes a thermoelectric plate such that heat generated by at least one of the jaw members is transferred away from the tissue via the thermoelectric plate. More particularly, a first surface 730 of an upper thermoelectric (TEC) plate 718 and an outer surface 714a, 714b of the upper electrically conductive seal plates 712a, 712b in the generally flat central portion 710a, 710b have a thermally conductive, electrically insulating material 780 disposed therebetween. Correspondingly, a first surface 740 of a lower thermoelectric (TEC) plate 728 and an outer surface 724a, 724b of the lower electrically conductive seal plates 722a, 722b in the generally flat central portion 720a, 720b have a thermally conductive, electrically insulating material 782 disposed therebetween.


The heat Q generated on inner surface 727a, 727b of upper jaw member 710 is transferred through the upper electrically conductive seal plates 712a, 712b and through the thermally conductive, electrically insulating material 780 to the first surface 730 of the upper TEC plate 718 where the heat Q is transferred to the TEC plate 718.


Similarly, the heat Q generated on inner surface 729a, 729b of upper jaw member 720 is transferred through the lower electrically conductive seal plates 722a, 722b and through the thermally conductive, electrically insulating material 782 to the first surface 740 of the lower TEC plate 728 where the heat Q is transferred to the TEC plate 728.


It is contemplated that in most cases of electrosurgery, both of the jaw members 710 and 720 would include their respective TEC plates 718 and 728 for cooling purposes. Furthermore, those skilled in the art will recognize that TEC plates 718 and 728 may be alternatively referred to as solid state heat pumps or Peltier coolers.


As shown in FIG. 9B, electrical lead 734a is connected to a proximal end 749 of upper TEC plate 718, while electrical lead 734b is connected to a distal end 750 of upper TEC plate 718. Similarly, electrical lead 736a is connected to a proximal end 751 of lower TEC plate 728, while electrical lead 736b is connected to a distal end 752 of lower TEC plate 728. The leads 734a, 734b, 736a, 736b are routed through a conduit or cable 754 to a direct current (DC) power supply 756. As noted previously, during the tissue sealing process, heat Q is generated on inner surface 727a, 727b in the generally flat central portion 710a, 710b of upper seal plates 712a, 712b. Similarly, heat Q′ is generated on inner surface 729a, 729b in the generally flat central portion 720a, 720b of lower seal plate 722a, 722b.


The TEC plates 718 and 728 provide the capability of directing this heat Q away from the inner surfaces 727a, 727b and 729a, 729b depending upon direction of current flow through the electrical leads. In most cases of electrosurgery, the TEC plates would be used for cooling rather than heating. To achieve cooling, direction of current is controlled by the power supply 756 and current is directed through the TEC plates 718 and 728 such that the heat Q from the seal plates 712a, 712b, 722a, 722b is directed away from the tissue and towards the opposite end of the TEC plates 718 and 728. As can be appreciated, the heat Q generated during tissue sealing by the electrodes 710 and 720 is transferred away from the tissue and is not transmitted to surrounding tissue, thus reducing collateral damage to tissue. The thermally conductive, electrically insulating materials 780, 782 may be made of a cool polymer as described previously which prevents electrical continuity between the DC power supply 756 and an AC power supply from the previously discussed source of electrosurgical energy e.g., an electrosurgical generator (not shown) via plug 300 and electrical cable 310 (see FIGS. 1A and 1B).



FIGS. 9C and 9D show one particularly useful embodiment according to the present disclosure wherein TEC plate 718 is utilized to dissipate heat from the jaw members 710 and 720 during tissue treatment. More particularly, and with specific reference to jaw member 710, the jaw member 710 includes upper electrically insulating portions 711a and 711b joined at edges 713a, 713b to contact an electrically conductive seal plate 712. TEC plate 718 is disposed within jaw member 710 on the opposite side 714′ of tissue engaging surface 714 of the electrically conductive sealing plate 712. A thermally conductive, electrically insulating material 784 is disposed between the TEC sealing plate 718 and sealing plate 712 on outer surfaces 714a and 714b of the sealing plate 712. The plate 718 includes first and second sides 760 and 760′, respectively. Side 760 abuts the opposite end 714′ of sealing plate 712. A series of electrical leads 765a, 765b, and 765c are connected to the second side 760′ while a series of electrical leads 766a, 766b, and 766c are connected to the first side 760.


It is envisioned that a first electrical potential 758 may be selectively transmitted through leads 765a, 765b and 765c and a second electrical potential 759 may be selectively transmitted through leads 766a, 766b, and 766c such that different electrical potentials are created on opposite sides of the plate 718. As can be appreciated, heat Q in this instance may be directed proximally for absorption by a second heat sink, e.g., cool polymer, a fluid through one or more ducts 854 disposed in contact with TEC plate 718, or another TEC plate.


Jaw member 720 is configured in much the same manner and includes similar elements for directing heat Q proximately. More particularly, and with specific reference to jaw member 720, the jaw member 720 includes lower electrically insulating portions 721a and 721b joined at edges 723a, 723b to contact an electrically conductive seal plate 722. TEC plate 728 is disposed within jaw member 720 on the opposite side 724′ of tissue engaging surface 724 of the electrically conductive sealing plate 722. A thermally conductive, electrically insulating material 786 is disposed between the sealing plate 722 and the TEC plate 728 on outer surfaces 724a and 724b of the sealing plate 722. The plate 728 includes first and second sides 762 and 762′, respectively. Side 762 abuts the opposite end 724′ of sealing plate 722. A series of electrical leads 767a, 767b, and 767c are connected to the first side 762 while a series of electrical leads 769a, 769b and 769c are connected to the second side 762′.


The thermally conductive, electrically insulating materials 784, 786 may be made of a cool polymer as described previously which prevents electrical continuity between the DC power supply 756 and an AC power supply from the previously discussed source of electrosurgical energy.


It is envisioned that first electrical potential 758 may be selectively transmitted through leads 767a, 767b and 767c and second electrical potential 759 may be selectively transmitted through leads 769a, 769b, and 796c such that different electrical potentials are created on opposite sides of the plate 728. As can be appreciated, heat Q′ in this instance may be directed proximally for absorption by a second heat sink, e.g., cool polymer, a fluid through one or more ducts 856 disposed in contact with TEC plate 728, or another TEC plate. As can be appreciated, the two jaw members 710, 720 cooperate to remove excess heat from the tissue to reduce collateral tissue effects during sealing.



FIG. 10A shows a proximal end of the electrode assembly 700 configured in one particularly useful embodiment for forced convection cooling of the upper electrode jaw members 710 and lower electrode jaw members 120. FIG. 10A is in all respects identical to FIG. 9A except that electrode assembly 700 is configured for forced convection cooling of the upper seal plates 712a, 712b and lower seal plates 722a, 722b. More particularly, a heat sink 818 is disposed in direct contact with a second surface 732 of thermoelectric cooling plate 718. A coolant or cooling line 850 is disposed through or embedded within heat sink 818. The coolant line 850 has a coolant supply end 850a and a coolant return end 850b projecting from a proximal end of the heat sink 818.


Similarly, a heat sink 828 is disposed in direct contact with a second surface 742 of thermoelectric cooling plate 728. A coolant or cooling line 852 is disposed through or embedded within heat sink 828. The coolant line 852 has a coolant supply end 852a and a coolant return end 852b projecting from a proximal end of the heat sink 828.



FIG. 10B shows a front perspective view of the electrode assembly 700 of FIG. 10A as configured for forced convection cooling of the upper seal plates 712a, 712b and lower seal plates 722a, 722b. More particularly, the heat sink 818 is disposed in direct contact with the second surface 732 of thermoelectric cooling plate 718. The coolant line 850 is disposed through or embedded within heat sink 818. The coolant line 850 has coolant supply end 850a and coolant return end 850b projecting from a proximal end 838 of the heat sink 818. The coolant line 850 may form a U-bend 850c proximate to a distal end 842 of heat sink 818.


Similarly, heat sink 828 is disposed in direct contact with the second surface 742 of thermoelectric cooling plate 728. The coolant line 852 is disposed through or embedded within heat sink 828. The coolant line 852 has a coolant supply end (not shown) and a coolant return end (not shown) projecting from a proximal end 840 of the heat sink 828. The coolant line 852 may form a U-bend 852c proximate to a distal end 844 of heat sink 828 in an analogous manner as shown with respect to U-bend 850c of coolant line 850 in heat sink 818.


In the foregoing embodiment, it is particularly suitable for the coolant lines 850 and 852 to contain an active cooling fluid (e.g., a thermally conductive, non-electrically conductive cooling liquid or a gas, e.g., air). In particular, the cooling fluid may include a liquid coolant such as water or a non-conductive fluid such as a medicinal or biocompatible fluid. However, a gas such as, but not limited to, air, nitrogen or carbon dioxide (preferably at ambient or above ambient pressure conditions) may be applied under forced flow conditions. Alternatively, coolant lines 850 and 852 may also be filled with a stagnant substance such as a below ambient temperature gas (including air, nitrogen or carbon dioxide), or a liquid or solid or frozen substance such as water ice or dry ice (solid carbon dioxide).


Coolant applied to coolant supply lines 850 and 852 removes the heat Q generated during the tissue sealing process. As discussed in more detail below with respect to FIGS. 14A and 14B, the heat sinks 818 and 828 may be configured to be coupled to an ultimate heat sink for transferring heat from the jaw members 710 and 720. More particularly, via the coolant supply ends 850a, 852a, the coolant or cooling lines 850 and 852 may be configured to receive the coolant to transfer the heat from the respective thermoelectric cooling plates 718 and 728. Furthermore, via the coolant return ends 850b, 852b, the coolant or cooling lines 850 and 852 may be configured to be coupled to an ultimate heat sink via the forceps 10.



FIG. 11 shows yet another embodiment of an electrode cooling system for an electrode assembly 900 according to the present disclosure. More particularly, FIG. 11 shows a proximal end 938 of an upper electrode jaw member 910 and a proximal end 940 of a lower electrode jaw member 920 of electrode assembly 900 adapted to bipolar forceps 10. A knife blade 902 is shown disposed within a knife slot 904 formed by the inward lateral side edges 906a and 906b of the upper jaw member 910 and by the inward lateral side edges 908a and 908b of the lower jaw member 920. The jaw members 910 and 920 have a generally U-shaped cross-section.


At least one of the jaw members 910 and 920 includes a cooling line disposed therethrough or embedded therein. More particularly, a coolant or cooling line 950 may be disposed or embedded within upper electrode jaw member 910. The coolant line 950 has a coolant supply end 950a and a coolant return end 950b projecting from a proximal end 938 of the upper jaw member 910. The coolant line 950 may form a U-bend 850c proximate to a distal end 942 of upper jaw member 910.


Similarly, a coolant or cooling line 952 may be disposed or embedded within lower electrode jaw member 920. The coolant line 952 has a coolant supply end 952a and a coolant return end 952b projecting from a proximal end 940 of the lower jaw member 920. The coolant line 952 may form a U-bend 952c proximate to a distal end 944 of lower jaw member 920.


The coolant lines 950 and 952 may be configured to receive a coolant to transfer heat from jaw members 910 and/or 920. In a similar manner to the previous embodiment described above, it is particularly suitable for the coolant received by the coolant lines 950 and 952 to be an active cooling fluid (preferably, a non-electrically conductive cooling liquid or a gas, e.g., air).


Coolant applied to coolant supply lines 950 and 952 removes the heat Q generated during the tissue sealing process. As discussed in more detail below with respect to FIGS. 14A and 14B, the coolant supply ends 950a, 952a and coolant return ends 950b, 952b may be coupled to an ultimate heat sink via the forceps 10.



FIG. 12 is an enlarged, perspective view of still another embodiment of the electrode sealing assembly of FIG. 4. More particularly, FIG. 12 shows yet another possible configuration of the lower jaw member 320 of the electrode sealing assembly 100 (or 100′) designed to reduce thermal spread to adjacent tissue. This embodiment is in all respects identical to the embodiment disclosed by FIG. 4 except that open active cooling system 340 with a common supply line 355, which branches out into coolant lines 355a and 355b to supply coolant 370 through the series of nozzles or ports 350a and 350b located on an upper surface 330 of the insulating housing 314, is replaced by closed active coolant system 1140 which includes a U-shaped continuous coolant loop 1180 having a coolant supply end 1180a and a coolant return end 1180b. The coolant supply loop 1180 is disposed through or embedded within the insulating housing 314 surrounding the sealing plate 122. The coolant loop 1180 is configured to receive the coolant 370, which is, typically, a non-electrically conductive cooling liquid or gas (e.g., air) such as previously described. The active coolant 370 is caused to flow through the coolant loop 1180 to reduce heat dissipation to surrounding tissue which is generated by the tissue sealing process in sealing plate 122. As is the case of the embodiment of FIG. 4, a thermally conductive material is not utilized as the heat absorbing material or heat sink, but, rather, the active cooling system 1140 surrounds the sealing plate 122. As is discussed in more detail later with respect to FIGS. 14A and 14B, the coolant loop 1180 transports the coolant to an ultimate heat sink for dissipating heat away from surrounding tissue.


With respect to this particular embodiment and compared to the embodiments of FIGS. 2A, 2B, 3 and 4, again, the insulating housing 314 encapsulates the sealing plate 122 by virtue of a mechanical connection or manufacturing process, e.g. stamp molding or injection molding.



FIG. 13A is a cross-sectional end view of one embodiment of cooling loop 1180 for the electrode cooling assemblies of FIG. 12. More particularly, the ends 1180a and 1180b of the cooling loop 1180 are joined together in a common cooling line 1150. The common cooling line 1150 includes typically an inner tubular shaped conduit which can function as either supply line 1180a or return line 1180b, and an outer concentrically arranged tubular shaped conduit which can function conversely as either return line 1180b or supply line 1180a, respectively.



FIG. 13B is a cross-sectional end view of an alternate embodiment of a cooling line for the electrode assemblies of FIG. 12. More particularly, in a similar manner to the embodiment of FIG. 13A, the ends 1180a and 1180b of the cooling loop 1180 are again joined in a common cooling line designated as 1190. However, the common cooling line 1190 includes a generally tubular configuration which is segmented into two inner flow channels 1192a and 1192b via a partition 1194. The inner flow channel 1192a can function as either supply line 1180a or return line 1180b, while conversely, the inner flow channel 1192b can function as either return line 1180b or supply line 1180a, respectively.


Those skilled in the art will recognize that the coolant loops 850 and 852, and 950 and 952 (see FIGS. 10A, 10B and 11) may be configured in an analogous manner as common cooling lines 1150 and 1190.



FIG. 14A is a perspective view of the endoscopic bipolar forceps of FIG. 1A which is configured to support the common cooling lines 1150 and 1190 (see FIG. 12, FIG. 13A and FIG. 13B). More particularly, the forceps 10 includes the shaft 12 which has a distal end 14 dimensioned to mechanically engage the end effector assembly 100 and a proximal end 16 which mechanically engages the housing 20 proximate the rotating assembly 80. The cooling line 1150, or 1190 extends from the upper and lower jaws, e.g., jaw members 710, 720, 910, 920 through the shaft 12 and through the housing 20 at a port 1210 proximate the shaft 12 from which the cooling line 1150, or 1190 emerges at a port 1220 in the housing 20 proximate the electrosurgical cable 310. Alternatively, the cooling line 1150, or 1190, may be configured to bypass the housing 20 and only emerges from the shaft 12 at port 1210. Typically, in either embodiment, the cooling line 1150 or 1190 is coiled around the electrosurgical cable 310 to a convenient point at which it is directed to an ultimate heat sink 1250. The cable 754 which provides DC power to the TEC plates 718 and 728 as previously described extends from the TEC plates 718 and 728 through the shaft 12 and through the housing 20 from which cable 754 emerges at port 1220 (or a separate port) to connect to the DC power supply 756. It is contemplated that the forceps 10 described with respect to FIG. 14A and as follows in FIG. 14B may be utilized with any of the aforementioned end effector assemblies and jaw members described herein.


More particularly, FIG. 14B is a perspective view of the open bipolar forceps of FIG. 1B which is configured to support the cooling line of FIG. 10, FIG. 11B and FIG. 11C. As disclosed previously with respect to FIG. 1B, open forceps 10′ includes a pair of elongated shaft portions 12a′, 12b′ each having a proximal end 16a′ and 16b′, respectively, and a distal end 14a′ and 14b′, respectively. The forceps 10′ includes jaw assembly 100′ which attaches to the distal ends 14a′ and 14b′ of shafts 12a′ and 12b′, respectively. Jaw assembly 100′ includes an upper jaw member 710′ or 910′ and a lower jaw member 720′ or 920′ which are movable relative to one another to grasp tissue therebetween. Those skilled in the art will recognize that upper jaw members 710′ and 910′ are substantially identical to upper jaw member 710 and 910, respectively, except for being configured to adapt to the open forceps 10′. Similarly, those skilled in the art will recognize that lower jaw members 720′ and 920′ are substantially identical to upper jaw member 720 and 920, respectively, except for being configured to adapt to the open forceps 10′.


Each shaft 12a′ and 12b′ includes a handle 17a′ and 17b′ disposed at the proximal end 16a′ and 16b′ thereof which each define a finger hole 18a′ and 18b′, respectively, therethrough for receiving a finger of the user. As can be appreciated, finger holes 18a′ and 18b′ facilitate movement of the shafts 12a′ and 12b′ relative to one another which, in turn, pivot the jaw members 110′ and 120′ from the open position wherein the jaw members 110′ and 120′ are disposed in spaced relation relative to one another for manipulating tissue to a clamping or closed position wherein the jaw members 110′ and 120′ cooperate to grasp tissue therebetween.


One of the shafts, e.g., 12b′, includes a proximal shaft-connector/flange 19′ which is designed to connect the forceps 10′ to a source of RF energy (not shown) via an electrosurgical cable 310 and plug 300. Although the details relating to the inner-working electrical connections and various components of forceps 10′ are disclosed in commonly-owned U.S. patent application Ser. No. 10/369,894 which is incorporated in its entirety by reference herein, it is disclosed herein that cooling line 1150 or 1190 and electrical cable 754 extends from the upper and lower jaw members 110′ and 120′ through the shaft 12b′ to the proximal shaft/connector flange 19′ which interfaces with electrosurgical cable 310. The cooling line 1150 or 1190 emerges from the flange 19′ at a port 1230 proximate the power cord 310. Typically, the cooling line 1150 or 1190 is coiled around the electrosurgical cable 310 to a convenient point at which it is directed to the ultimate heat sink 1250. The electrical cable 754 emerges at the port 1230 from which it extends to connect to DC power supply 756.


From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the same. For example, although it is preferable that jaw members 110 and 120 meet in parallel opposition, and, therefore, meet on the same plane, in some cases it may be preferable to slightly bias the jaw members 110 and 120 to meet each other at the distal end such that additional closure force on the handles is required to deflect the electrodes in the same plane. It is envisioned that this could improve seal quality and/or consistency. Alternatively, the jaws members 110 and 120 may be configured to close in a heel-based manner or in an independently floating (with respect to parallel) fashion.


It is envisioned that while the jaw members 710, 710′, 910, 910′ and 720, 720′, 920, 920′ are configured for dissipating heat generated by electrosurgical RF power, the cooling members disclosed herein (i.e., thermoelectric plates 718 and 728, corresponding heat sinks 818 and 828 and the cooling lines 850, 852, 950, 952; and the cooling loops 340, 1150 and 1190 for cooling the insulating housing 314) may be adapted as well to other heating modalities. Such other heating modalities include, but are not limited to, ultrasonic, capacitive or thermoelectric heating power sources.


While various embodiments of the disclosure have been described, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above descriptions should not be construed as limiting, but merely as exemplifications of preferred embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

Claims
  • 1. An electrode sealing assembly designed for use with an electrosurgical instrument for sealing tissue, comprising: first and second jaw members being movable from a first position in spaced relation relative to one another to at least one second position for grasping tissue therebetween, the jaw members including:electrically conductive sealing plates disposed in opposing relation to one another, at least one jaw member including:a thermoelectric cooling plate having a first surface in direct contact with an outer surface of the sealing plate, said thermoelectric cooling plate including first and second electrical connections disposed on opposite sides of the thermoelectric cooling plate, said first connection being configured to selectively transmit a first electrical potential and said second connection being configured to selectively transmit a second electrical potential such that heat generated by the sealing plates is transferred away from the tissue via the thermoelectric cooling plate,wherein the at least one jaw member further includes a heat sink disposed in direct contact with a second surface of the thermoelectric cooling plate, andwherein the heat sink is made from a thermally conductive, electrically insulative cool polymer.
  • 2. An electrode sealing assembly according to claim 1, wherein the heat sink is configured to be coupled to a second heat sink for transferring heat at least one of to and from the jaw member.
  • 3. An electrode sealing assembly according to claim 2, wherein the second heat sink is made from a thermally conductive, electrically insulative cool polymer.
  • 4. An electrode sealing assembly according to claim 1, wherein the heat sink includes a coolant line disposed therethrough.
  • 5. An electrode sealing assembly according to claim 4, wherein the coolant line is configured to receive a coolant to transfer heat from the thermoelectric cooling plate.
  • 6. An electrode sealing assembly according to claim 5, wherein the coolant is a thermally conductive, non-electrically conductive fluid.
  • 7. An electrode sealing assembly according to claim 6, wherein the non-electrically conductive fluid is one of the group consisting of air, nitrogen and carbon dioxide.
  • 8. An electrode sealing assembly according to claim 5, wherein the coolant is a medicinal fluid.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a continuation-in-part (CIP) of PCT Application Serial No. PCT/US04/13273 filed on Apr. 29, 2004 entitled “ELECTROSURGICAL INSTRUMENT WHICH REDUCES THERMAL DAMAGE TO ADJACENT TISSUE” which claims the benefit of priority to U.S. Provisional Application Ser. No. 60/467,027 filed on May 1, 2003 by Chapman et al., the entire contents of both of which are incorporated by reference herein.

US Referenced Citations (883)
Number Name Date Kind
371664 Brannan et al. Oct 1887 A
702472 Pignolet Jun 1902 A
728883 Downes May 1903 A
1586645 Bierman Jun 1926 A
1813902 Bovie Jul 1931 A
1822330 Ainslie Sep 1931 A
1852542 Sovatkin Apr 1932 A
2002594 Wappler et al. May 1935 A
2011169 Wappler Aug 1935 A
2031682 Wappler et al. Feb 1936 A
2054149 Wappler Sep 1936 A
2176479 Willis Oct 1939 A
2279753 Knopp Apr 1942 A
2305156 Grubel Dec 1942 A
2327353 Karle Aug 1943 A
2632661 Cristofv Mar 1953 A
2668538 Baker Feb 1954 A
2796065 Kapp Jun 1957 A
3073311 Tibbs et al. Jan 1963 A
3372288 Wigington Mar 1968 A
3459187 Pallotta Aug 1969 A
3643663 Sutter Feb 1972 A
3648001 Anderson et al. Mar 1972 A
3651811 Hildebrandt et al. Mar 1972 A
3678229 Osika Jul 1972 A
3720896 Beierlein Mar 1973 A
3763726 Hildebrand Oct 1973 A
3779918 Ikeda et al. Dec 1973 A
3801766 Morrison, Jr. Apr 1974 A
3862630 Balamuth Jan 1975 A
3863339 Reaney et al. Feb 1975 A
3866610 Kletschka Feb 1975 A
3911766 Fridolph et al. Oct 1975 A
3920021 Hiltebrandt Nov 1975 A
3921641 Hulka Nov 1975 A
3938527 Rioux et al. Feb 1976 A
3952749 Fridolph et al. Apr 1976 A
3970088 Morrison Jul 1976 A
3987795 Morrison Oct 1976 A
4005714 Hiltebrandt Feb 1977 A
4016881 Rioux et al. Apr 1977 A
4041952 Morrison, Jr. et al. Aug 1977 A
4043342 Morrison, Jr. Aug 1977 A
4074718 Morrison, Jr. Feb 1978 A
4076028 Simmons Feb 1978 A
4080820 Allen Mar 1978 A
4088134 Mazzariello May 1978 A
4112950 Pike Sep 1978 A
4127222 Adams Nov 1978 A
4128099 Bauer Dec 1978 A
4165746 Burgin Aug 1979 A
4187420 Piber Feb 1980 A
4233734 Bies Nov 1980 A
4236470 Stenson Dec 1980 A
4300564 Furihata Nov 1981 A
4311145 Esty et al. Jan 1982 A
D263020 Rau, III Feb 1982 S
4370980 Lottick Feb 1983 A
4375218 DiGeronimo Mar 1983 A
4416276 Newton et al. Nov 1983 A
4418692 Guay Dec 1983 A
4443935 Zamba et al. Apr 1984 A
4452246 Bader et al. Jun 1984 A
4470786 Sano et al. Sep 1984 A
4492231 Auth Jan 1985 A
4493320 Treat Jan 1985 A
4503855 Maslanka Mar 1985 A
4506669 Blake, III Mar 1985 A
4509518 McGarry et al. Apr 1985 A
4552143 Lottick Nov 1985 A
4574804 Kurwa Mar 1986 A
4597379 Kihn et al. Jul 1986 A
4600007 Lahodny et al. Jul 1986 A
4624254 McGarry et al. Nov 1986 A
4655215 Pike Apr 1987 A
4657016 Garito et al. Apr 1987 A
4662372 Sharkany et al. May 1987 A
4671274 Sorochenko Jun 1987 A
4685459 Xoch et al. Aug 1987 A
4733662 DeSatnick et al. Mar 1988 A
D295893 Sharkany et al. May 1988 S
D295894 Sharkany et al. May 1988 S
4754892 Retief Jul 1988 A
4763669 Jaeger Aug 1988 A
4827929 Hodge May 1989 A
4829313 Taggart May 1989 A
4846171 Kauphusman et al. Jul 1989 A
4887612 Esser et al. Dec 1989 A
4938761 Ensslin Jul 1990 A
4947009 Osika et al. Aug 1990 A
4985030 Melzer et al. Jan 1991 A
5007908 Rydell Apr 1991 A
5026370 Lottick Jun 1991 A
5026371 Rydell et al. Jun 1991 A
5035695 Weber, Jr. et al. Jul 1991 A
5037433 Wilk et al. Aug 1991 A
5042707 Taheri Aug 1991 A
5047046 Bodoia Sep 1991 A
5078716 Doll Jan 1992 A
5084057 Green et al. Jan 1992 A
5085659 Rydell Feb 1992 A
5099840 Goble et al. Mar 1992 A
5100430 Avellanet et al. Mar 1992 A
5108392 Spingler Apr 1992 A
5112343 Thornton May 1992 A
5116332 Lottick May 1992 A
5147357 Rose et al. Sep 1992 A
5151102 Xamiyama et al. Sep 1992 A
5151978 Bronikowski et al. Sep 1992 A
5176695 Dulebohn Jan 1993 A
5190541 Abele et al. Mar 1993 A
5196009 Kirwan, Jr. Mar 1993 A
5197964 Parins Mar 1993 A
5209747 Knoepfler May 1993 A
5211655 Hasson May 1993 A
5215101 Jacobs et al. Jun 1993 A
5217457 Delahuerga et al. Jun 1993 A
5217458 Parins Jun 1993 A
5217460 Knoepfler Jun 1993 A
5244462 Delahuerga et al. Sep 1993 A
5250047 Rydell Oct 1993 A
5250063 Abidin et al. Oct 1993 A
5258001 Corman Nov 1993 A
5258006 Rydell et al. Nov 1993 A
5261918 Phillips et al. Nov 1993 A
5275615 Rose Jan 1994 A
5277201 Stern Jan 1994 A
5282799 Rydell Feb 1994 A
5282800 Foshee et al. Feb 1994 A
5282826 Quadri Feb 1994 A
5290286 Parins Mar 1994 A
5300082 Sharpe et al. Apr 1994 A
5304203 El-Mallawany et al. Apr 1994 A
5308353 Beurrier May 1994 A
5308357 Lichtman May 1994 A
5313027 Inoue et al. May 1994 A
5314445 Degwitz et al. May 1994 A
5318589 Lichtman Jun 1994 A
5324289 Eggers Jun 1994 A
D348930 Olson Jul 1994 S
5326806 Yokoshima et al. Jul 1994 A
5330471 Eggers Jul 1994 A
5330502 Hassler et al. Jul 1994 A
5334183 Wuchinich Aug 1994 A
5334215 Chen Aug 1994 A
5336220 Ryan et al. Aug 1994 A
5336221 Anderson Aug 1994 A
5342359 Rydell Aug 1994 A
5342381 Tidemand Aug 1994 A
5342393 Stack Aug 1994 A
5344424 Roberts et al. Sep 1994 A
5350391 Iacovelli Sep 1994 A
5352222 Rydell Oct 1994 A
5354271 Voda Oct 1994 A
5356408 Rydell Oct 1994 A
5366477 LeMarie, III et al. Nov 1994 A
5368600 Failla et al. Nov 1994 A
5374277 Hassler Dec 1994 A
5376089 Smith Dec 1994 A
5383875 Bays et al. Jan 1995 A
5383897 Wholey Jan 1995 A
5389098 Tsuruta et al. Feb 1995 A
5389103 Melzer et al. Feb 1995 A
5389104 Hahnen et al. Feb 1995 A
5391166 Eggers Feb 1995 A
5391183 Janzen et al. Feb 1995 A
5396900 Slater et al. Mar 1995 A
5403312 Yates et al. Apr 1995 A
5403342 Tovey et al. Apr 1995 A
5405344 Williamson et al. Apr 1995 A
5409763 Serizawa et al. Apr 1995 A
5411519 Tovey et al. May 1995 A
5411520 Nash et al. May 1995 A
5413571 Katsaros et al. May 1995 A
5415656 Tihon et al. May 1995 A
5415657 Taymor-Luria May 1995 A
5422567 Matsunaga Jun 1995 A
5423810 Goble et al. Jun 1995 A
5425690 Chang Jun 1995 A
5425739 Jessen Jun 1995 A
5429616 Schaffer Jul 1995 A
5431672 Cote et al. Jul 1995 A
5431674 Basile et al. Jul 1995 A
5437292 Kipshidze et al. Aug 1995 A
5438302 Goble Aug 1995 A
5439478 Palmer Aug 1995 A
5441517 Kensey et al. Aug 1995 A
5443463 Stern et al. Aug 1995 A
5443464 Russell et al. Aug 1995 A
5443480 Jacobs et al. Aug 1995 A
5445638 Rydell et al. Aug 1995 A
5445658 Durrfeld et al. Aug 1995 A
5449480 Kuriya et al. Sep 1995 A
5451224 Goble et al. Sep 1995 A
5454823 Richardson et al. Oct 1995 A
5454827 Aust et al. Oct 1995 A
5456684 Schmidt et al. Oct 1995 A
5458598 Feinberg et al. Oct 1995 A
5460629 Shlain et al. Oct 1995 A
5461765 Linden et al. Oct 1995 A
5462546 Rydell Oct 1995 A
5472442 Klicek Dec 1995 A
5472443 Cordis et al. Dec 1995 A
5478351 Meade et al. Dec 1995 A
5480406 Nolan et al. Jan 1996 A
5480409 Riza Jan 1996 A
5484436 Eggers et al. Jan 1996 A
5496312 Klicek Mar 1996 A
5496317 Goble et al. Mar 1996 A
5496347 Hashiguchi et al. Mar 1996 A
5499997 Sharpe et al. Mar 1996 A
5509922 Aranyi et al. Apr 1996 A
5514134 Rydell et al. May 1996 A
5527313 Scott et al. Jun 1996 A
5528833 Sakuma Jun 1996 A
5529067 Larsen et al. Jun 1996 A
5531744 Nardella et al. Jul 1996 A
5536251 Evard et al. Jul 1996 A
5540684 Hassler, Jr. Jul 1996 A
5540685 Parins et al. Jul 1996 A
5540706 Aust et al. Jul 1996 A
5540715 Katsaros et al. Jul 1996 A
5542945 Fritzsch Aug 1996 A
5558671 Yates Sep 1996 A
5558672 Edwards et al. Sep 1996 A
5562619 Mirarchi et al. Oct 1996 A
5562699 Heimberger et al. Oct 1996 A
5562720 Stern et al. Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5569241 Edwardds Oct 1996 A
5569243 Kortenbach et al. Oct 1996 A
5571100 Goble et al. Nov 1996 A
5573424 Poppe Nov 1996 A
5573534 Stone Nov 1996 A
5573535 Viklund Nov 1996 A
5575799 Bolanos et al. Nov 1996 A
5575805 Li Nov 1996 A
5578052 Koros et al. Nov 1996 A
5579781 Cooke Dec 1996 A
5582611 Tsukagoshi et al. Dec 1996 A
5582617 Klieman et al. Dec 1996 A
5585896 Yamazaki et al. Dec 1996 A
5590570 LeMaire, III et al. Jan 1997 A
5591181 Stone et al. Jan 1997 A
5597107 Knodel et al. Jan 1997 A
5601224 Bishop et al. Feb 1997 A
5601641 Stephens Feb 1997 A
5603711 Parins et al. Feb 1997 A
5603723 Aranyi et al. Feb 1997 A
5611798 Eggers Mar 1997 A
5611808 Hossain et al. Mar 1997 A
5611813 Lichtman Mar 1997 A
5620415 Lucey et al. Apr 1997 A
5620453 Nallakrishnan Apr 1997 A
5620459 Lichtman Apr 1997 A
5624452 Yates Apr 1997 A
5626578 Tihon May 1997 A
5626609 Zvenyatsky et al. May 1997 A
5630833 Katsaros et al. May 1997 A
5637110 Pennybacker et al. Jun 1997 A
5638003 Hall Jun 1997 A
5643294 Tovey et al. Jul 1997 A
5647869 Goble et al. Jul 1997 A
5647871 Levine et al. Jul 1997 A
5649959 Hannam et al. Jul 1997 A
5655650 Naitou Aug 1997 A
5658281 Heard Aug 1997 A
D384413 Zlock et al. Sep 1997 S
5662667 Knodel Sep 1997 A
5665100 Yoon Sep 1997 A
5667526 Levin Sep 1997 A
5674220 Fox et al. Oct 1997 A
5674229 Tovey et al. Oct 1997 A
5681282 Eggers et al. Oct 1997 A
5688270 Yates et al. Nov 1997 A
5690652 Wurster et al. Nov 1997 A
5690653 Richardson et al. Nov 1997 A
5693051 Schulze et al. Dec 1997 A
5693920 Maeda Dec 1997 A
5695522 LeMaire, III et al. Dec 1997 A
5700261 Brinkerhoff Dec 1997 A
5700270 Peyser et al. Dec 1997 A
5702390 Austin et al. Dec 1997 A
5707369 Vaitekunas et al. Jan 1998 A
5709680 Yates et al. Jan 1998 A
5716366 Yates Feb 1998 A
5720744 Eggleston et al. Feb 1998 A
5722421 Francese et al. Mar 1998 A
5725536 Oberlin et al. Mar 1998 A
5727428 LeMaire, III et al. Mar 1998 A
5735848 Yates et al. Apr 1998 A
5743906 Parins et al. Apr 1998 A
5752973 Kieturakis May 1998 A
5755717 Yates et al. May 1998 A
5759188 Yoon Jun 1998 A
5766130 Selmonosky Jun 1998 A
5766166 Hooven Jun 1998 A
5766170 Eggers Jun 1998 A
5766196 Griffiths Jun 1998 A
5769849 Eggers Jun 1998 A
5772655 Bauer et al. Jun 1998 A
5772670 Brosa Jun 1998 A
5776128 Eggers Jul 1998 A
5776130 Buysse et al. Jul 1998 A
5779646 Koblish et al. Jul 1998 A
5779701 McBrayer et al. Jul 1998 A
H1745 Paraschac Aug 1998 H
5792137 Carr et al. Aug 1998 A
5792165 Klieman et al. Aug 1998 A
5792177 Kaseda Aug 1998 A
5797537 Oberlin et al. Aug 1998 A
5797927 Yoon Aug 1998 A
5797938 Paraschac et al. Aug 1998 A
5797941 Schulze et al. Aug 1998 A
5797958 Yoon Aug 1998 A
5800449 Wales Sep 1998 A
5807393 Williamson, IV et al. Sep 1998 A
5810764 Eggers et al. Sep 1998 A
5810805 Sutcu et al. Sep 1998 A
5810808 Eggers Sep 1998 A
5810811 Yates et al. Sep 1998 A
5810877 Roth et al. Sep 1998 A
5814043 Shapeton Sep 1998 A
5814054 Kortenbach et al. Sep 1998 A
5817093 Williamson, IV et al. Oct 1998 A
5817119 Klieman et al. Oct 1998 A
5820630 Lind Oct 1998 A
5824978 Karasik et al. Oct 1998 A
5827271 Buysse et al. Oct 1998 A
5827279 Hughett et al. Oct 1998 A
5827281 Levin Oct 1998 A
5827323 Klieman et al. Oct 1998 A
5827548 Lavallee et al. Oct 1998 A
5833690 Yates et al. Nov 1998 A
5843080 Fleenor et al. Dec 1998 A
5849022 Sakashita et al. Dec 1998 A
5853412 Mayenberger Dec 1998 A
5859527 Cook Jan 1999 A
5860976 Billings et al. Jan 1999 A
5876401 Schulze et al. Mar 1999 A
5876412 Piraka Mar 1999 A
5882567 Cavallaro et al. Mar 1999 A
5891141 Rydell Apr 1999 A
5891142 Eggers et al. Apr 1999 A
5893863 Yoon Apr 1999 A
5893875 O'Connor et al. Apr 1999 A
5893877 Gampp, Jr. et al. Apr 1999 A
5897563 Yoon et al. Apr 1999 A
5902301 Olig May 1999 A
5906630 Anderhub et al. May 1999 A
5908420 Parins et al. Jun 1999 A
5908432 Pan Jun 1999 A
5911719 Eggers Jun 1999 A
5913874 Berns et al. Jun 1999 A
5921916 Aeikens et al. Jul 1999 A
5921984 Sutcu et al. Jul 1999 A
5925043 Kumar et al. Jul 1999 A
5928136 Barry Jul 1999 A
5935126 Riza Aug 1999 A
5941869 Patterson et al. Aug 1999 A
5944718 Dafforn et al. Aug 1999 A
5951546 Lorentzen Sep 1999 A
5951549 Richardson et al. Sep 1999 A
5954720 Wilson et al. Sep 1999 A
5954731 Yoon Sep 1999 A
5954733 Yoon Sep 1999 A
5957923 Hahnen et al. Sep 1999 A
5957937 Yoon Sep 1999 A
5960544 Beyers Oct 1999 A
5964758 Dresden Oct 1999 A
5976132 Morris Nov 1999 A
5984932 Yoon Nov 1999 A
5984938 Yoon Nov 1999 A
5989277 LeMaire, III et al. Nov 1999 A
5993466 Yoon Nov 1999 A
5993467 Yoon Nov 1999 A
5997565 Inoue Dec 1999 A
6004332 Yoon et al. Dec 1999 A
6004335 Vaitekunas et al. Dec 1999 A
6010516 Hulka et al. Jan 2000 A
6017358 Yoon et al. Jan 2000 A
6021693 Feng-Sing Feb 2000 A
6024741 Williamson et al. Feb 2000 A
6024743 Edwards Feb 2000 A
6024744 Kese et al. Feb 2000 A
6027522 Palmer Feb 2000 A
6030384 Nezhat Feb 2000 A
6033399 Gines Mar 2000 A
6039733 Buysse et al. Mar 2000 A
6041679 Slater et al. Mar 2000 A
6050996 Schmaltz et al. Apr 2000 A
6053914 Eggers et al. Apr 2000 A
6053933 Balazs et al. Apr 2000 A
D424694 Tetzlaff et al. May 2000 S
D425201 Tetzlaff et al. May 2000 S
6059782 Novak et al. May 2000 A
6066139 Ryan et al. May 2000 A
6074386 Goble et al. Jun 2000 A
6077287 Taylor et al. Jun 2000 A
6080180 Yoon et al. Jun 2000 A
RE36795 Rydell Jul 2000 E
6083223 Baker Jul 2000 A
6086586 Hooven Jul 2000 A
6086601 Yoon Jul 2000 A
6090107 Borgmeier et al. Jul 2000 A
6096037 Mulier et al. Aug 2000 A
6099550 Yoon Aug 2000 A
6102909 Chen et al. Aug 2000 A
6106542 Toybin et al. Aug 2000 A
6110171 Rydell Aug 2000 A
6113596 Hooven et al. Sep 2000 A
6113598 Baker Sep 2000 A
6117158 Measamer et al. Sep 2000 A
6122549 Sharkey et al. Sep 2000 A
6123701 Nezhat Sep 2000 A
H1904 Yates et al. Oct 2000 H
6126658 Baker Oct 2000 A
6126665 Yoon Oct 2000 A
6139563 Cosgrove, III et al. Oct 2000 A
6143005 Yoon et al. Nov 2000 A
6152923 Ryan Nov 2000 A
6162220 Nezhat Dec 2000 A
6171316 Kovac et al. Jan 2001 B1
6174309 Wrublewski et al. Jan 2001 B1
6178628 Clemens et al. Jan 2001 B1
6179834 Buysse et al. Jan 2001 B1
6179837 Hooven Jan 2001 B1
6183467 Shapeton et al. Feb 2001 B1
6187003 Buysse et al. Feb 2001 B1
6190386 Rydell Feb 2001 B1
6190400 Vandemoer et al. Feb 2001 B1
6193718 Kortenbach et al. Feb 2001 B1
6206876 Levine et al. Mar 2001 B1
6206877 Kese et al. Mar 2001 B1
6206893 Klein et al. Mar 2001 B1
6214028 Yoon et al. Apr 2001 B1
6217602 Redmon Apr 2001 B1
6217615 Sioshansi et al. Apr 2001 B1
6221039 Durgin et al. Apr 2001 B1
6223100 Green Apr 2001 B1
6224593 Ryan et al. May 2001 B1
6224614 Yoon May 2001 B1
6228080 Gines May 2001 B1
6228083 Lands et al. May 2001 B1
6248124 Pedros et al. Jun 2001 B1
6248944 Ito Jun 2001 B1
6261307 Yoon et al. Jul 2001 B1
6267761 Ryan Jul 2001 B1
6270497 Sekino et al. Aug 2001 B1
6270508 Klieman et al. Aug 2001 B1
6273887 Yamauchi et al. Aug 2001 B1
6277117 Tetzlaff et al. Aug 2001 B1
6280458 Boche et al. Aug 2001 B1
6283961 Underwood et al. Sep 2001 B1
D449886 Tetzlaff et al. Oct 2001 S
6298550 Kirwan Oct 2001 B1
6302424 Gisinger et al. Oct 2001 B1
6319262 Bates et al. Nov 2001 B1
6319451 Brune Nov 2001 B1
6322561 Eggers et al. Nov 2001 B1
6322580 Kanner Nov 2001 B1
6325795 Lindemann et al. Dec 2001 B1
6334860 Dorn Jan 2002 B1
6334861 Chandler et al. Jan 2002 B1
6345532 Coudray et al. Feb 2002 B1
6350264 Hooven Feb 2002 B1
6352536 Buysse et al. Mar 2002 B1
6358249 Chen et al. Mar 2002 B1
6358259 Swain et al. Mar 2002 B1
6358268 Hunt et al. Mar 2002 B1
6364879 Chen et al. Apr 2002 B1
D457958 Dycus et al. May 2002 S
D457959 Tetzlaff et al. May 2002 S
6391035 Appleby et al. May 2002 B1
6398779 Buysse et al. Jun 2002 B1
6402747 Lindemann et al. Jun 2002 B1
6409728 Ehr et al. Jun 2002 B1
H2037 Yates et al. Jul 2002 H
6419675 Gallo, Sr. Jul 2002 B1
6425896 Baltschun et al. Jul 2002 B1
6432112 Brock et al. Aug 2002 B2
6440144 Bacher Aug 2002 B1
6443952 Mulier et al. Sep 2002 B1
6443970 Schulze et al. Sep 2002 B1
6451018 Lands et al. Sep 2002 B1
6458125 Cosmescu Oct 2002 B1
6458128 Schulze Oct 2002 B1
6458130 Frazier et al. Oct 2002 B1
6461352 Morgan et al. Oct 2002 B2
6461368 Fogarty et al. Oct 2002 B2
6464701 Hooven et al. Oct 2002 B1
6464702 Schulze et al. Oct 2002 B2
6464704 Schmaltz et al. Oct 2002 B2
6485489 Teirstein et al. Nov 2002 B2
6494888 Laufer et al. Dec 2002 B1
6500176 Truckai et al. Dec 2002 B1
6506196 Laufer Jan 2003 B1
6508815 Strul et al. Jan 2003 B1
6511480 Tetzlaff et al. Jan 2003 B1
6514215 Ouchi Feb 2003 B1
6514252 Nezhat et al. Feb 2003 B2
6517539 Smith et al. Feb 2003 B1
6527771 Weadock et al. Mar 2003 B1
6533784 Truckai et al. Mar 2003 B2
6545239 Spedale et al. Apr 2003 B2
6558385 McClurken et al. May 2003 B1
6562037 Paton et al. May 2003 B2
6569105 Kortenbach et al. May 2003 B1
6582450 Ouchi Jun 2003 B2
6585735 Frazier et al. Jul 2003 B1
6602252 Mollenauer Aug 2003 B2
6605790 Yoshida Aug 2003 B2
6616658 Ineson Sep 2003 B2
6616661 Wellman et al. Sep 2003 B2
6620161 Schulze et al. Sep 2003 B2
6620184 de Laforcade et al. Sep 2003 B2
6626901 Treat et al. Sep 2003 B1
6638287 Danitz et al. Oct 2003 B2
6641595 Moran et al. Nov 2003 B1
6652514 Ellman et al. Nov 2003 B2
6656175 Francischelli et al. Dec 2003 B2
6656177 Truckai et al. Dec 2003 B2
6660072 Chatterjee Dec 2003 B2
6663639 Laufer et al. Dec 2003 B1
6663641 Kovac et al. Dec 2003 B1
6666854 Lange Dec 2003 B1
6669696 Bacher et al. Dec 2003 B2
6673092 Bacher Jan 2004 B1
6676660 Wampler et al. Jan 2004 B2
6676676 Danitz et al. Jan 2004 B2
6679882 Kornerup Jan 2004 B1
6682527 Strul Jan 2004 B2
6682528 Frazier et al. Jan 2004 B2
6685724 Haluck Feb 2004 B1
6689131 McClurken Feb 2004 B2
6692445 Roberts et al. Feb 2004 B2
6693246 Rudolph et al. Feb 2004 B1
6695840 Schulze Feb 2004 B2
6702810 McClurken et al. Mar 2004 B2
6723092 Brown et al. Apr 2004 B2
6726068 Miller Apr 2004 B2
6726686 Buysse et al. Apr 2004 B2
6726694 Blatter et al. Apr 2004 B2
6733498 Paton et al. May 2004 B2
6736813 Yamauchi et al. May 2004 B2
6743229 Buysse et al. Jun 2004 B2
6743230 Lutze et al. Jun 2004 B2
6743239 Kuehn et al. Jun 2004 B1
6743240 Smith et al. Jun 2004 B2
6755843 Chung et al. Jun 2004 B2
6756553 Yamaguchi et al. Jun 2004 B1
6757977 Dambal et al. Jul 2004 B2
D493888 Reschke Aug 2004 S
6770072 Truckai et al. Aug 2004 B1
6773409 Truckai et al. Aug 2004 B2
6773432 Clayman et al. Aug 2004 B1
6773434 Ciarrocca Aug 2004 B2
6773441 Laufer et al. Aug 2004 B1
6775575 Bommannan et al. Aug 2004 B2
6776780 Mulier et al. Aug 2004 B2
6786905 Swanson et al. Sep 2004 B2
6790217 Schulze et al. Sep 2004 B2
6796981 Wham et al. Sep 2004 B2
D496997 Dycus et al. Oct 2004 S
6800825 Sasaki et al. Oct 2004 B1
6802843 Truckai et al. Oct 2004 B2
6808525 Latterell et al. Oct 2004 B2
D499181 Dycus et al. Nov 2004 S
6818000 Muller et al. Nov 2004 B2
6821285 Laufer et al. Nov 2004 B2
6835200 Laufer et al. Dec 2004 B2
6857357 Fujii Feb 2005 B2
6860880 Treat et al. Mar 2005 B2
6887240 Lands et al. May 2005 B1
6889116 Jinno May 2005 B2
6914201 Van Vooren et al. Jul 2005 B2
6926716 Baker et al. Aug 2005 B2
6929644 Truckai et al. Aug 2005 B2
6932810 Ryan Aug 2005 B2
6932816 Phan Aug 2005 B2
6934134 Mori et al. Aug 2005 B2
6936061 Sasaki Aug 2005 B2
D509297 Wells Sep 2005 S
6943311 Miyako Sep 2005 B2
6953430 Kodooka Oct 2005 B2
6953461 McClurken et al. Oct 2005 B2
6958070 Witt et al. Oct 2005 B2
6960210 Lands et al. Nov 2005 B2
6964662 Kidooka Nov 2005 B2
6966907 Goble Nov 2005 B2
6972017 Smith et al. Dec 2005 B2
6977495 Donofrio Dec 2005 B2
6979786 Aukland et al. Dec 2005 B2
6981628 Wales Jan 2006 B2
6987244 Bauer Jan 2006 B2
6994707 Ellman et al. Feb 2006 B2
6994709 Iida Feb 2006 B2
6997931 Sauer et al. Feb 2006 B2
7001381 Harano et al. Feb 2006 B2
7011657 Truckai et al. Mar 2006 B2
7033354 Keppel Apr 2006 B2
7033356 Latterell et al. Apr 2006 B2
7041102 Truckai et al. May 2006 B2
7044948 Keppel May 2006 B2
7052489 Griego et al. May 2006 B2
7052496 Yamauchi May 2006 B2
7063715 Onuki et al. Jun 2006 B2
D525361 Hushka Jul 2006 S
7070597 Truckai et al. Jul 2006 B2
7083618 Couture et al. Aug 2006 B2
7083619 Truckai et al. Aug 2006 B2
7083620 Jahns et al. Aug 2006 B2
7087051 Bourne et al. Aug 2006 B2
7087054 Truckai et al. Aug 2006 B2
7090673 Dycus et al. Aug 2006 B2
7090689 Nagase et al. Aug 2006 B2
7101371 Dycus et al. Sep 2006 B2
7101372 Dycus et al. Sep 2006 B2
7101373 Dycus et al. Sep 2006 B2
7103947 Sartor et al. Sep 2006 B2
7107124 Green Sep 2006 B2
7112199 Cosmescu Sep 2006 B2
D531311 Guerra et al. Oct 2006 S
7115123 Knowlton et al. Oct 2006 B2
7118570 Tetzlaff et al. Oct 2006 B2
7118587 Dycus et al. Oct 2006 B2
7131860 Sartor et al. Nov 2006 B2
7131970 Moses et al. Nov 2006 B2
7131971 Dycus et al. Nov 2006 B2
7135020 Lawes et al. Nov 2006 B2
D533942 Kerr et al. Dec 2006 S
7145757 Shea et al. Dec 2006 B2
7147638 Chapman et al. Dec 2006 B2
7150097 Sremcich et al. Dec 2006 B2
7150749 Dycus et al. Dec 2006 B2
7153314 Laufer et al. Dec 2006 B2
D535027 James et al. Jan 2007 S
7156842 Sartor et al. Jan 2007 B2
7156846 Dycus et al. Jan 2007 B2
7160298 Lawes et al. Jan 2007 B2
7160299 Baily Jan 2007 B2
7169146 Truckai et al. Jan 2007 B2
7179255 Lettice et al. Feb 2007 B2
7179258 Buysse et al. Feb 2007 B2
7195631 Dumbauld Mar 2007 B2
D541418 Schechter et al. Apr 2007 S
7207990 Lands et al. Apr 2007 B2
D541938 Kerr et al May 2007 S
7223264 Daniel et al. May 2007 B2
7223265 Keppel May 2007 B2
7232440 Dumbauld et al. Jun 2007 B2
7241288 Braun Jul 2007 B2
7241296 Buysse et al. Jul 2007 B2
7244257 Podjahsky et al. Jul 2007 B2
7246734 Shelton, IV Jul 2007 B2
7248944 Green Jul 2007 B2
7252667 Moses et al. Aug 2007 B2
7255697 Dycus et al. Aug 2007 B2
7267677 Johnson et al. Sep 2007 B2
7270660 Ryan Sep 2007 B2
7270664 Johnson et al. Sep 2007 B2
7276068 Johnson et al. Oct 2007 B2
7300435 Wham et al. Nov 2007 B2
7303557 Wham et al. Dec 2007 B2
7311709 Truckai et al. Dec 2007 B2
7314471 Holman Jan 2008 B2
7318823 Sharps et al. Jan 2008 B2
7329256 Johnson et al. Feb 2008 B2
7329257 Kanehira et al. Feb 2008 B2
D564662 Moses et al. Mar 2008 S
7338526 Steinberg Mar 2008 B2
7342754 Fitzgerald et al. Mar 2008 B2
7344268 Jigamian Mar 2008 B2
D567943 Moses et al. Apr 2008 S
7367976 Lawes et al. May 2008 B2
7377920 Buysse et al. May 2008 B2
7384420 Dycus et al. Jun 2008 B2
7384421 Hushka Jun 2008 B2
7396336 Orszulak et al. Jul 2008 B2
D575395 Hushka Aug 2008 S
D575401 Hixson et al. Aug 2008 S
7435249 Buysse et al. Oct 2008 B2
7442193 Shields et al. Oct 2008 B2
7442194 Dumbauld et al. Oct 2008 B2
7445621 Dumbauld et al. Nov 2008 B2
7458972 Keppel Dec 2008 B2
7473253 Dycus et al. Jan 2009 B2
7481810 Dumbauld et al. Jan 2009 B2
7487780 Hooven Feb 2009 B2
7491201 Shields et al. Feb 2009 B2
7491202 Odom et al. Feb 2009 B2
7500975 Cunningham et al. Mar 2009 B2
7510556 Nguyen et al. Mar 2009 B2
7513898 Johnson et al. Apr 2009 B2
7540872 Schechter et al. Jun 2009 B2
7549995 Schultz Jun 2009 B2
7553312 Tetzlaff et al. Jun 2009 B2
20020049442 Roberts et al. Apr 2002 A1
20020107517 Witt et al. Aug 2002 A1
20020188294 Couture et al. Dec 2002 A1
20030014052 Buysse et al. Jan 2003 A1
20030014053 Nguyen et al. Jan 2003 A1
20030018331 Dycus et al. Jan 2003 A1
20030018332 Schmaltz et al. Jan 2003 A1
20030032956 Lands et al. Feb 2003 A1
20030069570 Witzel et al. Apr 2003 A1
20030069571 Treat et al. Apr 2003 A1
20030078578 Truckai et al. Apr 2003 A1
20030109875 Tetzlaff et al. Jun 2003 A1
20030114851 Truckai et al. Jun 2003 A1
20030139741 Goble et al. Jul 2003 A1
20030139742 Wampler et al. Jul 2003 A1
20030158548 Phan et al. Aug 2003 A1
20030158549 Swanson Aug 2003 A1
20030171747 Kanehira et al. Sep 2003 A1
20030181910 Dycus et al. Sep 2003 A1
20030216732 Truckai et al. Nov 2003 A1
20030229344 Dycus et al. Dec 2003 A1
20030236518 Marchitto et al. Dec 2003 A1
20040030330 Brassell et al. Feb 2004 A1
20040030332 Knowlton et al. Feb 2004 A1
20040064151 Mollenauer Apr 2004 A1
20040073238 Makower Apr 2004 A1
20040073256 Marchitto et al. Apr 2004 A1
20040078035 Kanehira et al. Apr 2004 A1
20040082952 Dycus et al. Apr 2004 A1
20040087943 Dycus et al. May 2004 A1
20040115296 Duffin Jun 2004 A1
20040116924 Dycus et al. Jun 2004 A1
20040122423 Dycus et al. Jun 2004 A1
20040138657 Bourne et al. Jul 2004 A1
20040143263 Schechter et al. Jul 2004 A1
20040147925 Buysse et al. Jul 2004 A1
20040148035 Barrett et al. Jul 2004 A1
20040162557 Tetzlaff et al. Aug 2004 A1
20040176762 Lawes et al. Sep 2004 A1
20040193153 Sarter et al. Sep 2004 A1
20040199181 Knodel et al. Oct 2004 A1
20040210282 Flock et al. Oct 2004 A1
20040224590 Rawa et al. Nov 2004 A1
20040225288 Buysse et al. Nov 2004 A1
20040236325 Tetzlaff et al. Nov 2004 A1
20040236326 Schulze et al. Nov 2004 A1
20040243125 Dycus et al. Dec 2004 A1
20040249371 Dycus et al. Dec 2004 A1
20040249374 Tetzlaff et al. Dec 2004 A1
20040250419 Sremcich et al. Dec 2004 A1
20040254573 Dycus et al. Dec 2004 A1
20040260281 Baxter, III et al. Dec 2004 A1
20050004568 Lawes et al. Jan 2005 A1
20050004569 Witt et al. Jan 2005 A1
20050004570 Chapman et al. Jan 2005 A1
20050021025 Buysse et al. Jan 2005 A1
20050021026 Baily Jan 2005 A1
20050021027 Shields et al. Jan 2005 A1
20050059934 Wenchell et al. Mar 2005 A1
20050096645 Wellman et al. May 2005 A1
20050101951 Wham et al. May 2005 A1
20050101952 Lands et al. May 2005 A1
20050107784 Moses et al. May 2005 A1
20050107785 Dycus et al. May 2005 A1
20050113818 Sartor et al. May 2005 A1
20050113826 Johnson et al. May 2005 A1
20050113827 Dumbauld et al. May 2005 A1
20050113828 Shields et al. May 2005 A1
20050119655 Moses et al. Jun 2005 A1
20050149017 Dycus Jul 2005 A1
20050154387 Moses et al. Jul 2005 A1
20050187547 Sugi Aug 2005 A1
20050197659 Bahney Sep 2005 A1
20050203504 Wham et al. Sep 2005 A1
20050240179 Buysse et al. Oct 2005 A1
20060052778 Chapman et al. Mar 2006 A1
20060052779 Hammill Mar 2006 A1
20060064085 Schechter et al. Mar 2006 A1
20060064086 Odom Mar 2006 A1
20060074417 Cunningham et al. Apr 2006 A1
20060079888 Mulier et al. Apr 2006 A1
20060079890 Guerra Apr 2006 A1
20060079933 Hushka et al. Apr 2006 A1
20060084973 Hushka Apr 2006 A1
20060089670 Hushka Apr 2006 A1
20060116675 McClurken et al. Jun 2006 A1
20060129146 Dycus et al. Jun 2006 A1
20060161150 Keppel Jul 2006 A1
20060167450 Johnson et al. Jul 2006 A1
20060167452 Moses et al. Jul 2006 A1
20060173452 Buysse et al. Aug 2006 A1
20060189980 Johnson et al. Aug 2006 A1
20060189981 Dycus et al. Aug 2006 A1
20060190035 Hushka et al. Aug 2006 A1
20060217709 Couture et al. Sep 2006 A1
20060224158 Odom et al. Oct 2006 A1
20060229666 Suzuki et al. Oct 2006 A1
20060253126 Bjerken et al. Nov 2006 A1
20060259036 Tetzlaf et al. Nov 2006 A1
20060264922 Sartor et al. Nov 2006 A1
20060264931 Chapman et al. Nov 2006 A1
20060271038 Johnson et al. Nov 2006 A1
20060283093 Petrovic et al. Dec 2006 A1
20060287641 Perlin Dec 2006 A1
20070016182 Lipson et al. Jan 2007 A1
20070016187 Weinberg et al. Jan 2007 A1
20070043352 Garrison et al. Feb 2007 A1
20070043353 Dycus et al. Feb 2007 A1
20070055231 Dycus et al. Mar 2007 A1
20070060919 Isaacson et al. Mar 2007 A1
20070062017 Dycus et al. Mar 2007 A1
20070074807 Guerra Apr 2007 A1
20070078456 Dumbauld et al. Apr 2007 A1
20070078458 Dumbauld et al. Apr 2007 A1
20070078459 Johnson et al. Apr 2007 A1
20070088356 Moses et al. Apr 2007 A1
20070106295 Garrison et al. May 2007 A1
20070106297 Dumbauld et al. May 2007 A1
20070118111 Weinberg May 2007 A1
20070118115 Artale et al. May 2007 A1
20070142833 Dycus et al. Jun 2007 A1
20070142834 Dumbauld Jun 2007 A1
20070156139 Schechter et al. Jul 2007 A1
20070156140 Baily Jul 2007 A1
20070173811 Couture et al. Jul 2007 A1
20070173814 Hixson et al. Jul 2007 A1
20070179499 Garrison Aug 2007 A1
20070198011 Sugita Aug 2007 A1
20070203485 Keppel Aug 2007 A1
20070213706 Dumbauld et al. Sep 2007 A1
20070213707 Dumbauld et al. Sep 2007 A1
20070213708 Dumbauld et al. Sep 2007 A1
20070213712 Buysse et al. Sep 2007 A1
20070255279 Buysse et al. Nov 2007 A1
20070260235 Podhajsky Nov 2007 A1
20070260238 Guerra Nov 2007 A1
20070260241 Dalla Betta et al. Nov 2007 A1
20070260242 Dycus et al. Nov 2007 A1
20070265616 Couture et al. Nov 2007 A1
20080004616 Patrick Jan 2008 A1
20080009860 Odom Jan 2008 A1
20080015575 Odom et al. Jan 2008 A1
20080021450 Couture Jan 2008 A1
20080033428 Artale et al. Feb 2008 A1
20080039835 Johnson et al. Feb 2008 A1
20080039836 Odom et al. Feb 2008 A1
20080045947 Johnson et al. Feb 2008 A1
20080058802 Couture et al. Mar 2008 A1
20080082100 Orton et al. Apr 2008 A1
20080091189 Carlton Apr 2008 A1
20080114356 Johnson et al. May 2008 A1
20080167651 Tetzlaff et al. Jul 2008 A1
20080195093 Couture et al. Aug 2008 A1
20080215051 Buysse et al. Sep 2008 A1
20080243120 Lawes et al. Oct 2008 A1
20080249527 Couture Oct 2008 A1
20080312653 Arts et al. Dec 2008 A1
20080319442 Unger et al. Dec 2008 A1
20090012520 Hixson et al. Jan 2009 A1
20090018535 Schechter et al. Jan 2009 A1
20090024126 Artale et al. Jan 2009 A1
20090043304 Tetzlaff et al. Feb 2009 A1
20090048596 Shields et al. Feb 2009 A1
20090062794 Buysse et al. Mar 2009 A1
20090082766 Unger et al. Mar 2009 A1
20090082767 Unger et al. Mar 2009 A1
20090082769 Unger et al. Mar 2009 A1
20090088738 Guerra et al. Apr 2009 A1
20090088739 Hushka et al. Apr 2009 A1
20090088740 Guerra et al. Apr 2009 A1
20090088741 Hushka et al. Apr 2009 A1
20090088744 Townsend Apr 2009 A1
20090088745 Hushka et al. Apr 2009 A1
20090088746 Hushka et al. Apr 2009 A1
20090088747 Hushka et al. Apr 2009 A1
20090088748 Guerra et al. Apr 2009 A1
20090088749 Hushka et al. Apr 2009 A1
20090088750 Hushka et al. Apr 2009 A1
20090112206 Dumbauld et al. Apr 2009 A1
20090131934 Odom et al. May 2009 A1
20090149853 Shields et al. Jun 2009 A1
20090149854 Cunningham et al. Jun 2009 A1
20090171350 Dycus et al. Jul 2009 A1
20090171353 Johnson et al. Jul 2009 A1
20090182327 Unger Jul 2009 A1
20090187188 Guerra et al. Jul 2009 A1
Foreign Referenced Citations (159)
Number Date Country
2104423 Feb 1994 CA
2415263 Oct 1975 DE
2514501 Oct 1976 DE
2627679 Jan 1977 DE
3612646 Apr 1987 DE
4303882 Aug 1994 DE
4403252 Aug 1995 DE
19515914 Jul 1996 DE
29616210 Jan 1997 DE
19608716 Apr 1997 DE
19751106 May 1998 DE
19751108 May 1999 DE
19738457 Jan 2009 DE
0364216 Apr 1990 EP
0467501 Jan 1992 EP
518230 Dec 1992 EP
0 541 930 May 1993 EP
0572131 Dec 1993 EP
584787 Mar 1994 EP
0589453 Mar 1994 EP
0589555 Mar 1994 EP
0623316 Nov 1994 EP
0624348 Nov 1994 EP
0650701 May 1995 EP
0694290 Mar 1996 EP
0717966 Jun 1996 EP
0754437 Mar 1997 EP
0517243 Sep 1997 EP
853922 Jul 1998 EP
0887046 Jan 1999 EP
0923907 Jun 1999 EP
1034747 Sep 2000 EP
1034748 Sep 2000 EP
1025807 Oct 2000 EP
1034746 Oct 2000 EP
1050278 Nov 2000 EP
1053719 Nov 2000 EP
1053720 Nov 2000 EP
1055399 Nov 2000 EP
1055400 Nov 2000 EP
1080694 Mar 2001 EP
1082944 Mar 2001 EP
1159926 Dec 2001 EP
1177771 Feb 2002 EP
1301135 Apr 2003 EP
1472984 Nov 2004 EP
0774232 Jan 2005 EP
1527747 May 2005 EP
1530952 May 2005 EP
1535581 Jun 2005 EP
1609430 Dec 2005 EP
1632192 Mar 2006 EP
1642543 Apr 2006 EP
1645238 Apr 2006 EP
1645240 Apr 2006 EP
1649821 Apr 2006 EP
1707143 Oct 2006 EP
1769765 Apr 2007 EP
1769766 Apr 2007 EP
1929970 Jun 2008 EP
1683496 Dec 2008 EP
623316 May 1949 GB
1490585 Nov 1977 GB
2214430 Jun 1989 GB
2213416 Aug 1989 GB
501068 Sep 1984 JP
502328 Mar 1992 JP
5-5106 Jan 1993 JP
5-40112 Feb 1993 JP
06343644 Dec 1994 JP
07265328 Oct 1995 JP
08056955 Mar 1996 JP
08252263 Oct 1996 JP
09010223 Jan 1997 JP
11244298 Sep 1999 JP
2000342599 Dec 2000 JP
2000350732 Dec 2000 JP
2001008944 Jan 2001 JP
2001029356 Feb 2001 JP
2001128990 May 2001 JP
401367 Oct 1973 RU
401367 Nov 1974 SU
WO8900757 Jan 1989 WO
WO 9204873 Apr 1992 WO
WO 9206642 Apr 1992 WO
WO 9321845 Nov 1993 WO
WO 9408524 Apr 1994 WO
WO9420025 Sep 1994 WO
WO 9502369 Jan 1995 WO
WO9507662 Mar 1995 WO
WO 9507662 Mar 1995 WO
WO9515124 Jun 1995 WO
WO9605776 Feb 1996 WO
WO 9613218 Sep 1996 WO
WO 9700646 Jan 1997 WO
WO 9700647 Jan 1997 WO
WO9710764 Mar 1997 WO
WO 9710764 Mar 1997 WO
WO 9724073 Jul 1997 WO
WO 9724993 Jul 1997 WO
WO 9827880 Jul 1998 WO
WO 9903407 Jan 1999 WO
WO 9903408 Jan 1999 WO
WO 9903409 Jan 1999 WO
WO 9912488 Mar 1999 WO
WO 9923933 May 1999 WO
WO 9940857 Aug 1999 WO
WO 9951158 Oct 1999 WO
WO 9966850 Dec 1999 WO
WO 0024330 May 2000 WO
WO 0024331 May 2000 WO
WO0024331 May 2000 WO
WO 0036986 Jun 2000 WO
WO 0041638 Jul 2000 WO
WO0047124 Aug 2000 WO
WO 0053112 Sep 2000 WO
WO 0117448 Mar 2001 WO
WO 0154604 Aug 2001 WO
WO0207627 Jan 2002 WO
WO 0207627 Jan 2002 WO
WO 02067798 Sep 2002 WO
WO02080783 Oct 2002 WO
WO 02080783 Oct 2002 WO
WO02080784 Oct 2002 WO
WO 02080784 Oct 2002 WO
WO 02080785 Oct 2002 WO
WO02080785 Oct 2002 WO
WO 02080786 Oct 2002 WO
WO02080786 Oct 2002 WO
WO 02080793 Oct 2002 WO
WO02080793 Oct 2002 WO
WO 02080794 Oct 2002 WO
WO02080794 Oct 2002 WO
WO 02080795 Oct 2002 WO
WO 02080796 Oct 2002 WO
WO02080797 Oct 2002 WO
WO 02080797 Oct 2002 WO
WO 02080798 Oct 2002 WO
WO 02080799 Oct 2002 WO
WO 02081170 Oct 2002 WO
WO02081170 Oct 2002 WO
WO 03061500 Jul 2003 WO
WO 03090630 Nov 2003 WO
WO 2004032776 Apr 2004 WO
WO2004032777 Apr 2004 WO
WO 2004032777 Apr 2004 WO
WO 2004052221 Jun 2004 WO
WO 2004073488 Sep 2004 WO
WO 2004073490 Sep 2004 WO
WO2004073490 Sep 2004 WO
WO2004073753 Sep 2004 WO
WO 2004082495 Sep 2004 WO
WO 2004098383 Nov 2004 WO
WO 2004103156 Dec 2004 WO
WO 2005004734 Jan 2005 WO
WO2005004735 Jan 2005 WO
WO 2005110264 Nov 2005 WO
WO 2008045348 Apr 2008 WO
WO 2008045350 Apr 2008 WO
Related Publications (1)
Number Date Country
20060052778 A1 Mar 2006 US
Provisional Applications (1)
Number Date Country
60467027 May 2003 US
Continuation in Parts (1)
Number Date Country
Parent PCT/US2004/013273 Apr 2004 US
Child 11184338 US