The present invention relates to the field of gas supply measurement with through-flow sensors and in particular thermal through-flow sensors. It starts from a method and a gas meter for measuring gas consumption according to the preamble of the independent claims.
A gas meter which is calibrated as an energy measuring device is disclosed in WO 01/96819 A1. The calibration is based on the fact that sensor signal values are determined dependent upon the through-flow rate of a calibration gas and are stored in the gas meter in the form of a sensor calibration curve. The sensor calibration curve or the sensor signal values are multiplied by a signal conversion factor and a calorific value factor for the basic gas mixture so that the obtained product indicates gas consumption in an energy unit. With a further correction factor, the actual heat value of a supplied gas mixture can be taken into account at least approximately in the energy calibration. As actual heat value, a measured heat value which is averaged over a specific time span can be used. It is disadvantageous that an external unit is required to determine the heat value.
EP 1 227 305, a method and a gas meter for determining a gas consumption from a corrected mass flow signal or energy supply signal are disclosed. On the static gas, diffusivity and therefrom a gas-specific correction value f* for the mass flow or energy supply is determined thereby from a measured heating time.
In EP 0 373 965, a method and a device for determining a gas or energy consumption from a corrected mass flow signal are disclosed. During the signal correction, the heat conductivity, specific heat capacity and density of the gas are taken into account. The corrected mass flow signal and hence gas or energy consumption signal is independent of the type of gas and in particular is identical for air, argon, helium, carbon dioxide, methane and propane. It is disadvantageous that a mass flow signal standardised in such a way is not sensitive to the heat value of a gas or gas mixture since combustible gases with different heat values (e.g. methane or propane) produce the same mass flow signals and even the same signals as non-combustible gases (e.g. helium, argon, carbon dioxide or air).
In the U.S. Pat. No. 5,311,447, a method and a device for combustion-less determination of the specific heat value of natural gas are disclosed. For this purpose, specific heat value, density or proportion of inert gases are determined by empirical formulae from measured values of viscosity, heat conductivity, heat capacity, optical absorption, etc. The large measuring and computing complexity is disadvantageous in quantitative measurement of a plurality of independent gas type-dependent values and, in the case of combination thereof, with a volume flow measurement in a gas meter in order to determine a consumed quantity of energy.
In WO 01/18500, an improved mass flow measurement with two thermal CMOS anemometers is disclosed. On the static gas, measurements are made of heat conductivity in the case of a constant heat output and, in the case of a pulsed heat output, of heat capacity, the gas is identified and, from the specific heat value thereof together with the mass flow measurement, the total calorific value of the gas is determined. The relatively large complexity when determining the consumed quantity of energy from separate values of mass flow and specific heat value is in turn disadvantageous. In addition, the specific heat value for a sufficiently accurate determination of the energy supply must be measured continuously and with great accuracy.
In the article by D. Hoburg and P. Ulbig, “Statutory Metering and Calorific Value Reconstruction Systems”, Gas ● natural gas 143 (2002) No. 1, calorific value reconstruction systems for gas networks with different supply calorific values are disclosed. By simulation of the natural gas flows in the mains system, with the assistance of measuring data such as temperature and pressure, the gas constitution at any points in the gas network can be calculated. In particular the delivery calorific value at the delivery point to the customer can be calculated dynamically from the supply calorific values, supply through-flows, delivery through-flows and further auxiliary values such as network pressures. Normal gas constitution data, which must be detected by measurement technology at the supply points, are calorific value, standard density, CO2 content and H2 content. It is also disadvantageous that the geometry and topology of the network, in particular pipe roughnesses, are mostly inadequately known and the simulation calculation becomes altogether inaccurate. Also the result of the simulation calculation depends greatly upon the chosen pipe flow model and upon the computer power which is available.
It is the object of the present invention to indicate a method and a device for determining a gas energy supply with improved accuracy. This object is achieved according to the invention by the features of the independent claims.
The invention resides in a first aspect in a method for measuring a gas supply, in particular in the private, public or industrial sector, by means of a gas meter which is disposed at a gas supply location of a gas supply network, a measuring signal Vs, Vns, Ms, Es for a quantity consumption and/or energy consumption of the gas being determined by the gas meter by means of a through-flow sensor, a sensor error factor fi (or fi′, fi″, fi′″) of the gas meter being known in order to detect deviations between the consumption measured by the gas meter and the actual consumption, a consumption profile li (also li′, Li) for the gas consumption, which profile is characteristic of the gas supply location, being known, the sensor error factor fi and the consumption profile li for an accounting period being definable as a function of a common variable t or T and a consumption-weighted correction factor F relative to the accounting period being determined by averaging the sensor error factor f1 weighted with the consumption profile li and, with the correction factor F, the measuring signal Vs, Vns, Ms, Es being converted into an output value Vn, M, E. The conversion can be implemented in the gas meter or outwith it, e.g. at the gas network operator. The sensor error factor fi takes into account inherent, typically gas type-dependent measuring errors of the gas meter or through-flow sensor. The consumption profile li is intended to reproduce the consumption behaviour of the gas energy subscriber as realistically as possible. It can be given for through-flow rates in any units, e.g. volume flow, mass flow or gas energy flow. The correction factor F is normally calculated by multiplication or in a similarly operating manner by the measuring signals. The method and gas meter according to the invention has the substantial advantage that variations in the gas composition are weighted with the customer-specific consumption behaviour and are used only in such a customer-specific form for correction of the measuring signal Vs, Vns, Ms, Es. As a result, the accuracy of a gas volume, gas mass or gas energy measurement is significantly increased.
In one embodiment, the measuring signal is an operating volume signal Vs, standard volume signal Vns, gas mass signal Ms or energy signal Es measured by the gas meter and/or the output value is a supplied standard volume Vn, a supplied gas mass M or a supplied gas energy E.
In another embodiment, the averaging comprises summation and/or integration over the common variable of products which contain the sensor error factor and the consumption profile, and/or the averaging is implemented taking into account a heat value profile Hi (or Hi′) relative to the common variable. In particular, the averaging includes a suitable standardisation function.
The embodiment according to claim 4a has the advantage that a measuring signal can be added up in the gas meter over for example half a year or an entire year, read by the gas man or transmitted and corrected only subsequently with respect to variations in gas composition and in particular in heat value. The correction factor F can be determined by an independently implemented averaging, in particular a priori, simultaneously or a posteriori for measuring signal detection. Hence, in the case of non-registering gas meters, the time-averaged measuring signal can be corrected in a customer-specific manner with little complexity without heat value variations and/or gas load profiles requiring to be detected locally or transmitted to the gas supply location. The subsequent measuring signal correction can be implemented in principle also in the gas meter itself.
The embodiment according to claim 4b has the advantage that a measuring signal can be detected during registering operation and converted or corrected immediately or with a slight time delay with a currently determined correction factor F. In the current correction factor F, for example measured or predicted values of the sensor error factor fi, of the consumption profile li and if necessary of the heat value Hi can be taken into account. As a result, a registering gas meter can be produced with the highest measuring accuracy. The current measuring signal correction can be implemented in the gas meter or outwith the gas meter.
The embodiment according to claim 5 has the advantage that, in the case of a known gas composition, the sensor error factor fi and, if required, the heat value Hi can be determined immediately.
The embodiment according to claim 6 has the advantage that the gas composition is already known to the operator or can be determined easily by the operator and/or can be calculated by means of known simulation models for gas flows in the network.
The embodiment according to claim 7 has the advantage that the sensor error factor fi, the consumption profile li and if necessary the heat value Hi can be represented as a function of time or temperature and averaged together.
The embodiments according to claim 8 and 9 have the advantage that the local gas subscriber can choose that gas consumption or load profile li which can be determined easily and can be updated simply if necessary, which demands little computing complexity and in particular memory requirement and/or which has the greatest prediction force for the gas consumption to be expected.
The embodiments according to claim 10-12 relate to concrete computer specifications for exact calculation of the correction factor F when using the gas meter as volume, gas mass or gas energy measuring device.
The embodiments according to claim 13-15 relate to calibration of the gas meter as energy measuring device, in particular an inherent dependency of the thermal through-flow sensor signal upon the heat value Hi being able to be taken into account in order to improve the accuracy of the gas energy measurement.
The invention resides in a second aspect in a gas meter for measuring a gas supply, in particular in the private, public or industrial sector, the gas meter being disposed at a gas supply location of a gas supply network and having a through-flow sensor and a measuring and evaluating unit for determining a measuring signal Vs, Vns, Ms, Es for a quantity and/or energy consumption of the gas, furthermore computing means for determining and/or storing a typically gas type-dependent sensor error factor fi (also fi′, fi″, fi″) of the gas meter and a consumption profile li (also li′, Li) which is characteristic of the gas supply location and also for calculating a correction factor F by weighted averaging of the sensor error factor fi with the consumption profile li being present and furthermore computing means for converting the measuring signal Vs, Vns, Ms, Es by means of the correction factor F into an output value Vn, M, E of the gas meter being present. Preferably, a data memory for storing the sensor error factor fi and the consumption profile li as a function of a common time variable and/or temperature variable are present and/or the computing means and/or the data memory are disposed outwith the gas meter or in the gas meter.
The embodiments according to claims 18-20 enable a particularly simple construction and operation of the gas meter as energy measuring device.
Further embodiments, advantages and applications of the invention are revealed in the dependent claims and also in the description and Figures which now follow.
There are shown:
In the Figures, the same parts are provided with the same reference numbers.
According to the invention, a typically gas type-dependent sensor error factor fi, fi′, fi″, fi′″ and a customer-specific consumption profile l1, li′, Li is determined or detected by the gas meter 1, a correction factor F is calculated therefrom and, with this, a measuring signal Vs, Vns, Ms, Es of the gas meter 1, in particular an energy signal Es, is converted into an output value Vn, M, E, in particular a gas energy E, with improved calibration accuracy. The method is represented in detail in the course of the description and in various embodiments.
Instead of the through-flow sensor 1a with two temperature sensors 5a, 5b and in particular instead of the CMOS anemometer 1a, also a thermal through-flow sensor can be used in general for the operability of the gas meter 1 as volume, mass or energy meter 1, in which through-flow sensor the gas 3b is guided via a sensor element which has a heating means for temperature change and a sensor means for determining its temperature, the flow-dependent temperature change in turn being a measure of the through-flow or mass flow. Alternatively, the thermal through-flow sensor 1a can also be operated with only one temperature sensor 5a which is disposed upstream. The method according to the invention can also be implemented with any non-thermal gas meter 1 which, upon a through-flow, e.g. a mass flow, delivers calibrated signals. In general, the mass flow dm/dt can be indicated in mass or, in the case of a constant gas type, in standard volume units, e.g. in kg/min or can be determined according to dm/dt=ρ*dV/dT by means of the density p from a volume flow dV/dT.
Preferably, the gas meter 1 is operated in the conventional manner in a non-registering manner, is read now and again and subsequently the integral measuring signal Vs, Vns, Ms, Es is converted into the more precise output value Vn, M, E. The conversion can be implemented subsequently in the gas meter 1 or preferably outwith it, for example at the network operator 10.
The method can also be applied to a registering gas meter 1. For this purpose, a gas meter 1 comprises a receiving unit 9 for receiving heat value data of a gas composition 3b present at the gas supply location 14 from an external unit 10, in particular an operator 10 of the entire gas network 11 or of a partial network. The operator 10 can ascertain measuring data by himself or through external locations and use analysis means to determine the gas composition 3a. He can deliver to the local gas meter 1 raw data or prepared data, in particular a specific heat value profile Hi, Hi′, for the local gas composition 3b or the one present in the relevant sub-network. Calculation and data transmission to the gas meter 1 can be repeated at prescribable time intervals. The reliability of the energy measurement is significantly increased since, using global and local data, an improved heat value correction can be implemented. The global data relate to the gas supply and gas distribution in the network. They are present at the operator 10 and can be used in a manner known per se to determine a local gas composition 3b relating to the gas supply location 14. Data relating to the local gas consumption behaviour li, li′, Li of the customer, which can be detected by the gas meter 1, can be collected directly in situ or be determined in another manner. By combining these data, the gas energy supply E from the energy measuring device 1 is determined with significantly improved accuracy. This combination of the data and the conversion of the measuring signal Vs, Vns, Ms, Es to the more precise output value Vn, M, E can be implemented in the gas meter 1 or outwith the gas meter 1, for example at the network operator 10. Deviating from the representation in
The sensor error factor fi, fi′, fi″, fi′″ and in particular a heat value or heat value profile Hi, Hi′ can be determined from the gas composition 3a, 3b, for example by means of calibration tables. Advantageously, the gas composition 3a, 3b and the consumption profile li, li′, Li are known as a function of the common variables t, T. The sensor error factor fi, fi′, fi″, fi′″ and if necessary the heat value profile Hi, Hi′ can also be given themselves directly as a function of the common variables t, T and thus can be correlated with the consumption profile li, li′, Li.
In the following, embodiments for computing specifications are indicated for using the gas meter 1 as an improved volume, mass or energy measuring device. The calculation is implemented for example with support values or average values in a time interval indexed with i; instead of adding support point values, integrals of function values can also be formed over the common variable, e.g. time. There applies:
Vn=Vs·K (E1)
K=1/Σi(1i·fi) (E2)
with output value Vn=supplied standard volume (=standard volume added up over a specific time=integral of the standard volume through-flow rate for current gas composition 3a) and measuring signal Vs=operating volume added up in the period of time, K=correction factor F, li=Vni/Vn=gas quantity load profile relative to standard volume (standardisation e.g.: ΣiVn,i=Vn, i.e. Σi1i=1), fi=Vsi/Vni=sensor error factor for operating volume measuring errors, Vsi=operating volume signal (indicated by gas meter 1, pressure- and temperature-dependent) and Vni=standard volume (actually supplied) in the time interval i. There is in fact
Vsi=Vni·fi=li·fi·Vn (E3)
Vs=ΣiVsi=Vn·Σi(li·fi) (E4)
If a standard volume signal Vns is detected by the gas meter 1 as measuring signal (=added-up standard volume measured actually over a specific time by the gas meter 1=integral of the measured through-flow rate for current gas composition 3a) and is added up in the accounting period, then there applies
Vn=Vns·K′ (E10)
K′=1/Σi(li·fi′) (E20)
with K′=correction factor F, fi′=Vnsi/Vni=sensor error factor for standard volume measuring errors, Vnsi=standard volume signal and Vni=standard volume in the time interval i. There is in fact
Vnsi=Vni·fi′=li·fi′·Vn (E30)
Vns=ΣiVnsi=Vn·Σi(li·fi′) (E40)
If a gas mass signal Ms is detected by the gas meter 1 as measuring signal and added up in the accounting period and a corrected gas mass M is calculated as output value, then there applies
M=Ms·K″ (E11)
K″=1/Σi(li′·fi″) (E21)
with K″=correction factor F, li′=Mi/M=gas quantity load profile relative to gas mass, fi″=Msi/Mi=sensor error factor for gas mass measuring errors, Msi=gas mass signal and Mi=gas mass in the time interval i. There is in fact
Msi=Mi·fi″=li′·fi″·M (E31)
Ms=Σi=MsiM·Σi(li′·fi″) (E41)
When using the gas meter 1 as gas energy measuring device 1, several formulations are also possible, a few of which are indicated subsequently by way of example. If an operating volume signal Vs is detected by the gas meter as measuring signal and added up in the accounting period and a corrected supplied gas energy E is calculated as output value, then there applies
E=Vs·Hgew,s (E12)
Hgew,s=Σi(Hi·li)/Σi(li·fi) or (E22a)
Hgew,s=1/Σi(Li·fi/Hi) (E22b)
with Hgew,s=weighted specific heat value per standard volume=correction factor F, Hi=heat value profile per standard volume, li=Vni/Vn=gas quantity load profile relative to standard volume Vn or Li=Ei/E=gas energy load profile relative to gas energy E, fi=Vsi/Vni=sensor error factor for operating volume measuring errors, Vsi=operating volume signal, Vni=standard volume and Ei=gas energy in the time interval i. With (E4) there is of course on the one hand
Vni=Vn·li=Vs·li/Σi(li·fi) (E32a)
Ei=Hi·Vni (E42a)
E=ΣiEi=VsΣi(Hi·li)/Σi(li·fi) (E52a)
and on the other hand
Ei=E·Li=HiVni (E32b)
Vsi=Vni·fi=E·Li·fi/Hi (E42b)
Vs=ΣiVsi=E·Σi(Li·fi/Hi) (E52b)
If a standard volume signal Vns is detected by the gas meter 1 as measuring signal and added up in the accounting period, then there applies
E=Vns·Hgew,ns (E13)
Hgew,ns=Σi(Hi·li)/Σi(li·fi′) or (E23a)
Hgew,ns=1/Σi(Li·fi′/Hi) (E23b)
with Hgew,ns=weighted specific heat value per standard volume=correction factor F, Hi=heat value profile per standard volume, li=Vni/Vn=gas quantity load profile or Li=Ei/E=gas energy load profile, fi′=Vnsi/Vni=sensor error factor for standard volume measuring errors, Vnsi=standard volume signal and Vni=standard volume in the time interval i. With (E40) there is of course on the one hand
Vns=Vn·Σi(li·fi′) (E40)
Vni=Vn·li=Vns·li/Σ(li·fi′) (E33a)
Ei=Hi·Vni (E43a)
E=ΣiEi=VnsΣi(Hi·li)/Σi(li·fi′) (E53a)
On the other hand there applies
Ei=E·Li=Hi·Vni (E33b)
Vnsi=Vni·fi′=E·Li·fi′/Hi (E43b)
Vns=ΣiVnsi=EΣi(Li·fi′/Hi) (E53b)
If a gas mass signal Ms is detected by the gas meter 1 as measuring signal and added up in the accounting period, then there applies
E=Ms·Hgew,M (E14)
Hgew,M=Σ(Hi′·li′)/Σi(li′·fi″) or (E24a)
Hgew,M=1/Σi(Li·fi″/Hi′) (E24b)
with Hgew,M=weighted specific heat value per mass=correction factor F, Hi′=heat value profile per mass, li′=Mi/M=gas mass load profile relative to gas mass M, fi″=Msi/Mi=sensor error factor for gas mass measuring errors, Msi=gas mass signal and Mi=gas mass in the time interval i. With (E41) there applies of course on the one hand
Ms=ΣiMsi=M·Σi(li′·fi″) (E41)
Mi=M·li′=Ms·li′/Σi(li′m·fi″) (E34a)
Ei=Hi′·Mi (E44a)
E=ΣiEi=MsΣi(Hi′·li′)/Σi(li′·fi″) (E54a)
On the other hand there applies
Ei=E·Li=Hi′·Mi (E34b)
Msi=Mi·fi″=E·Li·fi″/Hi′ (E44b)
Ms=ΣiMsi=E·Σi(Li·fi″/Hi′) (E54b)
If a gas energy signal Es is detected by the gas meter 1 as measuring signal and added up in the accounting period, then there applies
E=Es·hgew (E15)
hgew=Σi(Hi·li′)/Σi(Hi·li·fi′″) or (E25a)
hgew=1/Σi(Li·fi′″) (E25b)
with hgew=weighted heat value correction factor=correction factor F, Hi=Ei/Vni=heat value profile per standard volume, li=Vni/Vn=gas quantity load profile or Li=Ei/E=gas energy load profile, fi′″=Esi/Ei=sensor error factor for gas energy measuring errors, Esi=gas energy signal and Ei=gas energy in the time interval i. There applies in fact on the one hand
Ei=Hi·Vni=Vn·Hi·li (E35a)
Esi=Ei·fi′″=Vn·Hi·li·fi′″ (E45a)
Es=ΣiEsi=VnΣi(Hi·li·fi′″) (E55a)
E=ΣiEi=VnΣi(Hi·li) (E65a)
E=Es·Σi(Hi·li)/Σi(Hi·li·fi′″) (E66a)
On the other hand, there applies
Ei=E·Li (E35b)
Esi=Ei·fi′″=E·Li·fi′″) (E45b)
Es=ΣiEsi=EΣi(Li·fi′″) (E55b)
For energy accounting, the gas energy E should be multiplied by the price per energy unit. This price can if necessary also be time-dependent, which in the case of the heat value weighting, in particular in the heat value correction factor hgew, can also be taken into account.
In the above-mentioned examples, the sensor error factor fi, fi′, fi″, fi′″ is chosen without dimension. Further embodiments for determining correction factors F can be obtained as a result of the fact that other combinations of measuring signal and output value are chosen and the auxiliary values sensor error factor, consumption profile and if necessary heat value profile are suitably defined in order to combine together measuring signal and output value or their temporally averaged values. By way of example, dimension-associated sensor error factors can be introduced, e.g. fiv=Vsi/Mi, in order, with a given dimensionless sensor error factor, to convert load profile, heat value profile and/or measuring signal, instead of to an output value, e.g. standard volume, to a different output value, e.g. gas mass. In addition, a conversion could be performed of an energy signal Es to a standard volume or to a gas mass M. Such and similar embodiments may herewith be disclosed jointly in an explicit manner.
The through-flow sensor 1a is preferably a thermal through-flow sensor 1a, with which a sensor signal Skal calibrated to a through-flow rate is determined. In order to calibrate the gas meter 1 as energy measuring device 1, the calibrated sensor signal Skal is calibrated using a basic heat value factor HCH for a basic gas mixture CH into the gas energy signal Es.
According to WO 01/96819 A1, there is effected in the thermal through-flow sensor 1a, in particular in the CMOS anemometer through-flow sensor 1a, an inherent automatic heat value tracking in the case of deviations of the current gas mixture 3b from the basic gas mixture CH. Since the inherent heat value tracking is incomplete, now, starting from the first energy calibration for the basic gas mixture CH, a second improved energy calibration is implemented according to the invention by means of the weighted heat value correction factor F=hgew.
For the mentioned gas energy measuring device 1 with thermal through-flow sensor 1a, the underlying measuring method is now described in more detail. According to WO 01/96819 A1, a sensor signal SN2 (previously S) for a calibration gas, typically nitrogen N2 or air, is determined and calibrated to an (uncorrected) mass flow signal Sm (previously S(d(VN2,n)/dt), d(VN2,n)/dt=standard volume flow for calibration gas). The calibration can be expressed by a sensor calibration curve F(SN2) for the calibration gas under normal conditions, Sm being proportional to F(SN2) or simply Sm=F(SN2). The mass flow signal Sm still depends upon the type of gas. Hence, deviations of the mass flow signal Sm from an exact ideal value for a basic gas mixture, typically natural gas or in general a hydrogen mixture CH, are corrected by a signal conversion factor or sensor signal correction factor fN2-CH. Hence there applies SM=Sm·fN2-CH with SM=corrected mass flow signal. In the sense of this disclosure, SM is equal to or proportional to the previously mentioned calibrated sensor signal Skal of the through-flow sensor 1a. Likewise, the gas standard volumes Vns,i and Vns in the case of sufficiently constant gas quality, are equal to or proportional to the calibrated sensor signals Skal or average values of Skal in the associated time interval i. The calibrated sensor signal Skal is therefore a measure of and in particular proportional to a through-flow rate of the gas composition 3b to be measured. Therefore Skal=Sm·fN2-CH can be written, a possibly necessary proportionality factor being taken into account in the sensor calibration curve F(SN2). Finally, an energy signal Es is determined by multiplication of the calibrated sensor signal Skal by a heat value HCH (calorimetric value per unit of the through-flow value, i.e. per standard volume or per mass) of the basic gas mixture: ES=∫Skal·HCH·dt=fN2-CH·HCH·∫F(SN2)·dt or Es=Skal·HCH with Skal=averaged calibrated sensor signal.
According to WO 01/96819 A1 or EP 1 227 305, introduced herewith in their entirety by reference, also suitable time average values can be used for the mentioned values SN2, F(SN2), fN2-CH and HCH and values derivable therefrom.
The invention also has a gas meter 1 for implementing the above-described method as subject. According to
Advantageously, the through-flow sensor 1a is a thermal through-flow sensor 1a, in particular a CMOS anemometer 1a, with a heating wire 6 and temperature sensors 5a, 5b disposed upstream and downstream. The measuring and evaluating unit 7 has in particular means for calibration of the gas supply in energy units kW/h.
Furthermore, the measuring and evaluating unit 7 can comprise computing means 7c for determining a calibrated sensor signal Skal by means of re-evaluation of a calibration gas to a basic gas mixture CH and for determining a gas energy signal Es by means of multiplication of the calibrated sensor signal Skal by a basic heat value factor HCH. In particular, computing means 7a for determining and/or storing a sensor error factor fi′″ for gas energy measurement is present for detection and correction of an inherent dependency of the calibrated sensor signal Skal of the through-flow sensor 1a upon heat value variations. The computing unit 7a, 7b, 7c and/or the data memory 7d can also be disposed outwith the gas meter 1.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CH03/00055 | 1/23/2003 | WO | 1/10/2006 |