Generally the invention relates to optics. In particular, the invention pertains to incoupling light from a light source to target environment and target entities via optional intermediate elements such as lightguides.
Lightguides are waveguides that are typically used for guiding light emitted by light sources in various lighting solutions. The lightguides can be used for display lighting (e.g. back-lighting, front-lighting), keypad, keyboard and/or button lighting, interior lighting, and exterior lighting, among other applications. Conventional lightguides that are considered as thin may have a thickness of about 0.8 to about 1.0 mm and include micro-optical structures for incoupling light thereto and/or outcoupling light therefrom.
Lightguides may be manufactured according to a number of different processes. Lightguide layer production can be completed by means of continuous roll replication, or “roll-to-roll” replication, among other options. By applying this manufacturing method bulk material, such as optically transparent plastic film, may be utilized in surface relief replication. Different roll-to-roll methods are prior known and feasible for manufacturing micro-optic surface relief forms (e.g. structures), either refractive or diffractive, for many different applications. Several roll-to-roll methods are available, such as the ones by Reflexite, Avery Dennison, 3M, Epigem, Rolltronics, Polymicro, Printo project, among others. Other suitable production methods may include continuous or discrete casting methods (UV or thermal curing), compression molding, injection molding, continuous or discrete embossing, such as hard embossing, soft embossing and UV embossing, among others. Melt film can also be used.
Now referring to
a illustrates one example of a lightguide 302 including an incoupling structure 306 consisting of a number of surface relief forms, such as a grating structure, located directly at one end surface of the lightguide 302 in front of the LED 304.
b illustrates an example of a lightguide 302 including a separate incoupling structure 306 between the lightguide 302 and the LED 304.
Notwithstanding the above and various other existing solutions for incoupling light into a lightguide or some other target area few drawbacks have remained therein concerning the characteristics of the coupled light. Either the arrangements have been rather bulky and thus unsuitable for micro-scale applications wherein size restrictions for positioning the lightguide, light source and associated elements are considerable, or the results have functionally turned out only partially fulfilling due to unacceptably irregular illumination pattern obtained on a predetermined outcoupling surface, or to weak incoupling efficiency, for example.
An objective of embodiments of the present invention includes alleviating the aforesaid drawbacks evident in the prior art arrangements. This objective may be achieved with embodiments of incoupling structures in accordance with the present invention.
According to one aspect of the present invention, a light incoupling structure for lighting applications, such as lightguides, includes
The incoupling structure may be functionally and optionally also physically separate or at least separable entity from a target entity such as a lightguide. The second optical element may be formed on the output surface of the optically substantially transparent medium such that an increase in the uniformity and collimation of light is already achieved at the output surface, for example. In another embodiment, the second or further optical element may be physically formed from and/or on a surface of the target entity configured to face the output surface of the medium. In case the incoupling structure is physically integrated with the target entity, the second optical element may define a boundary surface between the input structure and the (rest of the) target entity such as a lightguide.
In another aspect of the present invention, a light incoupling structure for lighting applications includes
The above incoupling structure may also include a second and optionally further optically functional elements located on a predetermined surface such as a predetermined output surface of the medium of the incoupling structure, for example.
In various embodiments of the present invention optical elements may be formed by selecting e.g. the dimensions and material of the medium appropriately, and/or by arranging e.g. surface relief forms thereto such that the propagating light is configured to act in a predetermined, controlled manner upon interaction with the associated boundary regions, for example.
Yet concerning various embodiments, the hole(s) may be filled with air or some other preferred gas, or by feasible solid, elastic or even gel or liquid medium. The refractive index of the medium and thus the medium itself may be selected application-specifically and optionally in connection with defining optical element dimensions and positioning such that a desired overall optical functionality is thereby obtained.
The shape of the medium material may be predetermined together with the first and optionally second optical elements so as to co-operatively increase the uniformity, collimation and incoupling efficiency of incoupled light. The material of the medium may be the same with the material of the target entity. Alternatively, different materials may be used. The medium may substantially have a cross-sectional shape of a hexagon or quadrilateral, for example. In hexagonal case one preferred form may be considered as an aggregate of an isosceles trapezoid joined from the longer parallel side with a rectangle, for example. The medium may be symmetrically aligned relative to the light source and/or the target entity. For example, the input surface of the medium may be symmetrically positioned on the optical axis of the light source. Likewise, the output surface may be symmetrically positioned relative to the target entity.
The holes defined by the optical elements and having a planar/cross-sectional form of an ‘x’ or ‘v’, for example, may be aligned symmetrically in the medium relative to the light source and light incoupled therefrom, e.g. relative to the optical axis of the light source.
In certain embodiments the optically transparent medium may be planar, and e.g. at least the optical output surface may be adapted to match the corresponding (input) dimensions of a target entity such as a lightguide. In other embodiments the medium may be substantially of different size than the target entity, e.g. bigger at least in one dimension, such that a single incoupling structure may be configured to funnel light into multiple, either similar or different, target entities, for example. Despite of the predetermined output surfaces, some light may leak outside the medium also through other areas depending on each particular application.
In some embodiments of the present invention a light source, such as a LED, may be integrated with the light incoupling structure, and the aggregate entity, i.e. lighting element, may be optionally further integrated with a target entity such as a lightguide. The incoupling structure in accordance with embodiments of the present invention may form at least part of the light source optics, e.g. LED optics. In other embodiments the light incoupling structure is integrated with the target entity. The incoupling structure may be still considered as at least functionally separate element despite of physical integration with other components.
The utility of embodiments of present invention may arise from a plurality of issues depending on each scenario. The incoupling structure may generally function as a homogenizer of light distribution. The incoupling structure may especially be configured so as to efficiently collimate and/or uniform the light provided to the target entity such as a lightguide. Alternatively, the incoupling structure may be utilized to couple light directly into target environment, e.g. surrounding space, without further entities such as lightguides in between.
Many solutions typically require only a modest space between the light source and the target entity and in many embodiments one or more elements may be integrated together, which enables producing small-sized optical products with high level of integration but still top quality optics. The achieved incoupling efficiency may be superior to utilization of mere diffractive incoupling gratings, for example. Further, the incoupling structures in accordance with the embodiments of the present invention may be manufactured easily by injection molding or drilling the required shapes to the medium afterwards.
The micro-optic surface relief structures in accordance with some embodiments of the present invention may include diffractive and/or refractive surface relief forms such as grating grooves, recesses, or protrusions with different cross-sectional shapes, e.g. blazed, trapezoidal, sinusoidal, parallelogrammal, binary, etc.
The term ‘x’ refers, in the context of the present invention, to a shape that may be considered to be established from two elongated entities, such as lines crossing each other and thus forming a common central portion with four protrusions; the angle between the two entities may, however, vary and differ from the common 90° as to be reviewed hereinafter. The crossing point divides each elongated entity into two parts that may be of different length.
Various embodiments of the present invention are disclosed ˜n the attached dependent claims.
a illustrates an example of a lightguide, a related light incoupling structure, and a light source.
b illustrates another example of a lightguide, a related light incoupling structure, and a light source.
a illustrates an embodiment of an incoupling structure in accordance with the present invention.
b illustrates another embodiment of an incoupling structure in accordance with the present invention.
a illustrates a plan view of an embodiment of LED positioning relative to the lightguide and resulting light propagation therein.
b illustrates design parameters for arranging hole(s) in the incoupling structure.
c illustrates one embodiment of a medium shape for an incoupling structure in accordance with the present invention.
d illustrates an example of light propagation in the embodiment of
e illustrates one embodiment of surface relief pattern design on the output surface of the incoupling structure in accordance with the present invention.
f illustrates incident and outcoupling angles associated with the scenario of
g illustrates dependency between relief inclination angle and distance to the axis of symmetry of the arrangement.
h is a graph illustrating one embodiment of the height of an initial surface relief structure.
i illustrates an example of an achievable intensity distribution over a target lightguide.
a illustrates an embodiment in which multiple light sources applied.
b illustrates an embodiment of the incoupling structure medium optimization by dividing the edge thereof into multiple segments.
c further illustrates one segment.
d illustrates one embodiment of an incoupling structure medium optimized for multiple light sources.
e illustrates relief inclination angle dependencies.
f illustrates relief inclination angles with correction applied.
g illustrates continuous surface relief structures.
a illustrates an embodiment of a light incoupling structure including a cone-shaped hole.
b illustrates another embodiment with a cone-shaped incoupling hole and a supporting top cone.
a illustrates a further embodiment with a truncated cone-shaped incoupling hole arrangement.
b illustrates still a further embodiment with a truncated cone-shaped incoupling hole.
c illustrates an embodiment in which a truncated hole-shape incoupling element is provided with a reflective top.
d illustrates applicable, however only exemplary, dimensions for an incoupling arrangement of
a illustrates one embodiment of a hybrid incoupling structure including an azimuthal grating and an incoupling cone.
b illustrates another embodiment of a hybrid incoupling structure with azimuthal grating and an incoupling cone.
c illustrates a further embodiment of an azimuthally symmetrical grating.
a illustrates an embodiment of an incoupling structure including a cylinder shape for white balance correction.
b illustrates alternative set-up of the embodiment with a cylindrical element.
Generally, a light source may be connected directly to a lightguide element and thus introduce light thereto without additional means. Alternatively, the lightguide may be arranged with one or more incoupling structures. The incoupling structure may include a wedge including specular reflectors on at least one of a top and bottom surface, an elliptical light pipe, a focusing lens and/or a bundle of split optic fibers. On the other hand, the light source and the incoupling structure may form a unitary structure. When the lightguide element includes multiple lightguide layers, incoupling may vary among the layers.
a illustrates one embodiment of the incoupling structure 410 in accordance with the present invention. The utilized light source 404 may include a LED, such as NICHIA NSSW020BT, for example. The target entity is in this case a lightguide 402, which may be a substantially planar lightguide and have a thickness of e.g. about 0.5 mm and illumination area width of e.g. about 10 mm. Length of the collimating incoupling structure 410 is preferably small, e.g. about 3.5 mm or less. Material of the structure medium 414 and/or target entity such as lightguide 402 may include e.g. PMMA with refraction index (n) of about 1.493.
A surface relief structure 406 such as a plurality of surface relief forms is utilized as a collimation structure to improve, i.e. typically lower, the angular intensity distribution in the lightguide 402. The exploited surface relief structure 406 may include a Fresnel profile, for example. Desirable angular intensity may be specified via a maximum full width half maximum (FWHM) value in degrees, for example.
Uniformity of light conveyed to the lightguide 402 may be improved by defining one or more predetermined refractive and/or diffractive holes, or ‘air scratches’ 408, on the medium surface 410 so as to spread at least part of the rays arriving at the boundary between the medium and the hole more evenly inside the medium 410. In the illustrated embodiment the hole 408 is arranged symmetrically on the structure 410 relative to the light source 404 (axis of symmetry) and the medium 414 dimensions, i.e. it is centered concerning the both two aspects.
Advantageously, at least a portion of light emitted by the light source 404 is deflected upon impact at the hole boundary 408 from the center region of the incoupling structure 410 towards the side(s) so as to increase the uniformity of light over a predetermined surface of the target lightguide 402 whereto the light is directed from the structure 410 via the surface relief structure 406 on the predetermined exit surface. The optical elements 406, 408 and medium 414 parameters may be jointly optimized for each application, and the optimization may be performed either considering the incoupling structure alone or together with the connected target entity such as the lightguide 402.
Portion of the light that is emitted by the light source 404 towards the lightguide 402 may also propagate substantially straight through the hole(s) 408 of the incoupling structure 410. The hole(s) 408 may be blind hole(s) and/or through hole(s) and define one or more contour lines on the incoupling structure 410, for example. The hole material may include air or some other gas, or selected solid or elastic material with preferred characteristics such as predetermined refractive index, for example. The contour(s) as created by the hole(s) 408 may define one or more substantially ‘crossing lines’ or ‘x’-like shapes in the medium 414 of the incoupling structure 410. The line-shapes crossing each other may be straight or slightly wavy. The central portion of the shape may be larger than a mere combination of superposition of two differently aligned lines. The (surface) plane of the incoupling structure 410 may be parallel to the plane of the lightguide 402.
The incoupling structure 410 may be physically separate (shown in the figure via a gap between the structure 410 and the lightguide 402) or at least separable from the lightguide 402 and/or light source 404, or be e.g. seamlessly integrated therewith by injection molding, for example. Nevertheless, the incoupling structure 410 may be considered, by its 5 function, at least a logically substantially separable, independent entity. Thus, in one embodiment the surface relief forms logically belonging to the incoupling structure may be additionally or alternatively physically formed on the input surface of the target entity, e.g. the lightguide 402.
In order to review the performance of the embodiment, light uniformity over the waveguide Uw, uniformity over the frontal side of the waveguide Uf at about 3.5 mm and about 5 mm distance from the LED 404 and incoupling efficiency E were determined in the exemplary configuration. E was found to be about 76%, Uf (3.5) about 84%, Uf (5) about 86% and Uw over 93%. Thus, the construction was generally found rather satisfying as to the resulting uniformity characteristics and it is thus feasible in backlight applications with less stringent requirements on the FWHM value, for example.
b illustrates a plan view of another embodiment of the present invention, wherein the incoupling structure 410 in this embodiment includes a collimating surface relief structure 406 that is physically located at the lightguide 402 end, or ‘input’, surface. The incoupling medium 414 includes one or more, e.g. three as shown, substantially ‘v’-shaped holes 408 to improve the resulting uniformity according to the principles already set forth hereinbefore. Further, a lens 412 such as a (plano-) convex lens has been added to co-operate with the holes for spreading the light and increasing the uniformity. The v-shaped holes may be sharp-edged or curved/rounded, e.g. more ‘u’ or in case of multiple adjacent shapes, ‘w’-like, or also wavy in nature.
Inclination of the hole (components) may be designed using the following conditions. Deposition of the hole may be symmetrical with respect to the LED's axis of symmetry. The hole itself may be located such that its edges deflect light from center region to side regions thereof. The geometry shown in
In the exemplary configuration, the inclination angle a was considered to preferably remain smaller than a predetermined limit of about 32° to substantially avoid light reflections back to the LED. Holes with certain angle of inclination may advantageously limit light passing to center region to the average value of luminance on the predetermined output surface such as the surface facing the input surface on the opposite end of the incoupling structure.
It was then discovered that for α=20° luminance of region R (about +/−1 mm from the axis of symmetry) may be equal to average. Implementation of such geometry implies that the shape of the incoupling medium may be modified and further enhanced from a basic rectangular one to the one illustrated in
One option for determining the length of the line 11 is presented next. In the illustrated case, for inclination angle a.=20° all rays with angles ˜less than 22° in relation to the vertical axis of symmetry are redirected by the boundary between the hole and the incoupling medium, see
where l is the length of the LED as shown. Parameters to be optimized in this example are the distance from the input side of the structure d, line length 12 (see
wherein Ij—intensity of light in the point j, and j variety of the points on the front surface of the waveguide, N—total number of the points of measurement;
Ī—mean value of the intensity.
It was found that e.g. parameter values 12≈0.9 mm, d≈1.25 mm, s 1≈1.5 mm, and s2≈2.35 mm provide high energy and uniformity values on the exit area of the incoupling structure. Parameter 11≈0.55 mm was determined considering the substantially 0.1 mm air gap between the LED and the incoupling structure. The following experiments demonstrate the maximum value of the uniformity with high percentage of energy. In the exemplary configuration, changing 12 from 0.9 mm value may result in decrease of the uniformity as shown in Table 1:
Correspondingly, changing d from the value 2.25 mm may result in decrease of the uniformity as shown in Table 2:
Further, changing s) from the 1.5 mm value may result in decrease of the uniformity as shown in Table 3:
Yet, changing S2 from the 2.35 mm value may result in decrease of the uniformity as shown in Table 4:
Accordingly, the experiments indicate that the parameters of the collimation structure work well for the given geometry.
Curvature of the surface of the surface relief structure may be designed using the following conditions, for example. See
The α inclination angle may be chosen by the condition of equality of angles of refracted rays α1out and α2out. The calculated dependence of relief inclination angle a on a point of the H axis at a distance ds to the axis of symmetry S is shown in
The height and feature sizes of the collimating microstructure may preferably be selected higher than the wavelength of e.g. red light in order to avoid undesired diffraction effects and color dispersion of the light emitted by a white LED.
Resulting intensity distribution on the surface of the destination waveguide is illustrated in
In the embodiment of
As the structure is symmetrical, only half of the initial shape was prepared for optimization by dividing it into segments as shown in
Each segment may be characterized by the angle of inclination ak and length lk (see
An optimization procedure may be based on maximizing the uniformity of luminance on side H of the incoupling structure and minimizing the maximum angle of light angular divergence to axis y in plane xy. During initial optimization, side H was assumed to be perfect absorber. Intensity uniformity over the opposite, exit side of the incoupling structure was calculated using the previously presented uniformity equation, whereby the following dimensions and inclination values for different segments were obtained:
The optimized shape (darker line) of a medium edge for multiple light sources is shown in
The performed optimization reduced the angular divergence of light transferred to side H by 4.6°. Also, incoupling efficiency was increased by 1.7%. However, the uniformity of light energy was decreased to a minor extent.
Considering the design of the surface relief structure, FWHM angles of intensity angular distribution on axis H in the structure dependence on distance ds from axis S was estimated by numerical experiments. Optimization of the structure shifted the angular divergence to axis of symmetry from about 3.7 mm to about 5 mm distance by 5° to 10°. However, for distances from about 2.3 mm to about 3.7 mm angles of FWHM are still not as small as they could for certain applications. It is thus suggested that the angles in this region are reduced by using additional holes.
The α inclination angle is chosen by the condition of equality of angles of refracted rays α1out and α2out. The calculated dependence of relief inclination angle α in a point on the H axis at distance ds to the axis of symmetry S is calculated for initial and optimized structure and shown in
Large angles between the normal of the microstructure relief and incident beam reduce the transmitted energy. So, it is generally advantageous to decrease the relief inclination angle. Three corrected dependencies with small, intermediate, and large decrease in the relief inclination angle (correction 1, correction 2, correction 3) were also tested in experiments. The corrected dependencies of relief inclination are shown in
A continuous profile was constructed using the corrected dependencies. One half of the associated symmetric graph is shown in
A surface relief microstructure may be applied to both walls of the lightguide that are facing the LED. The bottom side may be coated with a refractive microrelief, whereas the upper side may be coated with a reflective microrelief in the form of a triangular grating.
The figure schematically shows the geometry of rays, with the top-side reflection grating additionally enabling the coupling of the portion of the zero-order energy in its central region (the orders −1′ and 1′). The obtained incoupling efficiency may still be increased in contrast to a mere single-surface microstructure.
a illustrates a cross-section of one further embodiment of the present invention wherein a cone-shaped hole 1006 is formed in the incoupling structure (medium) or directly in the lightguide 1002. The lightguide 1002 having a thickness H includes a cone-shaped hole of apex angle θ, depth h, and diameter D. The refractive index of the lightguide 1002 is n. The hole may be filled with air or some other gas, or with a solid medium having a predetermined refractive index different from the one of the surrounding lightguide medium 1002. The apex angle θ may be about 20°, 30°, 40°, or 50°, for example. A preferred hole diameter depends on the irradiation body size and is chosen in this embodiment to be about D=1.6 mm.
Table 7 gives exemplary results of computation and simulation of the cone hole 1006 with regard for the various refractive indices of the lightguide. The value of η is the coupling efficiency given as a percentage of the total LED energy. The LED directivity diagram is considered to be Lambertian. The lightguide thickness shall not be less than the cone height h. In the Table: n designed=the designed refractive index enabling an optimal operation of the scheme, n used=the refractive index for which the value of η was computed.
For the refractive index equal to or less than n=1.41, the coupling efficiency typically decreases considerably. 100% efficiency will remain practically unattainable because some limited portion of light leaves the lightguide through its top. Table 7 gives the hole depth h, with the calculation results being valid for lightguide thickness H>h.
b illustrates an embodiment of the present invention, wherein two substantially cone-cone shaped optical elements are used for (in)coupling purposes. The performance of the embodiment of
In one configuration the achieved performance was as follows:
Applying a mirror (reflective) coating to the top cone modifies the results as follows:
When the goal is to couple light into a lightguide with a wide range of refractive indices, the above arrangement performs quite well in the entire range of the refractive indices. For the refractive index of n=1.29 (the lightguide being about 3 mm thick) it is, by a further optimized cone, possible to get a coupling efficiency of about 83%, whereas the application of the mirror coating on the top cone may increase the efficiency up to about 98%. For a thicker lightguide, even better results may be obtainable. Table 10 provides an insight in terms of coupling efficiency and refractive index into the analysis results for a lightguide with thickness 8 mm for the same optical configuration.
The two-cone scheme as illustrated may be optimized case-specifically based on the assumption that the at least few of the following parameters are known: the lightguide thickness; the lightguide refractive index; size of the light source, e.g. LED, irradiation body, and (in)accuracy in the light source alignment in the XZ-plane and on the Y-axis.
If the cone is to be manufactured by drilling a blind hole to the lightguide, the smoothness of the cone surface should be considered, since wall roughness on the Y-axis (ring like grooves due to low-quality drilling) may cause the radiation to leave the lightguide through its top when the scheme operates at designed refractive index and height h. Minor roughness on the cone surface found in the XZ-plane (with the grooves parallel to the cone axis) is possibly not that critical.
In both schemes, the LED irradiation body is preferably placed right against the lightguide (bottom) side. When manufacturing the arrangement, one option is to slightly sink the LED into the cone. This may increase the coupling efficiency (e.g. by about 0.1 . . . 0.2%) and preclude the possibility of seeing the LED at the acute angle to the lightguide outside surface. The depth of the LED embedding may be determined case-specifically.
a illustrates a cross-section of another embodiment of a refractive cone-aided incoupling structure for conveying light into a (thin) waveguide. It may be considered e.g. a scheme for coupling light from a light source such as LED 1104 into a lightguide 1102 that may be only about 0.15 mm thick, the refractive index being about n=1.5. The cone 1106 defined by the hole may substantially be a truncated, e.g. circular, cone such as a frustum, and obtained by drilling through the lightguide 1102, or by utilizing a suitable mold, for example.
Also in this embodiment, the incoupling structure 1112 may be installed by a drilling a hole to the lightguide, and in this case through the lightguide, resulting either directly slanted walls or walls perpendicular to the lightguide surface. In the latter case a lighting element, such as a incoupling module 1112 including a medium material, either similar to or different from the surrounding lightguide medium 1102, defining the truncated-cone shaped hole 1106 filled with air or some other medium, and optionally provided with a light source such as LED, is arranged to the hole.
For the scheme shown in the figure the coupling efficiency may be about 61% for a lightguide with refractive index of about n=1.5. Together with refractive index the efficiency will rise, whereas a decrease in the index may cause the efficiency to fall. Thus, for n=1.68 the coupling efficiency may be about 67%.
b illustrates another embodiment of an incoupling structure including a shape of a truncated cone. In this embodiment more thickness is locally added to the lightguide medium 1102 around the incoupling structure 1106 such that the incoupling structure is enhanced via additional coupling surface, local medium depth, and resulting improved 10 angles. The incoupling structure may be provided as a lighting element, such as a module 1114 incorporating gradually thickening medium portions 1108, cone material (if any) 1106, and/or light source such as LED 1104. By analysis, for n=1.68 the coupling efficiency of about 72% may be reached, for example.
The coupling efficiency may in certain applications be further increased by introducing a reflective cone into the scheme under study. One further embodiment of an incoupling structure in accordance with the present invention is thus illustrated in
In the embodiments of
d represents dimensions of one possible implementation of the incoupling structure in accordance with the embodiment of
a illustrates a surface view 1210 and a cross-sectional view 1220 of a further embodiment of the present invention wherein a so-called azimuth grating is combined with a cone-shaped central portion so as to provide enhanced light incoupling structure. The binary diffraction grating or other preferred grating structure includes piecewise-parallel grooves 1208 symmetrically, e.g. radially located around a hole 1206 having a shape of a cone or a truncated cone as described hereinbefore, in the medium. With a grating solution the incoupling efficiency is typically insufficient at all incident angles; thus a hybrid solution may be provided with improved incoupling efficiency. In the case of substantially point-like light source, e.g. a LED, the cone 1206 may be a right circular cone positioned such that the vertical axis of the cone and the LED are joined, note the broken line in the figure. The grating may be configured to incouple rays emitted by the LED 1204 that miss the cone 1206, for example. When the distance between the LED 1204 and lightguide/cone 1206 increases, more and more light will first hit the grating 1208 instead of the cone 1206, but the incoupling efficiency still stays higher than with a mere cone-type incoupling arrangement. Thus, the embodiment is especially suitable for applications in which the LED cannot be seamlessly integrated with, or even deposited slightly within, the lightguide surface.
b illustrates an alternative azimuthal grating 1212 to be used with a cone-type hole (not shown). In this embodiment a grating zone includes radially diverging, widening grooves. Therefore, also the grating period T is altered as a function of R and/or x, i.e. the distance of a zone start and/or within-zone position from the overall symmetry center, for example. In this example, the hole 1214 may be have a cross-sectional shape of letter ‘m’ as explained hereinbefore or some other shape, for example.
Generally the use of a laser instead of e.g. a LED as a light source may increase the coupling efficiency because laser light is inherently collimated; thus it can be focused into a small region comparable with the thickness of the lightguide, and then coupled into the lightguide using micro-optics. The coupling efficiency may be improved by reducing the input region (and, hence, the size of the light source) and/or increasing the lightguide thickness.
c illustrates a top view of a further embodiment of an azimuthally symmetric binary diffraction grating suitable for use with a cone-type center element in a lightguide for incoupling purposes. The grating grooves are in this embodiment continuous over the whole structure, i.e. there are no separate zones.
a illustrates an embodiment of an incoupling structure wherein multiple light sources, such as LEDs, are used to form a predetermined color combination, such as white light. In order to mix the light from the multiple LEDs effectively prior to entering the lightguide a cylinder 1306 whereto the LEDs (each emitting e.g. red, green, or blue light with associated wavelengths/refractive indexes such as 617 nm (n=1.4901), 525 nm (n=1.49473), and 469 nm (n=1.497), respectively) are installed to a predetermined depth S such that the resulting several couplings by the diffusing/reflective inner walls of the cylinder 1306 mix the rays already on the way to the actual lightguide. Thus, the arrangement is suitable for white balance adjustment and color mixing, for example, and it may be co-implemented with other incoupling structures, such as a (truncated) cone-type tapered hole presented hereinbefore. Also, an increase in the waveguide thickness may lead to a further increase in the coupling efficiency. Generally, considering the effect of distance S from the waveguide plane, the larger the distance S, typically the better is the uniformity measured at the lightguide.
b visualizes another embodiment of a cylindrical incoupling structure in accordance with the present invention. The light source(s), such as LED(s) (e.g. multi color multichip), have been placed deeper in the cylinder such that more reflections occur in the cylinder while the rays propagate towards the waveguide, which preferably enhances the color mixing effect.
The various embodiments of the present invention may be adapted and combined as desired as being appreciated by persons skilled in the art. For example, the incoupling structure may be tailored for use with various lighting products, such as displays, lamps, handheld products, such as mobile terminals, wrist computers, PDAs, watches, vehicle lighting, etc. Accordingly, the incoupling structure may be constructed as multi-purpose version and then integrated with a further, application-specific optically functional layer, e.g. a keymat of a keypad assembly.
The scope of the invention is determined by the attached claims together with the equivalents thereof. The skilled persons will again appreciate the fact that the explicitly disclosed embodiments were constructed for illustrative purposes only, and the scope will cover further embodiments, embodiment combinations and equivalents that better suit each particular use case of the invention.
This application claims priority to U.S. patent application Ser. No. 12/003,750, filed on Dec. 31, 2007, which in turn claims priority to U.S. Provisional Patent Application Ser. No. 60/877,648 filed Dec. 29, 2006, the entire contents of which are both incorporated herein by reference.
| Number | Name | Date | Kind |
|---|---|---|---|
| 6031664 | Goto | Feb 2000 | A |
| 6139163 | Satoh et al. | Oct 2000 | A |
| 7006306 | Falicoff et al. | Feb 2006 | B2 |
| 7666920 | Tokuda et al. | Feb 2010 | B2 |
| 20020071267 | Lekson et al. | Jun 2002 | A1 |
| 20030099118 | Saitoh et al. | May 2003 | A1 |
| 20050024744 | Falicoff et al. | Feb 2005 | A1 |
| 20060092619 | Hsu et al. | May 2006 | A1 |
| 20060203518 | Tseng | Sep 2006 | A1 |
| 20060285356 | Tseng | Dec 2006 | A1 |
| 20090016057 | Rinko | Jan 2009 | A1 |
| 20090237910 | Takada et al. | Sep 2009 | A1 |
| Number | Date | Country |
|---|---|---|
| 1702523 | Nov 2005 | CN |
| 101034182 | Sep 2007 | CN |
| 11174968 | Jul 1999 | JP |
| 2002260427 | Sep 2002 | JP |
| 2003167130 | Jun 2003 | JP |
| 2004158452 | Jun 2004 | JP |
| 2006099117 | Apr 2006 | JP |
| 2006113556 | Apr 2006 | JP |
| 2006173624 | Jun 2006 | JP |
| 2006277991 | Oct 2006 | JP |
| 2006301544 | Nov 2006 | JP |
| 2006309242 | Nov 2006 | JP |
| WO9909349 | Feb 1999 | WO |
| Entry |
|---|
| Macchine Translation Miyazaki JP 2002-260427. |
| The Chinese Office Action mailed on Jan. 26, 2011 for Chinese Patent Application No. 200780051832.4, a counterpart foreign application of U.S. Appl. No. 12/003,750. |
| The Chinese Office Action mailed Aug. 17, 2011 for Chinese patent application No. 200780051832.4, a counterpart foreign application of U.S. Appl. No. 12/003,750, 9 pages. |
| Restriction Requirement for U.S. Appl. No. 12/003,750, mailed on Mar. 8, 2010, Rinko, “Incoupling structure for lighting applications”, 25 pages. |
| Office action for U.S. Appl. No. 12/003,750, mailed on Nov. 19, 2011, Rinko, “Incoupling structure for lighting applications”, 9 pages. |
| The Russian Office Action mailed Dec. 16, 2011 for Russian patent application No. 2009128624, a counterpart foreign application of US patent No. 8,066,408, 11 pages. |
| The Japanese Office Action mailed Feb. 29, 2013 for Japanese patent application No. 2009-543486, a counterpart foreign application of US patent No. 8,066,408, 8 pages. |
| The Japanese Office Action mailed Aug. 6, 2013 for Japanese patent application No. 2009-543486, a counterpart foreign application of US patent No. 8,066,408, 6 pages. |
| The Japanese Office Action mailed Dec. 17, 2013 for Japanese patent application No. 2009-543486, a counterpart foreign application of US patent No. 8,066,408, 4 pages. |
| Number | Date | Country | |
|---|---|---|---|
| 60877648 | Dec 2006 | US |
| Number | Date | Country | |
|---|---|---|---|
| Parent | 12003750 | Dec 2007 | US |
| Child | 13278001 | US |