This disclosure generally relates to linear actuators. More particularly, this disclosure generally relates to linear actuators used to modify the incline of another platform.
Conventional linear actuators include a moveable shaft that is supported by thrust bearings. The thrust bearings support the shaft against axial loads when the shaft applies a force to another object. Linear actuators with shafts driven by acme screws have a rotary thrust bearing that allows the acme screw to rotate while the shaft is under an axial compression force.
Sideloading, or the application of a force in a direction perpendicular to the longitudinal axis of the shaft, causes premature failure of the thrust bearing. In linear actuators with acme screw-driven shafts, the failure of the thrust bearing results in a failure of the acme screw and the linear actuator seizing.
Exercise systems, such as treadmills, elliptical machines, and exercise bicycles use linear actuators to adjust the inclination or declination of the system to provide different exercise experiences to users. As users expect greater variety in exercise routines and exercise systems experience more frequent adjustments through an increasingly large range of motion, the linear actuators are exposed to larger amounts of sideloading on the shaft.
In some embodiments, a linear actuator includes a motor, a shaft, and a casing. The shaft has a longitudinal axis, and the shaft is moveable along the longitudinal axis by the motor. The casing supports the motor and the shaft with a tapered roller bearing positioned between at least a portion of the shaft and a portion of the casing.
In some embodiments, an exercise system includes a base, a frame movably connected to the base, and a linear actuator positioned between at least a portion of the base and at least a portion of the frame to apply a force to the frame and move the frame relative to the base. The linear actuator includes a motor, a shaft, and a casing. The shaft has a longitudinal axis, and the shaft is moveable along the longitudinal axis by the motor. The casing supports the motor and the shaft with a tapered roller bearing positioned between at least a portion of the shaft and a portion of the casing.
In some embodiments, a method of supporting a shaft of a linear actuator includes receiving a radial force with a shaft of the linear actuator, transmitting the radial force to an acme screw, and applying a torque with the acme screw to a tapered roller bearing.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
Additional features and advantages will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by the practice of the teachings herein. Features and advantages of the invention may be realized and obtained by means of the instruments and combinations particularly pointed out in the appended claims. Features of the present invention will become more fully apparent from the following description and appended claims or may be learned by the practice of the invention as set forth hereinafter.
In order to describe the manner in which the above-recited and other features of the disclosure can be obtained, a more particular description will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. For better understanding, the like elements have been designated by like reference numbers throughout the various accompanying figures. While some of the drawings may be schematic or exaggerated representations of concepts, at least some of the drawings may be drawn to scale. Understanding that the drawings depict some example embodiments, the embodiments will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
In some embodiments of a linear actuator according to the present disclosure, an actuator may include a tapered roller bearing supporting a shaft to reinforce the shaft against sideloading. For example, a conventional linear actuator has a bushing positioned at a base of a shaft to support the shaft against axial loads applied to the shaft. The bushing or other axial bearings may provide axial support but may wear prematurely when the linear actuator is exposed to lateral forces applied to the shaft.
In some embodiments, the exercise system 112 may include one or more computing devices 120 or other interfaces through which a user may interact with the exercise system 112. The computing device 120 is in communication with the linear actuator 100. For example, the computing device 120 may allow the user to control the movement of the frame 116 relative to the base 114 by manual selection of an inclination or declination value through the computing device 120. In other examples, the computing device 120 may contain stored thereon one or more exercise routines that includes one or more inclination or declination values of the frame 116 relative to the base 114 therein. An exercise routine may cause the computing device 120 to communicate with the linear actuator 100 to move the frame 116 relative to the base 114 and change the inclination or declination of the frame 116 to provide a variety of exercise experiences for a user.
In some embodiments, the computing device 120 may communicate with or access user profiles with exercise routines specific to the selected user. An example of a user profile database that may be compatible with the principles described herein includes an iFit program available through www.ifit.com and administered through ICON Health and Fitness, Inc. located in Logan, Utah, U.S.A. In some examples, the user information accessible through the user profiles includes the user's age, gender, body composition, height, weight, health conditions, other types of information, or combinations thereof that may be helpful in determining the appropriate exercise routine for the user. Such user profile information may be available to the computing device 120 through the iFit.
The acme screw 222 prevents back driving of the linear actuator 200 during use. In particular, an exercise system, such as the exercise system 112 described in relation to
In some embodiments, such as the exercise system 112 described in relation to
A linear actuator 200 includes a tapered roller bearing 230 positioned between the shaft 204 and the casing 208. In some embodiments, the tapered roller bearing 230 may be positioned between at least a portion of the acme screw 222 and the casing 208. For example, the tapered roller bearing 230 may be positioned between a shoulder 232 of the acme screw 222 and the casing 208. The radial force 228 and/or an axial force on the shaft 204 may be transmitted to the acme screw 222 and to the tapered roller bearing 230. The tapered roller bearing 230 includes an inner race 231, an outer race 235, and a plurality of rollers 233 positioned between the inner race 231 and outer race 235.
In some embodiments, the tapered roller bearing 230 may have a bearing angle 234 between the longitudinal axis 206 and a bearing axis 236 of the tapered roller bearing 230. The bearing angle 234 may be in a range having an upper value, a lower value, or upper and lower values including any of 5°, 10°, 15°, 20°, 25°, 30°, 35°, 40°, 45°, or any values therebetween. In some examples, the bearing angle 234 may be greater than 5°. In other examples, the bearing angle 234 may be less than 45°. In yet other examples, the bearing angle 234 may be between 5° and 45°. In further examples, the bearing angle 234 may be between 5° and 30°. In yet further examples, the bearing angle 234 may be about 10°. The bearing angle 234 of the tapered roller bearing 230 may affect the operational lifetime of the linear actuator 200 by being oriented to receive more radial force 228 relative to axial force on the acme screw 222 or more axial force relative to radial force 228.
The linear actuator 200 may include a second bearing positioned longitudinally beyond the tapered roller bearing 230 relative to the shaft 204. For example,
In some embodiments, the tapered roller bearing 230 is capable of supporting an axial load in a range having an upper value, a lower value, or upper and lower values including any of 500 pounds, 750 pounds, 1000 pounds, 1250 pounds, 1500 pounds, 1750 pounds, 2000 pounds, or any values therebetween. For example, at least 500 pounds of axial force (i.e., in the direction of the longitudinal axis 206). In other embodiments, the tapered roller bearing 230 is capable of supporting between 700 pounds and 2000 pounds of axial force. In other embodiments, the tapered roller bearing 230 is capable of supporting between 1000 pounds and 2000 pounds of axial force. In other embodiments, the tapered roller bearing 230 is capable of supporting at between 1500 pounds and 2000 pounds of axial force. In other embodiments, the tapered roller bearing 230 is capable of supporting about 2000 pounds of axial force.
In some embodiments, the tapered roller bearing 230 has an inner diameter 239 that is less than 1.5 inches. In other embodiments, the tapered roller bearing 230 has an inner diameter 239 that is less than 1.25 inches. In yet other embodiments, the tapered roller bearing 230 has an inner diameter 239 that is less than 1.0 inches. In further embodiments, the tapered roller bearing 230 has an inner diameter 239 that is less than 0.75 inches. In yet further embodiments, the tapered roller bearing 230 has an inner diameter 239 that is less than 0.5 inches.
In some embodiments, the tapered roller bearing 230 has a length 241 in the longitudinal direction (i.e., the direction of longitudinal axis 206) that is less than 1.0 inches. In other embodiments, the tapered roller bearing 230 has a length 241 that is less than 0.9 inches. In yet other embodiments, the tapered roller bearing 230 has a length 241 that is less than 0.8 inches. In further embodiments, the tapered roller bearing 230 has a length 241 that is less than 0.7 inches. In yet further embodiments, the tapered roller bearing 230 has a length 241 that is less than 0.6 inches. In at least one embodiment, the tapered roller bearing 230 has a length 241 that is less than 0.5 inches.
In some embodiments, the angular contact roller bearing 330 may be positioned between at least a portion of the acme screw 322 and the casing 308. For example, the angular contact roller bearing 330 may be positioned between a shoulder 332 of the acme screw 322 and the casing 308. The radial force 328 and/or an axial force on the shaft 304 may be transmitted to the acme screw 322 and to the angular contact roller bearing 330.
A frame may connect to and/or apply a force to a connection point 240 of the shaft 204. The downward force 242 may have a radial force 228 component. The downward force 242 may include the gravitational weight of the frame, the gravitational weight of a user, any downward force applied by a user (for example, during running on the treadmill), or combinations thereof. In some embodiments, the shaft 204 may experience a further radial force 228 due to lateral forces applied to the frame by a user (for example, during running on the treadmill). Further, in an extended state such as illustrated in
Conventional linear actuators are used in axial applications, only. A tapered roller bearing 230 may allow the shaft 204 and acme screw 222 to receive a non-axial force (i.e., the radial force 228) without premature wear on thrust bearings or other components of the linear actuator. The radial force 228 may apply a torque to the shaft 204 and/or acme screw 222 that is received by and counteracted by the tapered roller bearing 230 allowing one or more embodiments of a linear actuator 200 according to present disclosure to be used in non-axial applications without redesigning the surrounding system, without using a different type of actuator, or without premature failure of the device, reducing design, manufacturing, maintenance, and repair costs of the linear actuator and/or a system in which the linear actuator is used.
At least one embodiment of a linear actuator according to the present disclosure may further increase a durability of the linear actuator by reducing the force generated by the linear actuator moving from the extended state to the retracted state. For example, the linear actuator may produce a greater extension force than retraction force to limit the heat generated by the linear actuator, thereby limiting the thermal damage to the linear actuator during high duty cycles (such as greater than 50% duty cycles).
In some embodiments, the linear actuator may produce an extension force to move a mass of a frame and/or a user against the force of gravity. The linear actuator may produce a lesser retraction force and efficiently move the mass of the frame and/or the user with the force of gravity. For example, a linear actuator may produce an extension force 244 represented by the upper curve of
The linear actuator may have an efficiency ratio that is defined by the ratio between the extension force 244 and the retraction force 248. In some embodiments, the efficiency ratio may be substantially constant throughout the range of motion. In other embodiments, the efficiency ratio may change during movement between the retracted state and extended state.
In some embodiments, the efficiency ratio may be greater than 1.0. In other embodiments, the efficiency ratio may be between 1.0 and 10.0. For example, the extension force 244 may be 1000 pounds of force and the retraction force 248 may be at least 100 pounds of force. In yet other embodiments, the efficiency ratio may be between 1.0 and 5.0. For example, the extension force 244 may be 1000 pounds of force and the retraction force 248 may be at least 200 pounds of force. In further embodiments, the efficiency ratio may be between 1.0 and 4.0. For example, the extension force 244 may be 1000 pounds of force and the retraction force 248 may be at least 250 pounds of force. In yet further embodiments, the efficiency ratio may be between 1.0 and 2.0. For example, the extension force 244 may be 1000 pounds of force and the retraction force 248 may be at least 500 pounds of force.
It should be understood that a linear actuator may be oriented in a opposite direction to that described herein, with the linear actuator configured to move the mass of the frame and/or the user against the force of gravity while moving toward the retracted state. In other words, a linear actuator may “pull” the frame and/or user upward instead of “pushing” the frame and/or user upward. In such embodiments, the efficiency ratio may be inverted as the retraction force may be greater than the extension force.
In some embodiments, a magnitude of the retraction force may be less than a magnitude of the extension force. For example, the magnitude of the retraction force may be less than half the magnitude of the extension force. In other examples, the magnitude of the retraction force may be less than one third of the magnitude of the extension force. In yet other examples, the magnitude of the retraction force may be less than one quarter of the magnitude of the extension force. In further examples, the magnitude of the retraction force may be less than one fifth of the extension of the retraction force.
In general, the present invention relates to supporting a shaft of a linear actuator during cross-loading or during the application of a radial force to the shaft. Conventional linear actuators include a thrust bearing or bushing in to support the shaft and/or an acme screw supporting the shaft. In applications that include a lateral or radial force applied to a shaft, a linear actuator is not typically used, as the typical operational lifetime of a linear actuator in such an application can be shortened.
In some embodiments according to the present disclosure, a linear actuator may include a tapered roller bearing supporting the shaft and/or supporting an acme screw that supports the shaft. The linear actuator may include a motor configured to move a shaft axially along a longitudinal axis of the shaft. The motor may be connected to the shaft through a casing and a sleeve. The casing may contain one or more gears, belts, cables, or other torque transmission devices to transfer torque from the motor to an acme screw in the sleeve. The acme screw may interact with a complementary surface feature on the shaft such that, upon rotation of the acme screw, the shaft moves in the direction of the longitudinal axis.
The acme screw may be driven by a linkage of gears positioned within the casing and driven by the motor. In other embodiments, the linkage from the motor to the acme screw may include belts, chains, cams, levers, or other mechanisms for transferring torque from the motor to the acme screw.
In some embodiments, the shaft may experience a force applied in a radial direction relative to the longitudinal axis (i.e., perpendicular to the longitudinal axis). A torque applied to the shaft by the radial force may be transmitted to the acme screw or other component of the linear actuator and to the connection between the acme screw or other component and the casing and/or gears. For example, the radial force may be incurred from the lateral impact of a user running on a treadmill on an exercise system. In other examples, the force may be incurred from a downward force applied by the weight of a user and/or a frame resting on the linear actuator when an exercise system is positioned with an inclination or declination.
A linear actuator includes a tapered roller bearing positioned between the shaft and the casing. In some embodiments, the tapered roller bearing may be positioned between at least a portion of the acme screw and the casing. For example, the tapered roller bearing may be positioned between a shoulder of the acme screw and the casing.
The radial force and/or an axial force on the shaft may be transmitted to the acme screw and to the tapered roller bearing. In some embodiments, the tapered roller bearing may have a bearing angle between the longitudinal axis and a bearing axis of the tapered roller bearing. The bearing angle may be in a range having an upper value, a lower value, or upper and lower values including any of 5°, 10°, 15°, 20°, 25°, 30°, 35°, 40°, 45°, or any values therebetween. In some examples, the bearing angle may be greater than 5°. In other examples, the bearing angle may be less than 45°. In yet other examples, the bearing angle may be between 5° and 45°. In further examples, the bearing angle may be between 5° and 30°. In yet further examples, the bearing angle may be about 10°. The bearing angle of the tapered roller bearing may affect the operational lifetime of the linear actuator by being oriented to receive more radial force relative to axial force on the acme screw or more axial force relative to radial force.
In some embodiments, a linear actuator may generate different forces in an extension direction and a retraction direction (i.e., “push” and “pull” directions). For example, the linear actuator may be configured to apply more force in the extension direction than in the retraction direction. In other examples, the linear actuator may be configured to apply more force in the retraction direction than in the extension direction. In some applications, the linear actuator may be raising one or more objects against gravity in one direction while the force of gravity may assist the movement of the objects in the opposite direction. A linear actuator may reduce or limit the heat generated and energy expended while moving the “assisted direction” by operating at a lower force generation and/or in a more efficient mode. The linear actuator may, therefore, have an efficiency ratio defined as the relative amount of force generated by the linear actuator in a first direction relative to a second direction.
In some embodiments, the efficiency ratio may be greater than 1.0. In other embodiments, the efficiency ratio may be between 1.0 and 10.0. For example, the extension force may be 1000 pounds of force and the retraction force may be at least 100 pounds of force. In yet other embodiments, the efficiency ratio may be between 1.0 and 5.0. For example, the extension force may be 1000 pounds of force and the retraction force may be at least 200 pounds of force. In further embodiments, the efficiency ratio may be between 1.0 and 4.0. For example, the extension force may be 1000 pounds of force and the retraction force may be at least 250 pounds of force. In yet further embodiments, the efficiency ratio may be between 1.0 and 2.0. For example, the extension force may be 1000 pounds of force and the retraction force may be at least 500 pounds of force.
Reducing friction through the tapered roller bearing and increasing efficiency to lessen heat generation may allow for a linear actuator to have an increased duty cycle compared to a conventional linear actuator. For example, a linear actuator according to the present disclosure may have a duty cycle of at least 50%, at least 75%, at least 85%, at least 95%, or a continuous duty cycle. In at least one example, a linear actuator according to the present disclosure may have a duty cycle of at least 70% for a 20 minute duration.
In some embodiments, a linear actuator according to the present disclosure may be employed in various exercise systems. For example, the linear actuator may be used to adjust an inclination or declination of a treadmill, an elliptical machine, an exercise bicycle, a rowing machine, a stepping machine, or other exercise machines that may be included in an exercise system. The linear actuator may be manually controlled by a user through a computing device or other interface (e.g., the user may select the inclination or declination themselves) in communication with the linear actuator, or a user may select an exercise routine on a computing device in communication with the linear actuator.
In some embodiments, the computing device may communicate with or access user profiles with exercise routines specific to the selected user. An example of a user profile database that may be compatible with the principles described herein includes the iFit program as described above. In some examples, the user information accessible through the user profiles includes the user's age, gender, body composition, height, weight, health conditions, other types of information, or combinations thereof that may be helpful in determining the appropriate exercise routine for the user. Such user profile information may be available to the computing device through the iFit program.
The articles “a,” “an,” and “the” are intended to mean that there are one or more of the elements in the preceding descriptions. The terms “comprising,” “including,” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements. Additionally, it should be understood that references to “one embodiment” or “an embodiment” of the present disclosure are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. For example, any element described in relation to an embodiment herein may be combinable with any element of any other embodiment described herein. Numbers, percentages, ratios, or other values stated herein are intended to include that value, and also other values that are “about” or “approximately” the stated value, as would be appreciated by one of ordinary skill in the art encompassed by embodiments of the present disclosure. A stated value should therefore be interpreted broadly enough to encompass values that are at least close enough to the stated value to perform a desired function or achieve a desired result. The stated values include at least the variation to be expected in a suitable manufacturing or production process, and may include values that are within 5%, within 1%, within 0.1%, or within 0.01% of a stated value.
A person having ordinary skill in the art should realize in view of the present disclosure that equivalent constructions do not depart from the spirit and scope of the present disclosure, and that various changes, substitutions, and alterations may be made to embodiments disclosed herein without departing from the spirit and scope of the present disclosure. Equivalent constructions, including functional “means-plus-function” clauses are intended to cover the structures described herein as performing the recited function, including both structural equivalents that operate in the same manner, and equivalent structures that provide the same function. It is the express intention of the applicant not to invoke means-plus-function or other functional claiming for any claim except for those in which the words ‘means for’ appear together with an associated function. Each addition, deletion, and modification to the embodiments that falls within the meaning and scope of the claims is to be embraced by the claims.
It should be understood that any directions or reference frames in the preceding description are merely relative directions or movements. For example, any references to “front” and “back” or “top” and “bottom” or “left” and “right” are merely descriptive of the relative position or movement of the related elements.
The present disclosure may be embodied in other specific forms without departing from its spirit or characteristics. The described embodiments are to be considered as illustrative and not restrictive. The scope of the disclosure is, therefore, indicated by the appended claims rather than by the foregoing description. Changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.
By way of example, linear actuators according to the present disclosure may be described according to any of the following sections:
This application claims priority to provisional patent application No. 62/683,331 entitled “INCREASED DURABILITY LINEAR ACTUATOR” filed Jun. 11, 2018, which application is herein incorporated by reference for all that it discloses.
Number | Name | Date | Kind |
---|---|---|---|
3123646 | Easton | Mar 1964 | A |
3579339 | Chang | May 1971 | A |
4023795 | Pauls | May 1977 | A |
4300760 | Bobroff | Nov 1981 | A |
D286311 | Martinell | Oct 1986 | S |
4681318 | Lay | Jul 1987 | A |
4684126 | Dalebout | Aug 1987 | A |
4728102 | Pauls | Mar 1988 | A |
4750736 | Watterson | Jun 1988 | A |
4796881 | Watterson | Jan 1989 | A |
4813667 | Watterson | Mar 1989 | A |
4830371 | Lay | May 1989 | A |
4844451 | Bersonnet | Jul 1989 | A |
4850585 | Dalebout | Jul 1989 | A |
D304849 | Watterson | Nov 1989 | S |
4880225 | Lucas | Nov 1989 | A |
4883272 | Lay | Nov 1989 | A |
D306468 | Watterson | Mar 1990 | S |
D306891 | Watterson | Mar 1990 | S |
4913396 | Dalebout et al. | Apr 1990 | A |
D307614 | Bingham | May 1990 | S |
D307615 | Bingham | May 1990 | S |
4921242 | Watterson | May 1990 | A |
4932650 | Bingham | Jun 1990 | A |
D309167 | Griffin | Jul 1990 | S |
D309485 | Bingham | Jul 1990 | S |
4938478 | Lay | Jul 1990 | A |
D310253 | Bersonnet | Aug 1990 | S |
4955599 | Bersonnet | Sep 1990 | A |
4971316 | Dalebout | Nov 1990 | A |
D313055 | Watterson | Dec 1990 | S |
4974832 | Dalebout | Dec 1990 | A |
4979737 | Kock | Dec 1990 | A |
4981294 | Dalebout | Jan 1991 | A |
D315765 | Measom | Mar 1991 | S |
4998725 | Watterson et al. | Mar 1991 | A |
5000442 | Dalebout | Mar 1991 | A |
5000443 | Dalebout | Mar 1991 | A |
5000444 | Dalebout | Mar 1991 | A |
D316124 | Dalebout | Apr 1991 | S |
5013033 | Watterson | May 1991 | A |
5014980 | Bersonnet | May 1991 | A |
5016871 | Dalebout | May 1991 | A |
D318085 | Jacobson | Jul 1991 | S |
D318086 | Bingham | Jul 1991 | S |
D318699 | Jacobson | Jul 1991 | S |
5029801 | Dalebout | Jul 1991 | A |
5034576 | Dalebout | Jul 1991 | A |
5058881 | Measom | Oct 1991 | A |
5058882 | Dalebout | Oct 1991 | A |
D321388 | Dalebout | Nov 1991 | S |
5062626 | Dalebout | Nov 1991 | A |
5062627 | Bingham | Nov 1991 | A |
5062632 | Dalebout | Nov 1991 | A |
5062633 | Engel | Nov 1991 | A |
5067710 | Watterson et al. | Nov 1991 | A |
5072929 | Peterson | Dec 1991 | A |
D323009 | Dalebout | Jan 1992 | S |
D323198 | Dalebout | Jan 1992 | S |
D323199 | Dalebout | Jan 1992 | S |
D323863 | Watterson | Feb 1992 | S |
5088729 | Dalebout | Feb 1992 | A |
5090694 | Pauls | Feb 1992 | A |
5102380 | Jacobson | Apr 1992 | A |
5104120 | Watterson | Apr 1992 | A |
5108093 | Watterson | Apr 1992 | A |
D326491 | Dalebout | May 1992 | S |
5122105 | Engel | Jun 1992 | A |
5135216 | Bingham | Aug 1992 | A |
5147265 | Pauls | Sep 1992 | A |
5149084 | Dalebout | Sep 1992 | A |
5149312 | Croft et al. | Sep 1992 | A |
5171196 | Lynch | Dec 1992 | A |
D332347 | Raadt | Jan 1993 | S |
5190505 | Dalebout | Mar 1993 | A |
5192255 | Dalebout et al. | Mar 1993 | A |
5195937 | Engel | Mar 1993 | A |
5203826 | Dalebout | Apr 1993 | A |
D335511 | Engel | May 1993 | S |
D335905 | Cutter | May 1993 | S |
D336498 | Engel | Jun 1993 | S |
5217487 | Engel | Jun 1993 | A |
D337361 | Engel | Jul 1993 | S |
D337666 | Peterson | Jul 1993 | S |
D337799 | Cutter | Jul 1993 | S |
5226866 | Engel | Jul 1993 | A |
5244446 | Engel | Sep 1993 | A |
5247853 | Dalebout | Sep 1993 | A |
5259611 | Dalebout | Nov 1993 | A |
D342106 | Campbell | Dec 1993 | S |
5279528 | Dalebout et al. | Jan 1994 | A |
D344112 | Smith | Feb 1994 | S |
D344557 | Ashby | Feb 1994 | S |
5282776 | Dalebout | Feb 1994 | A |
5295931 | Dreibelbis | Mar 1994 | A |
5302161 | Loubert | Apr 1994 | A |
D347251 | Dreibelbis | May 1994 | S |
5316534 | Dalebout | May 1994 | A |
D348493 | Ashby | Jul 1994 | S |
D348494 | Ashby | Jul 1994 | S |
5328164 | Soga | Jul 1994 | A |
D349931 | Bostic | Aug 1994 | S |
5336142 | Dalebout | Aug 1994 | A |
5344376 | Bostic | Sep 1994 | A |
D351202 | Bingham | Oct 1994 | S |
D351435 | Peterson | Oct 1994 | S |
D351633 | Bingham | Oct 1994 | S |
D352534 | Dreibelbis | Nov 1994 | S |
D353422 | Bostic | Dec 1994 | S |
5372559 | Dalebout et al. | Dec 1994 | A |
5374228 | Buisman | Dec 1994 | A |
5382221 | Hsu | Jan 1995 | A |
5387168 | Bostic | Feb 1995 | A |
5393690 | Fu | Feb 1995 | A |
D356128 | Smith | Mar 1995 | S |
5409435 | Daniels | Apr 1995 | A |
5429563 | Engel | Jul 1995 | A |
5431612 | Holden | Jul 1995 | A |
D360915 | Bostic | Aug 1995 | S |
5468205 | McFall | Nov 1995 | A |
5489249 | Brewer et al. | Feb 1996 | A |
5492517 | Bostic | Feb 1996 | A |
D367689 | Wilkinson | Mar 1996 | S |
5511740 | Loubert | Apr 1996 | A |
5512025 | Dalebout et al. | Apr 1996 | A |
D370949 | Furner | Jun 1996 | S |
D371176 | Furner | Jun 1996 | S |
5527245 | Dalebout | Jun 1996 | A |
5529553 | Finlayson | Jun 1996 | A |
5540429 | Dalebout | Jul 1996 | A |
5549533 | Olson | Aug 1996 | A |
5554085 | Dalebout | Sep 1996 | A |
5569128 | Dalebout | Oct 1996 | A |
5591105 | Dalebout | Jan 1997 | A |
5591106 | Dalebout | Jan 1997 | A |
5595556 | Dalebout et al. | Jan 1997 | A |
5607375 | Dalebout | Mar 1997 | A |
5611539 | Watterson | Mar 1997 | A |
5622527 | Watterson | Apr 1997 | A |
5626538 | Dalebout | May 1997 | A |
5626542 | Dalebout | May 1997 | A |
D380024 | Novak | Jun 1997 | S |
5637059 | Dalebout | Jun 1997 | A |
D380509 | Wilkinson | Jul 1997 | S |
5643153 | Nylen | Jul 1997 | A |
5645509 | Brewer et al. | Jul 1997 | A |
D384118 | Deblauw | Sep 1997 | S |
5662557 | Watterson et al. | Sep 1997 | A |
5669857 | Watterson et al. | Sep 1997 | A |
5672140 | Watterson et al. | Sep 1997 | A |
5674156 | Watterson et al. | Oct 1997 | A |
5674453 | Watterson et al. | Oct 1997 | A |
5676624 | Watterson et al. | Oct 1997 | A |
5683331 | Dalebout | Nov 1997 | A |
5683332 | Watterson et al. | Nov 1997 | A |
5689994 | Nagai | Nov 1997 | A |
D387825 | Fleck | Dec 1997 | S |
5695433 | Buisman | Dec 1997 | A |
5695434 | Dalebout | Dec 1997 | A |
5695435 | Dalebout | Dec 1997 | A |
5702325 | Watterson et al. | Dec 1997 | A |
5704879 | Watterson et al. | Jan 1998 | A |
5718657 | Dalebout et al. | Feb 1998 | A |
5720200 | Watterson et al. | Feb 1998 | A |
5720698 | Dalebout | Feb 1998 | A |
D392006 | Dalebout | Mar 1998 | S |
5722922 | Watterson | Mar 1998 | A |
5733229 | Dalebout | Mar 1998 | A |
5743833 | Watterson et al. | Apr 1998 | A |
5762584 | Daniels | Jun 1998 | A |
5762587 | Dalebout | Jun 1998 | A |
5772560 | Watterson et al. | Jun 1998 | A |
5810698 | Hullett | Sep 1998 | A |
5827155 | Jensen | Oct 1998 | A |
5830114 | Halfen | Nov 1998 | A |
5860893 | Watterson et al. | Jan 1999 | A |
5860894 | Dalebout et al. | Jan 1999 | A |
5899834 | Dalebout et al. | May 1999 | A |
D412953 | Armstrong | Aug 1999 | S |
D413948 | Dalebout | Sep 1999 | S |
5951441 | Dalebout | Sep 1999 | A |
5951448 | Bolland | Sep 1999 | A |
D416596 | Armstrong | Nov 1999 | S |
6003166 | Hald | Dec 1999 | A |
6019710 | Dalebout | Feb 2000 | A |
6027429 | Daniels | Feb 2000 | A |
6033347 | Dalebout et al. | Mar 2000 | A |
D425940 | Halfen | May 2000 | S |
6059692 | Hickman | May 2000 | A |
D428949 | Simonson | Aug 2000 | S |
6123646 | Colassi | Sep 2000 | A |
6171217 | Cutler | Jan 2001 | B1 |
6171219 | Simonson | Jan 2001 | B1 |
6174267 | Dalebout | Jan 2001 | B1 |
6193631 | Hickman | Feb 2001 | B1 |
6228003 | Hald | May 2001 | B1 |
6238323 | Simonson | May 2001 | B1 |
6250170 | Hill | Jun 2001 | B1 |
6251052 | Simonson | Jun 2001 | B1 |
6261022 | Dalebout et al. | Jul 2001 | B1 |
6280362 | Dalebout et al. | Aug 2001 | B1 |
6296594 | Simonson | Oct 2001 | B1 |
D450872 | Dalebout | Nov 2001 | S |
6312363 | Watterson et al. | Nov 2001 | B1 |
D452338 | Dalebout | Dec 2001 | S |
D453543 | Cutler | Feb 2002 | S |
D453948 | Cutler | Feb 2002 | S |
6350218 | Dalebout et al. | Feb 2002 | B1 |
6387020 | Simonson | May 2002 | B1 |
6413191 | Harris | Jul 2002 | B1 |
6422980 | Simonson | Jul 2002 | B1 |
6447424 | Ashby et al. | Sep 2002 | B1 |
6458060 | Watterson et al. | Oct 2002 | B1 |
6458061 | Simonson | Oct 2002 | B2 |
6471622 | Hammer et al. | Oct 2002 | B1 |
6563225 | Soga | May 2003 | B2 |
6601016 | Brown et al. | Jul 2003 | B1 |
6623140 | Watterson | Sep 2003 | B2 |
6626799 | Watterson et al. | Sep 2003 | B2 |
6652424 | Dalebout | Nov 2003 | B2 |
6685607 | Olson | Feb 2004 | B1 |
6695581 | Wasson | Feb 2004 | B2 |
6701271 | Willner et al. | Mar 2004 | B2 |
6702719 | Brown et al. | Mar 2004 | B1 |
6712740 | Simonson | Mar 2004 | B2 |
6730002 | Hald et al. | May 2004 | B2 |
6743153 | Watterson et al. | Jun 2004 | B2 |
6746371 | Brown et al. | Jun 2004 | B1 |
6749537 | Hickman | Jun 2004 | B1 |
6761667 | Cutler et al. | Jul 2004 | B1 |
6770015 | Simonson | Aug 2004 | B2 |
6786852 | Watterson et al. | Sep 2004 | B2 |
6808472 | Hickman | Oct 2004 | B1 |
6821230 | Dalebout et al. | Nov 2004 | B2 |
6830540 | Watterson | Dec 2004 | B2 |
6863641 | Brown et al. | Mar 2005 | B1 |
6866613 | Brown et al. | Mar 2005 | B1 |
6875160 | Watterson | Apr 2005 | B2 |
D507311 | Butler | Jul 2005 | S |
6918858 | Watterson et al. | Jul 2005 | B2 |
6921351 | Hickman et al. | Jul 2005 | B1 |
6974404 | Watterson et al. | Dec 2005 | B1 |
6997852 | Watterson et al. | Feb 2006 | B2 |
7025713 | Dalebout | Apr 2006 | B2 |
D520085 | Willardson | May 2006 | S |
7044897 | Myers | May 2006 | B2 |
7052442 | Watterson | May 2006 | B2 |
7060006 | Watterson et al. | Jun 2006 | B1 |
7060008 | Watterson et al. | Jun 2006 | B2 |
7070539 | Brown et al. | Jul 2006 | B2 |
7097588 | Watterson | Aug 2006 | B2 |
D527776 | Willardson | Sep 2006 | S |
7112168 | Dalebout et al. | Sep 2006 | B2 |
7128693 | Brown et al. | Oct 2006 | B2 |
7166062 | Watterson et al. | Jan 2007 | B1 |
7166064 | Watterson et al. | Jan 2007 | B2 |
7169087 | Ercanbrack | Jan 2007 | B2 |
7169093 | Simonson | Jan 2007 | B2 |
7192388 | Dalebout et al. | Mar 2007 | B2 |
7250022 | Dalebout | Jul 2007 | B2 |
7282016 | Simonson | Oct 2007 | B2 |
7285075 | Cutler et al. | Oct 2007 | B2 |
7344481 | Watterson et al. | Mar 2008 | B2 |
7357758 | Polk, III | Apr 2008 | B2 |
7377882 | Watterson | May 2008 | B2 |
7425188 | Ercanbrack | Sep 2008 | B2 |
7429236 | Dalebout | Sep 2008 | B2 |
7455622 | Watterson et al. | Nov 2008 | B2 |
7482050 | Olson | Jan 2009 | B2 |
D588655 | Utykanski | Mar 2009 | S |
7510509 | Hickman | Mar 2009 | B2 |
7537546 | Watterson et al. | May 2009 | B2 |
7537549 | Nelson et al. | May 2009 | B2 |
7537552 | Dalebout | May 2009 | B2 |
7540828 | Watterson et al. | Jun 2009 | B2 |
7541707 | Hochhalter | Jun 2009 | B2 |
7549947 | Hickman et al. | Jun 2009 | B2 |
7556590 | Watterson et al. | Jul 2009 | B2 |
7563203 | Dalebout et al. | Jul 2009 | B2 |
7575536 | Hickman | Aug 2009 | B1 |
7601105 | Gipson, III | Oct 2009 | B1 |
7604573 | Dalebout | Oct 2009 | B2 |
D604373 | Dalebout | Nov 2009 | S |
7618350 | Dalebout | Nov 2009 | B2 |
7618357 | Dalebout | Nov 2009 | B2 |
7625315 | Hickman | Dec 2009 | B2 |
7625321 | Simonson | Dec 2009 | B2 |
7628730 | Watterson et al. | Dec 2009 | B1 |
7628737 | Kowallis | Dec 2009 | B2 |
7637847 | Hickman | Dec 2009 | B1 |
7645212 | Ashby et al. | Jan 2010 | B2 |
7645213 | Watterson | Jan 2010 | B2 |
7658698 | Pacheco | Feb 2010 | B2 |
7674205 | Dalebout | Mar 2010 | B2 |
7713171 | Hickman | May 2010 | B1 |
7713172 | Watterson et al. | May 2010 | B2 |
7713180 | Wickens | May 2010 | B2 |
7717828 | Simonson | May 2010 | B2 |
7736279 | Dalebout | Jun 2010 | B2 |
7740563 | Dalebout | Jun 2010 | B2 |
7749144 | Hammer | Jul 2010 | B2 |
7766797 | Dalebout | Aug 2010 | B2 |
7771329 | Dalebout | Aug 2010 | B2 |
7775940 | Dalebout | Aug 2010 | B2 |
7789800 | Watterson et al. | Sep 2010 | B1 |
7798946 | Dalebout | Sep 2010 | B2 |
7815550 | Watterson et al. | Oct 2010 | B2 |
7857731 | Hickman et al. | Dec 2010 | B2 |
7862475 | Watterson | Jan 2011 | B2 |
7862478 | Watterson et al. | Jan 2011 | B2 |
7862483 | Hendrickson et al. | Jan 2011 | B2 |
D635207 | Dalebout | Mar 2011 | S |
7901330 | Dalebout | Mar 2011 | B2 |
7909740 | Dalebout | Mar 2011 | B2 |
7980996 | Hickman | Jul 2011 | B2 |
7981000 | Watterson et al. | Jul 2011 | B2 |
7985164 | Ashby | Jul 2011 | B2 |
8029415 | Ashby et al. | Oct 2011 | B2 |
8033960 | Dalebout | Oct 2011 | B1 |
D650451 | Olson | Dec 2011 | S |
D652877 | Dalebout | Jan 2012 | S |
8142370 | Weinberg | Mar 2012 | B2 |
8152702 | Pacheco | Apr 2012 | B2 |
D659775 | Olson | May 2012 | S |
D659777 | Watterson | May 2012 | S |
D660383 | Watterson | May 2012 | S |
D664613 | Dalebout | Jul 2012 | S |
8251874 | Ashby et al. | Aug 2012 | B2 |
8298123 | Hickman | Oct 2012 | B2 |
8298125 | Colledge | Oct 2012 | B2 |
D671177 | Sip | Nov 2012 | S |
D671178 | Sip | Nov 2012 | S |
D673626 | Olson | Jan 2013 | S |
8419804 | Herr | Apr 2013 | B2 |
8690735 | Watterson et al. | Apr 2014 | B2 |
D707763 | Cutler | Jun 2014 | S |
8740753 | Olson | Jun 2014 | B2 |
8758201 | Ashby et al. | Jun 2014 | B2 |
8771153 | Dalebout | Jul 2014 | B2 |
8784270 | Watterson | Jul 2014 | B2 |
8808148 | Watterson | Aug 2014 | B2 |
8814762 | Butler | Aug 2014 | B2 |
D712493 | Ercanbrack | Sep 2014 | S |
8840075 | Olson | Sep 2014 | B2 |
8845493 | Watterson et al. | Sep 2014 | B2 |
8870726 | Watterson | Oct 2014 | B2 |
8876668 | Hendrickson et al. | Nov 2014 | B2 |
8894549 | Colledge | Nov 2014 | B2 |
8894555 | Olson | Nov 2014 | B2 |
8900325 | Herr | Dec 2014 | B2 |
8911330 | Watterson et al. | Dec 2014 | B2 |
8920288 | Dalebout | Dec 2014 | B2 |
8955225 | Kobayashi | Feb 2015 | B2 |
8986165 | Ashby | Mar 2015 | B2 |
8992364 | Law | Mar 2015 | B2 |
8992387 | Watterson et al. | Mar 2015 | B2 |
D726476 | Ercanbrack | Apr 2015 | S |
9028368 | Ashby et al. | May 2015 | B2 |
9028370 | Watterson | May 2015 | B2 |
9039578 | Dalebout | May 2015 | B2 |
D731011 | Buchanan | Jun 2015 | S |
9072930 | Ashby et al. | Jul 2015 | B2 |
9119983 | Rhea | Sep 2015 | B2 |
9123317 | Watterson et al. | Sep 2015 | B2 |
9126071 | Smith | Sep 2015 | B2 |
9126072 | Watterson | Sep 2015 | B2 |
9138615 | Olson et al. | Sep 2015 | B2 |
9142139 | Watterson et al. | Sep 2015 | B2 |
9144703 | Dalebout | Sep 2015 | B2 |
9149683 | Watterson et al. | Oct 2015 | B2 |
9186535 | Ercanbrack | Nov 2015 | B2 |
9186549 | Watterson et al. | Nov 2015 | B2 |
9211201 | Herr | Dec 2015 | B2 |
9254409 | Dalebout | Feb 2016 | B2 |
9254416 | Ashby | Feb 2016 | B2 |
9278248 | Tyger | Mar 2016 | B2 |
9278249 | Watterson | Mar 2016 | B2 |
9278250 | Buchanan | Mar 2016 | B2 |
9289648 | Watterson | Mar 2016 | B2 |
9339691 | Brammer | May 2016 | B2 |
9351856 | Herr | May 2016 | B2 |
9352185 | Hendrickson et al. | May 2016 | B2 |
9352186 | Watterson | May 2016 | B2 |
9375605 | Tyger | Jun 2016 | B2 |
9381394 | Mortensen | Jul 2016 | B2 |
9387387 | Dalebout | Jul 2016 | B2 |
9393453 | Watterson | Jul 2016 | B2 |
9403047 | Olson | Aug 2016 | B2 |
9403051 | Cutler | Aug 2016 | B2 |
9421416 | Mortensen | Aug 2016 | B2 |
9457219 | Smith | Oct 2016 | B2 |
9457220 | Olson | Oct 2016 | B2 |
9457222 | Dalebout | Oct 2016 | B2 |
9460632 | Watterson | Oct 2016 | B2 |
9463356 | Rhea | Oct 2016 | B2 |
9468794 | Barton | Oct 2016 | B2 |
9468798 | Dalebout | Oct 2016 | B2 |
9480874 | Cutler | Nov 2016 | B2 |
9492704 | Mortensen | Nov 2016 | B2 |
9498668 | Smith | Nov 2016 | B2 |
9517378 | Ashby et al. | Dec 2016 | B2 |
9521901 | Dalebout | Dec 2016 | B2 |
9533187 | Dalebout | Jan 2017 | B2 |
9539461 | Ercanbrack | Jan 2017 | B2 |
9548637 | Rapp | Jan 2017 | B2 |
9554922 | Casler | Jan 2017 | B2 |
9579544 | Watterson | Feb 2017 | B2 |
9586086 | Dalebout | Mar 2017 | B2 |
9586090 | Watterson et al. | Mar 2017 | B2 |
9604099 | Taylor | Mar 2017 | B2 |
9616276 | Dalebout | Apr 2017 | B2 |
9616278 | Olson | Apr 2017 | B2 |
9623281 | Hendrickson | Apr 2017 | B2 |
9636567 | Brammer et al. | May 2017 | B2 |
9675839 | Dalebout | Jun 2017 | B2 |
9682307 | Dalebout | Jun 2017 | B2 |
9694234 | Dalebout et al. | Jul 2017 | B2 |
9694242 | Ashby | Jul 2017 | B2 |
9737755 | Dalebout | Aug 2017 | B2 |
9757605 | Olson | Sep 2017 | B2 |
9764186 | Dalebout | Sep 2017 | B2 |
9767785 | Ashby | Sep 2017 | B2 |
9795822 | Smith | Oct 2017 | B2 |
9808672 | Dalebout | Nov 2017 | B2 |
9849326 | Smith | Dec 2017 | B2 |
9878210 | Watterson | Jan 2018 | B2 |
9889334 | Ashby et al. | Feb 2018 | B2 |
9889339 | Douglass | Feb 2018 | B2 |
9903452 | Tseng | Feb 2018 | B2 |
9937376 | McInelly | Apr 2018 | B2 |
9937377 | McInelly | Apr 2018 | B2 |
9937378 | Dalebout | Apr 2018 | B2 |
9937379 | Mortensen | Apr 2018 | B2 |
9943719 | Smith | Apr 2018 | B2 |
9943722 | Dalebout | Apr 2018 | B2 |
9948037 | Ashby | Apr 2018 | B2 |
9968816 | Olson | May 2018 | B2 |
9968821 | Finlayson | May 2018 | B2 |
9968823 | Cutler | May 2018 | B2 |
10010755 | Watterson | Jul 2018 | B2 |
10010756 | Watterson | Jul 2018 | B2 |
10029145 | Douglass | Jul 2018 | B2 |
D826350 | Hochstrasser | Aug 2018 | S |
10046196 | Ercanbrack | Aug 2018 | B2 |
D827733 | Hochstrasser | Sep 2018 | S |
10065064 | Smith | Sep 2018 | B2 |
10070974 | Herr | Sep 2018 | B2 |
10071285 | Smith et al. | Sep 2018 | B2 |
10085586 | Smith et al. | Oct 2018 | B2 |
10086254 | Watterson | Oct 2018 | B2 |
10105244 | Herr | Oct 2018 | B2 |
10136842 | Ashby | Nov 2018 | B2 |
10186161 | Watterson | Jan 2019 | B2 |
10188890 | Olson | Jan 2019 | B2 |
10207143 | Dalebout | Feb 2019 | B2 |
10207145 | Tyger | Feb 2019 | B2 |
10207147 | Ercanbrack | Feb 2019 | B2 |
10207148 | Powell | Feb 2019 | B2 |
10212994 | Watterson | Feb 2019 | B2 |
10213323 | Casler, Jr. | Feb 2019 | B2 |
10220259 | Brammer | Mar 2019 | B2 |
10226396 | Ashby | Mar 2019 | B2 |
10226664 | Dalebout | Mar 2019 | B2 |
10252109 | Watterson | Apr 2019 | B2 |
10258828 | Dalebout | Apr 2019 | B2 |
10272317 | Watterson | Apr 2019 | B2 |
10279212 | Dalebout et al. | May 2019 | B2 |
10293211 | Watterson | May 2019 | B2 |
D852292 | Cutler | Jun 2019 | S |
10343017 | Jackson | Jul 2019 | B2 |
10376736 | Powell | Aug 2019 | B2 |
10388183 | Watterson | Aug 2019 | B2 |
10391361 | Watterson | Aug 2019 | B2 |
D864320 | Weston | Oct 2019 | S |
D864321 | Weston | Oct 2019 | S |
10426989 | Dalebout | Oct 2019 | B2 |
10433612 | Ashby | Oct 2019 | B2 |
10441840 | Dalebout | Oct 2019 | B2 |
10449416 | Dalebout | Oct 2019 | B2 |
D868909 | Cutler | Dec 2019 | S |
10492519 | Capell | Dec 2019 | B2 |
10493349 | Watterson | Dec 2019 | B2 |
10500473 | Watterson | Dec 2019 | B2 |
10543395 | Powell et al. | Jan 2020 | B2 |
10737764 | Fox | Aug 2020 | B2 |
10968947 | Kawai | Apr 2021 | B2 |
20020016235 | Ashby | Feb 2002 | A1 |
20020077221 | Dalebout | Jun 2002 | A1 |
20020159253 | Dalebout | Oct 2002 | A1 |
20030045406 | Stone | Mar 2003 | A1 |
20030060331 | Polk et al. | Mar 2003 | A1 |
20040091307 | James | May 2004 | A1 |
20040171464 | Ashby | Sep 2004 | A1 |
20040171465 | Hald | Sep 2004 | A1 |
20050049123 | Dalebout | Mar 2005 | A1 |
20050077805 | Dalebout | Apr 2005 | A1 |
20050107229 | Wickens | May 2005 | A1 |
20050164839 | Watterson | Jul 2005 | A1 |
20050253469 | Hochhalter | Nov 2005 | A1 |
20050272577 | Olson | Dec 2005 | A1 |
20070117683 | Ercanbrack | May 2007 | A1 |
20070254778 | Ashby | Nov 2007 | A1 |
20080051256 | Ashby | Feb 2008 | A1 |
20080242520 | Hubbard | Oct 2008 | A1 |
20080300110 | Smith | Dec 2008 | A1 |
20090105052 | Dalebout | Apr 2009 | A1 |
20090261671 | Hochhalter | Oct 2009 | A1 |
20100050796 | Eschborn | Mar 2010 | A1 |
20100113980 | Herr | May 2010 | A1 |
20100174384 | Herr | Jul 2010 | A1 |
20100187051 | Katayama | Jul 2010 | A1 |
20100242246 | Dalebout | Sep 2010 | A1 |
20120237911 | Watterson | Sep 2012 | A1 |
20120295774 | Dalebout | Nov 2012 | A1 |
20130123083 | Sip | May 2013 | A1 |
20130165195 | Watterson | Jun 2013 | A1 |
20130172152 | Watterson | Jul 2013 | A1 |
20130172153 | Watterson | Jul 2013 | A1 |
20130178334 | Brammer | Jul 2013 | A1 |
20130178768 | Dalebout | Jul 2013 | A1 |
20130190136 | Watterson | Jul 2013 | A1 |
20130196298 | Watterson | Aug 2013 | A1 |
20130196821 | Watterson et al. | Aug 2013 | A1 |
20130196822 | Watterson et al. | Aug 2013 | A1 |
20130218585 | Watterson | Aug 2013 | A1 |
20130244836 | Maughan | Sep 2013 | A1 |
20130255418 | Kobayashi | Oct 2013 | A1 |
20130267383 | Watterson | Oct 2013 | A1 |
20130268101 | Brammer | Oct 2013 | A1 |
20130274067 | Watterson | Oct 2013 | A1 |
20130281241 | Watterson | Oct 2013 | A1 |
20140024499 | Watterson | Jan 2014 | A1 |
20140073970 | Ashby | Mar 2014 | A1 |
20140081421 | Herr | Mar 2014 | A1 |
20140081424 | Herr | Mar 2014 | A1 |
20140121071 | Strom | May 2014 | A1 |
20140135173 | Watterson | May 2014 | A1 |
20140274574 | Shorten et al. | Sep 2014 | A1 |
20140274579 | Olson | Sep 2014 | A1 |
20140287884 | Buchanan | Sep 2014 | A1 |
20140309085 | Watterson et al. | Oct 2014 | A1 |
20150182779 | Dalebout | Jul 2015 | A1 |
20150182781 | Watterson | Jul 2015 | A1 |
20150238817 | Watterson | Aug 2015 | A1 |
20150250418 | Ashby | Sep 2015 | A1 |
20150251055 | Ashby | Sep 2015 | A1 |
20150253210 | Ashby et al. | Sep 2015 | A1 |
20150253735 | Watterson | Sep 2015 | A1 |
20150253736 | Watterson | Sep 2015 | A1 |
20150258560 | Ashby | Sep 2015 | A1 |
20150352396 | Dalebout | Dec 2015 | A1 |
20160058335 | Ashby | Mar 2016 | A1 |
20160063615 | Watterson | Mar 2016 | A1 |
20160092909 | Watterson | Mar 2016 | A1 |
20160101311 | Workman | Apr 2016 | A1 |
20160107065 | Brammer | Apr 2016 | A1 |
20160121074 | Ashby | May 2016 | A1 |
20160148535 | Ashby | May 2016 | A1 |
20160148536 | Ashby | May 2016 | A1 |
20160158595 | Dalebout | Jun 2016 | A1 |
20160206922 | Dalebout et al. | Jul 2016 | A1 |
20160235557 | Herr | Aug 2016 | A1 |
20160250519 | Watterson | Sep 2016 | A1 |
20160253918 | Watterson | Sep 2016 | A1 |
20160296348 | Herr | Oct 2016 | A1 |
20160346595 | Dalebout | Dec 2016 | A1 |
20170036053 | Smith | Feb 2017 | A1 |
20170056711 | Dalebout | Mar 2017 | A1 |
20170056715 | Dalebout et al. | Mar 2017 | A1 |
20170086991 | Casler | Mar 2017 | A1 |
20170124912 | Ashby | May 2017 | A1 |
20170193578 | Watterson | Jul 2017 | A1 |
20170266483 | Dalebout et al. | Sep 2017 | A1 |
20170266489 | Douglass | Sep 2017 | A1 |
20170266532 | Watterson | Sep 2017 | A1 |
20170266533 | Dalebout | Sep 2017 | A1 |
20170270820 | Ashby | Sep 2017 | A1 |
20180001135 | Powell | Jan 2018 | A1 |
20180036585 | Powell | Feb 2018 | A1 |
20180084817 | Capell et al. | Mar 2018 | A1 |
20180085630 | Capell et al. | Mar 2018 | A1 |
20180089396 | Capell et al. | Mar 2018 | A1 |
20180099116 | Ashby | Apr 2018 | A1 |
20180099179 | Chatterton | Apr 2018 | A1 |
20180099180 | Wilkinson | Apr 2018 | A1 |
20180099205 | Watterson | Apr 2018 | A1 |
20180104533 | Powell et al. | Apr 2018 | A1 |
20180111034 | Watterson | Apr 2018 | A1 |
20180117385 | Watterson et al. | May 2018 | A1 |
20180117393 | Ercanbrack | May 2018 | A1 |
20180117419 | Jackson | May 2018 | A1 |
20180154205 | Watterson | Jun 2018 | A1 |
20180154207 | Hochstrasser | Jun 2018 | A1 |
20180154208 | Powell et al. | Jun 2018 | A1 |
20180154209 | Watterson | Jun 2018 | A1 |
20180200566 | Weston | Jul 2018 | A1 |
20190058370 | Tinney | Feb 2019 | A1 |
20190080624 | Watterson | Mar 2019 | A1 |
20190117415 | Herr | Apr 2019 | A1 |
20190151698 | Olson | May 2019 | A1 |
20190168072 | Brammer | Jun 2019 | A1 |
20190178313 | Wrobel | Jun 2019 | A1 |
20190192898 | Dalebout | Jun 2019 | A1 |
20190192952 | Powell | Jun 2019 | A1 |
20190209893 | Watterson | Jul 2019 | A1 |
20190223612 | Watterson | Jul 2019 | A1 |
20190232112 | Dalebout | Aug 2019 | A1 |
20190269958 | Dalebout | Sep 2019 | A1 |
20190269971 | Capell | Sep 2019 | A1 |
20190275366 | Powell | Sep 2019 | A1 |
20190282852 | Dalebout | Sep 2019 | A1 |
20190315450 | Fox | Oct 2019 | A1 |
20190328079 | Ashby | Oct 2019 | A1 |
20190329091 | Powell | Oct 2019 | A1 |
20190376585 | Buchanan | Dec 2019 | A1 |
20200009417 | Dalebout | Jan 2020 | A1 |
20200016459 | Smith | Jan 2020 | A1 |
Number | Date | Country |
---|---|---|
2587690 | Mar 1987 | FR |
200315515 | Jun 2003 | KR |
20130143215 | Dec 2013 | KR |
Entry |
---|
U.S. Appl. No. 29/702,127, filed Sep. 16, 2019, Gordon Cutler. |
U.S. Appl. No. 13/088,007, filed Apr. 15, 2011, Scott R. Watterson. |
U.S. Appl. No. 15/973,176, filed May 7, 2018, Melanie Douglass. |
U.S. Appl. No. 16/742,762, filed Jan. 14, 2020, Eric W. Watterson. |
U.S. Appl. No. 16/750,925, filed Jan. 25, 2019, Ryan Silcock. |
U.S. Appl. No. 16/780,765, filed Feb. 3, 2020, Scott R. Watterson. |
U.S. Appl. No. 16/797,850, filed Feb. 11, 2020, Scott R. Watterson. |
U.S. Appl. No. 62/852,118, filed May 22, 2019, David Hays. |
U.S. Appl. No. 62/887,391, filed Aug. 15, 2019, Gaylen Ercanbrack. |
U.S. Appl. No. 62/887,398, filed Aug. 15, 2019, William T. Dalebout. |
U.S. Appl. No. 62/897,113, filed Sep. 9, 2019, Megan Jane Ostler. |
U.S. Appl. No. 62/914,007, filed Oct. 11, 2019, Jared Willardson. |
U.S. Appl. No. 62/934,291, filed Nov. 12, 2019, William T. Dalebout. |
U.S. Appl. No. 62/934,297, filed Nov. 12, 2019, William T. Dalebout. |
International Search Report issued in PCT application PCT/US2019/036117 dated Oct. 4, 2019. |
Office Action and Search Report with English Translation issued in Taiwan patent application 108120057 dated Jan. 22, 2020. |
Extended European Search Report for European Application No. 19820425.7, dated Jan. 18, 2022, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20190376585 A1 | Dec 2019 | US |
Number | Date | Country | |
---|---|---|---|
62683331 | Jun 2018 | US |