The present invention relates to an incorrect-refueling arrangement for a filler tube of a tank.
Various incorrect-refueling systems are known that use sensors in very different ways. For example, it is known to provide the filler tube with a permanent magnet and the pump nozzle with a sensor, which releases an inflow valve when it comes in contact with the magnetic field of the permanent magnet. In another incorrect-refueling system, in order to prevent the refueling of a diesel vehicle with gasoline, the filler tube is provided with ultrasound sensors that measure the diameter of the inserted pump nozzle and, if necessary, emit a warning signal or trigger the activation of the inflow valve. In yet another incorrect-refueling system, the front end of the pump nozzle is provided with a magnet ring, and the filler tube is mounted with a magnet sensor that via an evaluation unit influences a signal transmitter or the through-flow valve.
All of these known incorrect-refueling systems require external power to activate the sensor systems.
The objective of the present invention is to provide for a filler tube of a tank an incorrect-refueling device which operates on a purely mechanical basis.
To achieve this objective in an incorrect-refueling device for a filler tube of a tank, the features indicated in Claim 1 are provided.
The measures according to the present invention indicate an incorrect-refueling device that functions in a purely mechanical fashion. The principle of this incorrect-refueling device is based on the fact that, for example, pump nozzles for gasoline have a smaller tubular diameter than pump nozzles for diesel fuel. This means that the components of the receiving element for the pump nozzle are only forced apart and the filling of the tank only permitted if the larger-diameter pump nozzle for diesel fuel is inserted into the receiving element. If a pump nozzle for gasoline is inserted, the incorrect-refueling device remains in its locked initial position.
According to one preferred embodiment, the features accorded to Claim 2 are provided in order to achieve a consistent pressing apart of the receiving element in response to the insertion of a tube having the diameter in question. In accordance with the features of Claim 3, the receiving element expediently has a specific cross-section.
The receiving element can be designed either in accordance with the features according to Claim 4, so as able to be elastically pressed apart, or it can be formed in an advantageous manner in accordance with the features of Claim 5, through individual and individually hinged circumferential wall parts that are distributed over the circumference. In this way, a locking of the flap is accomplished in a simple manner.
Advantageous embodiments of the circumferential wall parts and their type of hinge design can be seen from the features of one or more of Claims 6 to 8.
Various safety devices to guard against manipulation can be seen from the features of one or more of Claims 9 to 12.
The features according to Claim 13 indicate a simple design of the flap hinge and lock.
Advantageous designs of the flap can be seen from the features of one or more of Claims 14 to 18. On the basis of the features according to Claim 19, an incorrect operation or manipulation, whether intentional or unintentional, is avoided. The same applies to embodiments according to the features of Claims 20 and 21, since as a result the receiving element can evade manipulation in a certain way.
The present invention also relates to a filler tube for a tank in accordance with the features of Claim 22 and the features of Claim 23 and/or 26 and/or 25.
Furthermore, the present invention also relates to a liquid tank having a filler tube in accordance with Claim 22 and one or more of the following claims.
Finally, the present invention relates to an incorrect-refueling system having an incorrect-refueling device in accordance with Claim 1 and at least one of Claims 2 to 21, and having a pump nozzle as characterized in Claim 27.
Further details of the invention can be derived from the following description in which the invention is described and explained in greater detail on the basis of the exemplary embodiments depicted in the drawing.
In the drawing:
Incorrect-refueling device 10, 110, 210, 310, as depicted in the drawing, is configured in the depicted exemplary embodiments as an insert 11, 111, 211, 311, for an undepicted filler tube of an undepicted tank, for example an automobile tank. The essential parts of incorrect-refueling device 10, 110, 210, 310 are made of plastic, by way of example.
Incorrect-refueling device 10 in accordance with
Receiving element 15, which can be pressed apart by discharge tube 18 of pump nozzle 17, in the depicted exemplary embodiment has two circumferential wall parts 20, 20′, which in a top view (
Incorrect-refueling device 10 also has a roughly circular flap 25, which in the initial position according to partial
The form-locking joining of flap 25 and extension 33 of the relevant circumferential wall part 20′ is accomplished only via a partial area of the semicircular circumferential edge of flap 25, so that no output-side sealing of interior space 24 of receiving element 15 results. Flap 25 also has on its interior surface a longitudinal curvature 29, which extends from the pivot end to the latching end of flap 25 and acts as a kind of cam surface with respect to discharge tube 18 of pump nozzle 17.
If a pump nozzle for gasoline, for example, is inserted into receiving element 15, then incorrect-refueling device 10 and its flap 25 remain in the locked position because the exterior diameter of the discharge tube of a gasoline pump nozzle is smaller than that of discharge tube 18 of a diesel pump nozzle and therefore is equal to or smaller than the minimal clearance width of interior space 24 in the area in front of flap 25.
Due to the large exterior diameter of discharge tube 18, which matches interior space 24, both circumferential wall parts 20, 20′ are continuously pressed apart in the radial direction (arrow A,A′) so that, as indicated in
As discharge tube 18 of pump nozzle 17 continues to be inserted and pushed through into and through receiving element 15, flap 25 is opened in the direction of the arrow B, so that the outlet of interior space 25 is released for the penetration of the discharge end of pump nozzle tube 18.
When pump nozzle 17 is withdrawn, there is initially a return of flap 25 to its initial position due to spring-acting pivot axis 26, and flap 25 locks in latching groove 28 of relevant circumferential wall part 20′ due to spring ring 23, which acts in the radial direction upon circumferential wall parts 20, 20′.
When both circumferential wall parts 20, 20′ are pressed apart, the latter at their output-side end encounter a limit stop at jacket 13, which surrounds them, only limit stop 34 being depicted for circumferential wall part 20′. This results in a radial limitation of the pivoting motion of both circumferential wall parts 20, 20′ such that each quantity of motion is less than the depth of latching groove 28. This is intended to prevent the motion of only one circumferential wall part 20, 20′ from resulting in an unlocking of flap 25 due to the false positioning of pump nozzle tube 18.
In place of a spring ring 23 around both circumferential wall parts 20, 20′, circumferential wall parts 20, 20′ can each be constituted by one or more coil springs, which are distributed over the exterior circumference, exert a radial effect, and are supported on the interior side of jacket 13. Springs that operate similarly may also be wrapped around pivot axes 21 and hinge axes 26 of flap 25.
In place of two circumferential wall parts 20, 20′, it is also possible to provide a total of four circumferential wall parts for the receiving element. In place of the tapering of circumferential wall parts of various cross-sections, the latter can be provided with a uniform cross-section and contact chamfers on opposite areas.
Incorrect-refueling device 110, depicted in
Incorrect-refueling device 110 essentially has four additional form and function features, which individually or in combination are designed to prevent the opening of flap 125 as a result of the intentional or unintentional manipulative operation using an incorrect pump nozzle 17 (one for gasoline).
For this purpose, incorrect-refueling device 110 has: first, a device 140 (
First device 140 in accordance with
Second device 150 in accordance with
In third device 160 in accordance with
In accordance with
A further modification of incorrect-refueling device 110, in contrast to device 10, relates to longitudinal curvature 129 on the interior side of flap 125, which in this exemplary embodiment only runs through an area facing pivot axis 126, in other words through roughly half of the diameter area.
As it was depicted with respect to the exemplary embodiments of incorrect-refueling device 10, 110, within insert 11, 111, receiving element 15, 115, which is furnished with circumferential wall parts 20, 20′ or 120, 120′ and flap 25, 125, is arranged within jacket 13, 113, which is made of plastic, so as to be rigid or so as to be fixed through guidance by pairs of bars 31, 32, 131, 132.
In incorrect-refueling device 210, on the other hand, both circumferential wall parts 220, 220′, which are equipped with flap 225, are attached to a support ring 280 via pivot axes 226 so as to be able to pivot (
It goes without saying that both incorrect-refueling devices 210 and 310 can be equipped with a receiving element 15 in accordance with
In the exemplary embodiments depicted, incorrect-refueling device 10, 110, 210, 310 is described as an insert 11, 111, 211, 311 for a tank filler tube. It is obvious that incorrect-refueling device 10, 110, 210, 310 can also be a component part of a tank filler tube, that therefore the tank filler tube is designed in the filler area so that it directly contains incorrect-refueling device 10, 110, 210, 310 in the form of receiving element 15, 115, 215, 315 having flap 25, 125, 225, 325.
The same also applies to a tank that is designed as or provided with a filler tube, in the form, for example, of a tank that is equipped either with an insert of this type 11, 111, 211, 311 for the filler tube or with a filler tube that is provided with incorrect-refueling device 10, 110, 210, 310.
It remains to be mentioned that in an incorrect-refueling system, the design of the discharge end of discharge tube 18, 118 of pump nozzle 17, 117, on the one hand, and the design of the interior surface of flap 25, 125, 225, 325, on the other hand, can be coordinated with each other, as is done, for example, by a shaping 29, 129 of the interior surface of flap 25, 125, 225, 325.
In any case, the length and/or the angle of the taper of circumferential wall parts 20, 20′, 120, 120′, 220, 220′, 320, 320′, or the conicity of the contact chamfers can be dimensioned so that even when pump nozzle 17 is withdrawn very rapidly from the tank filler tube or its insert, flap 25, 125, 225, 325 can return to its initial position before the two circumferential wall parts are moved towards each other and lock the flap.
Number | Date | Country | Kind |
---|---|---|---|
20 2005 012 256.4 | Jul 2005 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2006/007424 | 7/27/2006 | WO | 00 | 9/8/2009 |