The field of the invention relates generally to weapon components, and more specifically to an increased capacity ammunition clip.
Ammunition clips for military style rifles are fairly consistent in their size, shape and capacity. One likely reason is in regard to weight and balance of the weapon. Another likely reason is practical. In a military situation, a rifle user in a prone position can only utilize a clip of a certain length before it affects their ability to use the weapon. For example, if the clip is too long, the clip will engage the ground or other surface and may not allow the user to probably aim and fire the weapon. Such considerations limit the capacity of such ammunition clips.
Another consideration is the functionality of the clip. A clip configuration must provide for the orderly progression of cartridges into (and out of) the weapon. As such, most ammunition clips incorporate a staggered stack of cartridges.
Finally, ammunition clips must be reliable. Other attempts have been made to increase clip capacity. Many of these increased capacity clips incorporate one or more mechanical features that have rendered such ammunition clips unreliable for their intended purpose.
In one aspect, an ammunition clip is provided that includes a front end wall, a back end wall, two opposing sidewalls operably engaged with the front end wall and the back end wall to define an enclosure. The sidewalls each include a top section defining a first circumference for the enclosure, a lower section defining a second circumference for the enclosure that is larger than the first circumference, and a transition section between the top section and the lower section. The transition section includes a plurality of offset angled members opposite one another defining the transition between the top section and the lower section. A first guide extends inward into the enclosure from the front end wall substantially orthogonal thereto and a second guide extends inward into the enclosure from the back end wall substantially orthogonal thereto. A guided member is configured to travel within the enclosure in a substantially planar fashion and includes slots at each end thereof for engagement with respective said guides.
In another aspect, an ammunition clip is provided that includes a front member having a longitudinal axis, a back member having a longitudinal axis, two opposing sidewall members operably engaged with the front member and the back member to define an enclosure, a first guide attached in a substantially orthogonal configuration to the front end wall and extending inward into the enclosure from the front end wall, the first guide substantially parallel to the longitudinal axis, a second guide attached in a substantially orthogonal configuration to the back end wall and extending inward into the enclosure from the back end wall, the first guide substantially parallel to the longitudinal axis, and a guided member configured for movement within the enclosure. The guided member includes slots formed therein at opposite ends thereof for engagement with respective guides.
The features, functions, and advantages that have been discussed can be achieved independently in various embodiments of the present invention or may be combined in yet other embodiments further details of which can be seen with reference to the following description and drawings.
The edges of front wall 12, side walls 14 and 16, and back wall 18 may be configured with any number of mechanical features that allow for the assembly of these components. For example, the walls may be configured with interdigitated teeth which then define slots. Respective teeth and slots may engage one another on adjacent components for assembly of clip 10. Further, the teeth may be bent at an angle to complete assembly of clip 10. In alternative embodiments the front wall 12, side walls 14 and 16, and back wall 18, as well as bottom wall 32 may be welded together, with or without the tooth and slot assembly described above. As those skilled in the art will realize, there are many methods that can be utilized to join such components together. Further, such components may be fabricated from a metal, a composite, a plastic, or a combination thereof. Fabrication methods and component attachment methods for such materials are well known.
Side wall 14 includes a top member 40, a bottom member 42 and an angled member 44. Side wall 16 includes a top member 50, a bottom member 52 and an angled member 54. As shown in the drawing, bottom member 52 is longer than bottom member 42 which results in angled members 44 and 54 being offset from one another, which provides a functionality that is further described in the following paragraphs. Correspondingly, top member 40 is longer than top member 50.
Top members 40 and 50, along with upper portions of the front wall 12 and back wall 18 define a top section 60, and bottom members 42 and 52, along with lower portions of the front wall 12 and back wall 18 define a lower section 62 of clip 10. Offset angled members 44 and 54, along with corresponding portions of the front wall 12 and back wall 18 define a transition section 64 of clip 10. As is easily understood from
Disposed within ammunition clip 10 is a follower assembly 100 which includes a bottom 102 that engages a mechanical spring 104 that is disposed between the bottom 102 and bottom wall 32. The follower assembly 100 includes two rollers 110 and 112, a guided member 114 and two swing arms 116 and 118 that attach the roller 110 and 112 to the guided member 114 in such a way that rollers 110 and 112 are free to rotate with respect to their respective swing arms 116 and 118, and free to move with respect to guided member 114 as constrained by the respective swing arms 116 and 118. In embodiment, rollers 110 and 112 are configured with a bore therethrough. Such bore has a diameter that is larger than an outside diameter of the respective swing arm 116 and 118. Such a configuration operates to help prevent binding of the roller on the respective swing arm, as well as creating a self cleaning effect.
In embodiments, guided member 114 includes mechanical features that engage mating features separately attached to one or both of the front wall 12 and the back wall 18, thereby causing guided member 114 to travel in a planar fashion up and down the ammunition clip 10 based on pressures exerted by spring 104 and an external pressure imparted from above. One such guide 124, associated with guided member 114 is shown as attached to back wall 18, is substantially parallel to center line 120, and is further described below. Guided member 114 includes dimensions and mechanical features such that a similar guide attached the front wall 12 and the guide 124 attached to the back wall 18, at least in part, maintain a position of guided member 114 so that it can only move in the plane defined by the center line 120.
In other embodiments, and as described further herein, inserts or guides may be attached to the front wall 12 and the back wall 18, for example in a perpendicular fashion which engage corresponding slots in the guided member 114. This configuration provides a mechanism, via the perpendicular guides, for maintaining separation between cartridges in the left half 130 and the right half 132 (as shown in the Figures) of the ammunition clip 10.
As shown in
Top section 30 may include features that cause cartridges to remain in position within ammunition clip 10 despite the pressure applied by mechanical spring 104. Such features are well known and are common to most, if not all, ammunition clips and the action operates to extract one cartridge at a time from the ammunition clip 10. Referring specifically now to
It should be noted in
The above described embodiments provide an increased ammunition capacity for rifles, pistols and specialized weapons and cartridges without requiring an increased length magazine which provides such benefits as described herein.
This written description uses examples to disclose various embodiments, which include the best mode, to enable any person skilled in the art to practice those embodiments, including making and using any devices or systems and performing any incorporated methods. The patentable scope is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/295,443, filed Jan. 15, 2010, the contents of which are hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2217848 | Schillstrom | Oct 1940 | A |
3226869 | Musgrave | Jan 1966 | A |
3603020 | Wiese | Sep 1971 | A |
3619929 | Fremont | Nov 1971 | A |
3726038 | Bredbury | Apr 1973 | A |
3977114 | Poor | Aug 1976 | A |
4139959 | Howard et al. | Feb 1979 | A |
4413437 | Anderson | Nov 1983 | A |
4428137 | Johnson | Jan 1984 | A |
4520585 | Barrett | Jun 1985 | A |
4586281 | Chesnut | May 1986 | A |
4589218 | Teppa | May 1986 | A |
5056252 | Velezis | Oct 1991 | A |
5782157 | Ellington et al. | Jul 1998 | A |
6070352 | Daigle | Jun 2000 | A |
6257115 | Balsavage et al. | Jul 2001 | B1 |
7533483 | Alzamora et al. | May 2009 | B1 |
Number | Date | Country | |
---|---|---|---|
20110173857 A1 | Jul 2011 | US |
Number | Date | Country | |
---|---|---|---|
61295443 | Jan 2010 | US |