Increased homogeneity of mycological biopolymer grown into void space

Information

  • Patent Grant
  • 11266085
  • Patent Number
    11,266,085
  • Date Filed
    Wednesday, November 14, 2018
    5 years ago
  • Date Issued
    Tuesday, March 8, 2022
    2 years ago
Abstract
The method of growing a biopolymer material employs incubation of a growth media comprised of nutritive substrate and a fungus in containers that are placed in a closed incubation chamber with air flows passed over each container while the chamber is maintained with a predetermined environment of humidity, temperature, carbon dioxide and oxygen. The air flows may be directed parallel or perpendicularly to the surfaces of the growth media.
Description

This invention relates to methods to create a biomaterial of increased homogeneity, strength and density as compared to the mycological biopolymer described in published US Patent Application US 2015/0033620 (A).


As described in published US Patent Application US 2015/0033620 (A), the environmental conditions for producing the mycological biopolymer product, i.e. a high carbon dioxide (CO2) content (from 5% to 7% by volume) and an elevated temperature (from 85° F. to 95° F.), prevent full differentiation of the fungus into a mushroom. There are no stipe, cap, or spores produced. The elevated temperature accelerates tissue production. The biopolymer product grows into the void space of the tool, filling the space with an undifferentiated mycelium chitin-polymer, which is subsequently extracted from the substrate and dried.


Briefly, the invention allows for the production of a tough, pliable material that could be used to replace leather, leather-like materials, textiles and high density and strength foams in many applications such as upholstery, apparel/fashion, military gear, athletic gear, and footwear.


The invention involves growing a mycological biopolymer under conditions of directed airflow, depositing moisture and solutes, such as minerals, on the surface of the growing organism, growth through a scrim or lofted non-substrate matrix, and fluctuation of the humidity profile throughout growth to induce more homogenous material and produce a range of material densities. The mycological biopolymer product consists entirely of fungal mycelium.


One embodiment of the invention is the placement of contained inoculated growth media used to produce mycological biopolymer within a growth enclosure equipped to deliver a directed airflow across at least one of the surfaces of the growth media.


In this embodiment, the method of growing a biopolymer material comprises the steps of providing a plurality of containers, each of which defines a cavity containing a growth media comprised of nutritive substrate and a fungus; placing the containers in a closed incubation chamber; maintaining the incubation chamber with a predetermined environment of humidity, temperature, carbon dioxide and oxygen sufficient to produce a mycelium biopolymer while preventing full differentiation of said fungus into a mushroom; directing flows of air containing a high carbon dioxide content through the incubation chamber for passage over the growth media in each container; and incubating the growth media in each container for a period of time sufficient for the fungus to digest the nutritive substrate and produce a mycelium biopolymer consisting entirely of fungal mycelium in each container.


Each container may be placed within the incubation chamber within an “airflow box” such that the height of the container interacts with the airflow or each container may be sunk into the airflow box such that the total cross-sectional area of the box can be employed.


In accordance with the invention, the flows of air are directed into the closed incubation chamber laterally of the containers or perpendicularly of the containers.


A second embodiment of the invention employs the controlled deposition of moisture and minerals on at least one of the growing surfaces to induce homogeneity with a range of densities based on the moisture and mineral deposition volume.


In this embodiment, the method of growing a biopolymer material comprises the steps of providing a plurality of containers, each of which defines a cavity containing a growth media comprised of nutritive substrate and a fungus; placing the plurality of containers in a closed incubation chamber; maintaining the incubation chamber with a predetermined environment of humidity, temperature, carbon dioxide and oxygen sufficient to produce a mycelium biopolymer while preventing full differentiation of said fungus into a mushroom; distributing a mist through the incubation chamber for passage over the growth media in each container; and incubating the growth media in each container for a period of time sufficient to produce a mycelium biopolymer in each container.


In accordance with the invention, the mist includes moisture and a solute, such as minerals.


A third embodiment of the invention involves the growth of a mycological biopolymer through a scrim or lofted non-substrate matrix that is in direct contact or elevated above the substrate growth surface and grown in a container without the use of a lid.


A fourth embodiment employs the fluctuation of the percent humidity at time periods of growth throughout the duration of the cycle in order to induce a higher density material of increased homogeneity.


A fifth embodiment uses specific air flow rates to achieve a range of aerial mycelium densities and mechanical performances.


In all the embodiments of the invention, the mycological biopolymer is grown from a nutritious substrate, and grows into a panel at a dry density of 0.5 to 4 pounds per cubic foot. The localized environmental conditions, i.e. high carbon dioxide air, moisture deposition and temperature, must be homogenous, except for the embodiment using a scrim or lofted non-substrate matrix, in order to achieve uniform growth within each panel and throughout the larger growing chamber.


As further described in published US Patent Application US 2015/0033620 (A) the use of a lid was enlisted to control the localized environmental conditions influencing the growth of the mycological biopolymer.


In accordance with the invention, under directed airflow, the lid on the container is removed and the localized environmental conditions are homogenized via airflow. The use of airflow allows for growth from the full surface of the growth container and helps to improve the homogeneity and uniformity of the tissue grown. This may be attributed to the airflow facilitating the delivery of humidity, water and solutes, such as minerals, to the growing tissue, elimination of microenvironments, and/or increased mechanical force. There are many applications for a biological textile and foam that require increased volume of homogenous material.


The growth environments used in the production of edible mushrooms, both specialty and Agaricus currently employ the use of some uncontrolled airflow through the growth chambers for heating, cooling, of gassing carbon dioxide produced by the growing mushrooms or introducing oxygen into the growing chamber. This differs from the airflow technology employed to prevent any and all differentiation of the fungus into a fruiting body that makes an edible mushroom while providing a uniform environment to grow mycological biopolymer


Further, airflow within the cultivation of mushrooms is directed at removing metabolic byproducts such as carbon dioxide and other volatiles, and is intermittent in nature. The airflow employed to grow mycological biopolymer is directed at providing a consistent homogenization of the incubation environment without localized variations that has sufficiently controlled parameters (e.g., high carbon dioxide) such that the mycelium cannot differentiate into a mushroom. Also, the airflow velocity provides a directed force that modulates the structure of the aerial mycelium, impacting density.


While the growth environments used in the production of edible mushrooms can employ the use of an airflow through the growth chambers, the air flow is indirect and part of a recirculating system for humidification of the environment. The airflow is not directed across the surface of the growth media as is the case in accordance with the invention.





These and other objects and advantages will become more apparent from the following detailed description taken with the accompanying drawings wherein:



FIG. 1A illustrates photographs of the top surfaces of panels grown in a direct, high airflow environment with minimal differentiation in tissue morphology in accordance with the invention;



FIG. 1B illustrates photographs of the top surfaces of panels grown in an indirect, low airflow environment with highly differentiated tissue;



FIG. 1C illustrates photographs of the top surfaces of panels grown in a zero-airflow environment and resulting in highly differentiated tissue and reduced aerial growth;



FIG. 2 illustrates a chart of treatment versus density in accordance with the invention;


FIG. 3A1 schematically illustrates a lateral airflow system in accordance with the invention;


FIG. 3A2 illustrates a perspective view of an air box used for the incubation of two containers in accordance with the invention



FIG. 3B schematically illustrates a modified lateral airflow system in accordance with the invention;



FIG. 3C schematically illustrates another modified lateral airflow system in accordance with the invention;



FIG. 4A schematically illustrates a perpendicular airflow system for passing air over the surface of the growth medium in accordance with the invention;



FIG. 4B illustrates a photograph of the top surface of a panel grown in the system of FIG. 4A;



FIG. 4C schematically illustrates the air flow patterns over a growth medium in the system of FIG. 4A;



FIG. 5A schematically illustrates a mist distribution system in accordance with the invention; and



FIG. 5B schematically illustrates an indirect air flow system for recirculation of humidified air not in accordance with the invention.





Referring to FIG. 3A1, in a first embodiment, the method of growing a biopolymer material employs a closed incubation chamber 10 having a plurality of vertically spaced apart shelves 11 and transparent front walls (not shown) for viewing the interior of the chamber 10.


In addition, an air flow system 12 is connected with the chamber 10 for directing air flows laterally across the chamber 10 as indicated by the arrows 13 from one side of the chamber 10 to and through the opposite side of the chamber 10. As illustrated, the air flow system 12 includes a manifold M in the upper part of the chamber 10 for distributing humidified air across the top of the chamber 10 for cascading down the shelves 11 until being recirculated on the bottom right for re-humidification.


Each shelf 11 of the chamber 10 is sized to receive an air box B that contains two containers 14 each of which contains a growth media 15 comprised of nutritive substrate and a fungus.


Referring to FIG. 3A2, each container 14 is in the form of a rectangular tray with an open top to define a cavity of a size of 11.5 inches by 18.5 inches with a 1 inch lip around the entire container that extends externally outwardly of the cavity. Each container is placed within the air box B.


The containers 14 are constructed from a sufficiently rigid, non-reactive material, such as polycarbonate, and the orifice of the container is such that it is paired with the airflow device to achieve the desired air flow rates. The length of the container along with the airflow rates dictate the consistency of this flow, and the entrance length before the airflow reaches the growing part is impart to control the laminar or turbid nature of the flow. The containers can include ramps, fairings, such as airfoils, or baffles, to assist in homogenizing the flow.


The air box B is of rectangular shape that receives the growth trays 14 and has an open side 16 in one end face and a smaller orifice 17 in an opposite end face.


The air flow system 12 includes a fan 12′ situated at the orifice 17 of each air box B to pull air over the growth media 15 in the containers 14 and growing part as indicated by the horizontal arrows. The orifice is covered by the fan to ensure all of the air moves through the fan. Alternatively, the fan 12′ may be positioned at the open side 16 of the air box B to push air over the growth media 15.


As indicated, the humidified air cascading down from the manifold M passes into and through each air box B via the orifices 16, 17.


Specifically, the growth media 15 comprises:
















Materials Input
Approximate Materials Amount
















Bagged Sealed Substrate:











Corn stover
6000
g



Poppy Seeds
1440
g



Maltodextrin
256
g



Calcium sulfate
80
g



Municipal water
16000
g







Inoculant:











Ecovative Strain ID
2880
g



045-08-003 spawn










During the method of growing a biopolymer material, the incubation chamber 10 is maintained with a predetermined environment of humidity, temperature, carbon dioxide and oxygen. Specifically, the chamber 10 is maintained at 99% relative humidity (RH), 5% CO2, and a fluctuating temperature of from 85° F. to 90° F. during the step of incubating.


The incubation chamber 10, i.e. growth enclosure, can be open on one end and on the other can be outfitted with fans or apparatuses for moving air over the containers 14 in a lateral direction as indicated by the arrows 13 either by pulling or pushing air at speeds ranging from 5 CFM to 10,000 CFM steadily or in a pulsing fashion. The incubation chamber 10 can be within a larger incubation chamber (not shown) that is able to maintain environmental conditions including humidity, temperature, carbon dioxide and oxygen.


The shape and construction of the incubation chamber 10 can be specially crafted to assist in directing the air flow and laminar or turbid characteristics of the air flow.


Process Steps (see FIG. 3A1)


Directed Lateral Airflow






    • 1. Nutritious growth media and organism inoculum 15 is packed into containers 14 as described in US 20150033620 A with the exception that these containers 14 are not outfitted with lids.

    • 2. These containers 14 are placed within air boxes B on the shelves 11 of the enclosed incubation chamber 10.

    • 3. Directing flows of air via the airflow system 12 through the incubation chamber 10 for passage laterally over the growth media 15 in each container 14 as indicated by the arrows 13.

    • 4. incubating the growth media 15 in each container 14 for a period of time sufficient to produce a panel P of mycelium biopolymer in each container 14, e.g. panels can be grown for 4 to 14 days within the incubation chamber 10.





The flows of air are generated by fans outfitted to the incubation chamber 10 and are directed over the containers 14 and back into the greater incubation space.


Referring to FIG. 1A, a pair of panels 17 produced in accordance with the above method consists entirely of fungal mycelium and show minimal differentiation in tissue morphology.


Airflow rates of 100 cubic feet per minute at a constant RH of >99% resulted in tissue with a dry density of 1.98 pcf and a tensile strength of 17.5 psi. These panels offered a high degree of consistency.


Airflow rates of 100-175 cubic feet per minute and relative humidity drop to 96% for a period of 48 hours resulted in tissue with a dry density of 1.45 pcf and a tensile strength of 13.6 psi. These grown panels resulted in a high degree of consistency.


Airflow speeds of 300-350 cubic feet per minute and at a constant RH of >99% resulted in tissue with a dry density of 3.32 pcf and a tensile strength of 31.2 psi.


Referring to FIG. 1B, pairs of panels produced under conditions without a directed airflow were characterized in having highly differentiated tissue.


Referring to FIG. 1C, pairs of panels grown in a zero-airflow environment were characterized in having highly differentiated tissue and reduced aerial growth;


Referring to FIG. 3B, wherein like reference characters indicate like parts as above, the incubation chamber 10 may be constructed with vertically spaced apart shelves 11 (or racks) and may be enclosed by sheeting (not shown) for cooperation with containers 14 of extended length such that each shelf 11 receives an air box B with only a single container 14.


In addition, the incubation chamber 10 is outfitted with a lateral airflow system 12′ having fans fitted to the chamber 10′ to direct airflow from the incubation environment through the air boxes B and over the containers 14 and back into the greater incubation space as indicated by the arrows 18.


Referring to FIG. 3C, wherein like reference characters indicate like parts as above, the incubation chamber 10′ may have open shelves 11 on which containers 14 with growth medium 15 are placed without using air boxes. In addition, the incubation chamber 10′ is outfitted with a lateral airflow system having fans (not shown) located on the right-hand side, as viewed, of the chamber 10′ for pulling air flows through and out of the chamber 10′ while passing laterally over the containers 14.


Referring to FIG. 4A, wherein like reference characters indicate like parts as above, the growth of the mycological biopolymer may be effected by passing the airflows perpendicularly of the containers 14.


For example, the enclosed incubation chamber 10″ may be constructed with one or more air flow devices (not shown) positioned above the nutritive media 15 to push or pull conditioned air over the growing mycelium. The air flow device 12 as in FIG. 3A1 is either held static at a desired height above the growth container 14′ or modulated on linear actuators (not shown) through the course of growth.


As illustrated, two containers 14′ are positioned on each shelf 11 within the incubation chamber 10″ and each container 14′ is provided with vertical standoffs 18 that space a cover 19 (roof) from a container 14′. The vertical standoffs 18 are fabricated from a non-reactive substance, such as polyvinylchloride (PVC), and are sufficiently rigid to resist the forces of the airflow device.


The incubation chamber 10″, can be open on one end and on the other can be outfitted with fans or apparatuses for moving air over the containers 14′ in a direction perpendicular to the growing surface as indicated by the arrows 13″ either by pulling or pushing air at speeds ranging from 5 CFM to 10,000 CFM steadily or in a pulsing fashion.


The incubation chamber 10″ can be within a larger incubation chamber (not shown) that is able to maintain environmental conditions including humidity, temperature, carbon dioxide and oxygen.


Referring to FIG. 4B, a panel of mycological biopolymer produced in the incubation chamber 10″ may be characterized in having a concentration of mycelium below the airflow device as the air was pulled up over the growing surface as indicated in FIG. 4C as opposed to across the growing part in FIG. 1A. As indicated in FIG. 4B, where airflow device pulled the air upwardly from a central region of the growth medium, the growing mycelium was concentrated in the central region of the panel.


Directed Perpendicular Airflow (See FIG. 4A)






    • 1. Nutritious growth media and organism inoculum is packed into containers as described in US 20150033620 A with the exception that these containers are not outfitted with lids.

    • 2. These containers 14″ are placed within the enclosed incubation chamber 10″.

    • 3. Directing flows of air via the airflow system 12 through the incubation chamber 10″ for passage perpendicularly of the growth media in each container 14″ as indicated by the arrows 13″.

    • 4. The shape and design of the growth enclosure can be specially crafted to assist in directing the flow and laminar or turbid characteristics of the air.

    • 5. incubating the growth media 15 in each container 14″ for a period of time sufficient to produce a panel of mycelium biopolymer in each container 14″, e.g. panels can be grown for 4 to 14 days within the incubation chamber 10″.

    • 6. Air movement can be used to mold and structure the material into particular shapes and patterns during growth for a final product that is shaped using airflow.





In Step 6 above, pulled horizontal airflow velocity (>175 cfm) creates a dense scalloped pattern. Vertical airflow creates structures below the airflow device presenting a morphology that parities the airflow (pulled upward like a stalagmite). Pushing creates wave patterns opposing the airflow (160 CFM). Proximity to the airflow device and the pattern of airflow generates tissue patterns that mimic the flow.


Referring to FIG. 2, as graphically illustrated, the moisture and solute content of the growth media has been found to directly relate to the density of the material being grown. The higher the moisture content, the lower the density of the material grown, a trend that has been shown across an assortment of substrate types.



FIG. 2 shows three other substrate varieties in comparison to the corn stover material at 4 different moisture contents. This resulted in variations in the final product density, which higher moisture contents resulting in lower density tissue.


Tukey Kramer is a mean (average) comparison test that determines the significant difference between tests. The 0.05 is the confidence interval, so there is a 95% confidence in the relationship between the data.


The ability for fungal cells to fill the void space is dependent on the water and solutes available to the organism during growth. The more water available, the more aggressively the organism can expand, causing the density of the material to drop.


Accordingly, referring to FIG. 5A, wherein like reference characters indicate like parts as above, an enclosed incubation chamber 20 is fitted with a mist distribution system 21 so that moisture and solutes can be applied to the growing tissue through a number of avenues for the purpose of producing a range of material densities in the produced mycological biopolymer.


As illustrated, the incubation chamber 20 has a plurality of vertically spaced apart shelves 21 and transparent front walls (not shown) for viewing the interior of the chamber 20. The incubation chamber 20 is sized to receive a plurality of containers 14, each filled with a growth media 15.


As above, the incubation chamber 20 can be placed within larger incubation chambers that are able to maintain uniform environmental conditions including humidity, temperature, carbon dioxide and oxygen.


The mist distribution system 21 is positioned to deliver moisture and solutes, such as minerals, to the top of the growing tissue in each container 14 and can also be used to control the material density and regulate the homogeneity of the material. This material is comprised of aerial hypha growing up and out of a nutritious space into a non-nutrient environment. In order to control growth in such an environment, the organism employs the use of turgor pressure to regulate the extension of the hyphae at the apex, or hyphal tip. Thus, regulating the amount, distribution and/or droplet size of available moisture and solutes deposited across the top surface of the growing material can control the osmotic gradient created within the hyphae and subsequently, its growth rate and pattern of colonization.


Solutes are any agent that can cause an osmotic potential. RO (reverse osmosis) or distilled water are free of such agents. Other solutes could include proteins, carbohydrates, polymers, and minerals.


A solute is a material that induces an osmotic potential within a solution. A solute can be a mineral, a carbohydrate, a protein, or lipid. Concentrations of a solute on one side of a membrane, such as a cell membrane and/or wall, will drive a potential across the membrane if the solution on the opposing side of the membrane has a lesser concentration of the solute.


Moisture and solute deposition can be employed to achieve specific material densities and increase material homogeneity.


Moisture and solutes can be distributed across the growing surface of the growth media using a bath of water outfitted with a “humidifying puck” that atomizes the water into vapor or mist. A “humidifying puck” is an ultrasonic humidifier which produces low quality, high liquid content, droplets of a size range of 5 to 22 microns. The liquid water droplet, opposed to vapor, is important as the droplet can carry a solute. The same is true for sprays or bubblers, but cannot be achieved with steam. Steam can be used to regulate humidity, but not as a substitute for water carrying the solutes.


This mist can be distributed across the surface of the growth media using indirect airflow from a fan or similar apparatus or by a spray nozzle that can be outfitted with compressed air or other means of expelling the moisture out of the nozzle and directed at the growing surface of the growth media.


The amount of moisture and minerals, the distribution, and the droplet size can be regulated to produce a homogenous mycelium biopolymer of varying densities.


Fluctuation of the percent humidity during the growth cycle can be employed as a method to increase the density and homogeneity of the material. In the method described in the published US 2015/0033620 A, the humidity was held static throughout the duration of the growth cycle to achieve material growth. By altering this paradigm and fluctuating the humidity of the growth chamber at targeted stages during the growth cycle, the density and homogeneity can be increased.


A moist environment is generally necessary for fungi to grow aggressively. When a desiccating environment is encountered, many species of fungi have developed methods to protect themselves against moisture loss. For aerial hyphae, a localized high humidity environment is necessary to allow for continued expansion and prevent collapse of the hyphae towards the growing surface. Fluctuation of the humidity in the growth chamber can be used to trigger physiological responses of the organism to a desiccating environment as well as to manipulate the aerial hyphal growth in order to achieve the desired material characteristics.


A system design allowing for the controlled deposition of mist onto the growing material without the use of airflow was prototyped and tested employing the incubation chamber of FIG. 5A. This misting system prototype evenly distributed an equivalent volume of mist onto the growing material as a control high airflow system. The misting system used a SF1010SS siphon fed atomizing nozzle, or “atomizer” to expel a fan shaped spray of fine water droplets, equivalent in size to MycoFlex™ control technology as employed in the methods described in US 2015/0033620, across the growing surface of the experimental parts without the use of direct airflow.


The atomizer misting system was set up with the nozzle positioned 26.5 inches in from the incubator wall to the right side of the target growth surface. The nozzle was affixed at a 45-degree angle to the shelf 11 above the target container 14 and rotated 90-degrees, resulting in a vertically oriented fan-shaped spray pattern. The target total volume of moisture of 0.28 microsiemens per centimeter (uS/cm) per minute plus/minus seven microsiemens per centimeter (uS/cm) as well as target deviation in moisture across the panel surface of 0.00014 g/min was achieved using a misting paradigm of 2.4% time misting over a 1 minute period. The target volume was based on TDS values collected for the direct, high airflow incubations system of FIG. 3A1.


This atomizer misting system was trialed with biomass to assess the impact of moisture deposition independent from airflow. Seven parts were loaded into a lab incubator equipped with the atomizer misting system without any airflow (FIG. 5A).


Humidification of this system was achieved by the moisture input into the system via the atomizer.


Two control incubators were run simultaneously using the standard biopolymer humidification system and environmental conditions. One control incubator was set up using the standard direct, high airflow box system and the humidification recirculation system (FIG. 3A1) while the other was equipped with only the low, indirect airflow used for the recirculation of humidified air (FIG. 5B). All three incubators were set to standard biopolymer environmental conditions of 99% RH, 5% CO2 and fluctuating temperature of 85-90 degrees Fahrenheit for nine days of growth.


Direct, high airflow resulted in increased homogeneity of growth within the panels across the entire incubator and allowed the production of the panels of FIG. 1A with minimal differentiation in tissue morphology.


The zero-airflow incubator equipped with the atomizer misting system resulted in highly differentiated panels with a low volume of vertical growth (FIG. 1C). A panel grown by this technique may be characterized in having “bulbs” or bundles of mycelium fibers from 0.1 to 1 inch in diameter and in having discrete dense regions predominantly void of connective tissue.


The low, indirect airflow incubator also resulted in highly differentiated material and reduced aerial growth; however, the volume of vertical growth was increased (FIG. 1B). A panel grown by this technique may be characterized in having “bulbs” or bundles of mycelium fibers equal to or greater than 0.6 inches, for example of from 0.6 to 4 inches in diameter. By comparison, the “bulbs” of mycelium fibers on the panel of FIG. 1C are less than 0.6 inches.


Further, the panel of FIG. 1B is characterized in that the connective tissue is minor and results in a homogeneous aesthetic but heterogeneous performance. This means that, although the surface looks smooth, the mechanical performance may vary through the section of the part.


The high, direct airflow growth environment resulted in panels that were significantly more homogenous, with minimal differentiation throughout the panels (FIG. 1A).


Process Steps


Moisture and Mineral Deposition on Material Surface During Growth






    • 1. Nutritious growth media and organism inoculum was packed into containers 14 as described in US 20150033620 A with the exception that these containers 14 were not outfitted with lids.

    • 2. These containers 14 were placed within the incubation chamber 10 maintained under predetermined environmental conditions including humidity, temperature, carbon dioxide and oxygen.

    • 3. Moisture and minerals were distributed across the growing surface of the media in the containers using a bath of water outfitted with a humidifying puck that atomizes the water into vapor or mist.

    • 4. Panels were grown for 4 to 14 days within the incubation chamber 10.


      Regulation of Moisture and Minerals within the Substrate to Control Tissue Density





Tests were conducted to determine the effect of regulating the moisture and minerals within a substrate (growth media) prior to incubation in an enclosed incubation chamber with respect to the density of a produced panel of mycological biopolymer.


One test used the following steps:

    • 1. Nutritious growth media and organism inoculum was packed into containers 14 as described in US 20150033620 A with the exception that these containers 14 are not outfitted with lids.
    • 2. Moisture and minerals were distributed within the growth media to achieve a specified moisture between 20-95% moisture.
    • 3. Incubating the growth media 15 in each container 14 for a period of time sufficient to produce a panel of mycelium biopolymer in each container 14, panels were grown for 4 to 14 days within the incubation chamber 10.


The result of the test was that the amount of moisture and minerals within the growth media prior to placement in the incubation chamber can be regulated to produce a homogenous panel of mycological biopolymer of a desired density. Of note, moisture contents of 65% on corn stover substrate resulted in densities of 1.7 pcf, and moisture contents of 55% resulted in densities of 2.7 pcf.


In another embodiment, the mycological biopolymer may be grown through a scrim or lofted non-substrate matrix. In this embodiment, the scrim or lofted non-substrate matrix is either organic or inorganic in nature and offers sufficient porosity such that the mycelium can infiltrate the material. The scrim or lofted non-substrate matrix is positioned on or above the nutritive substrate and the entire assembly is incubated in one of the configurations above. The scrim or lofted material serves as reinforcement to the mycelium, a means of oriented and directing tissue growth, a method for consistently removing the grown tissue from the nutritive substrate, or a combination thereof.


In a fourth embodiment, the fluctuation of the percent humidity at time periods of growth throughout the duration of the cycle is employed in order to induce a higher density material of increased homogeneity. In this embodiment, the relative humidity is sustained at a high percentage during the period of aerial mycelium induction, which can begin between day 0 and 5 of growth. Once induced, the humidity is reduced to less than 98% for a period of 4 to 72 hours to induce a densification of the apical tissue. The humidity can then again be elevated to induce newly differentiated growth to provide a range of density, tissue morphology, and orientation through the cross-section of the product. This can be repeated as many times as necessary to garner desired variations in performance through the mycological foam.


In a fifth embodiment, specific air flow rates are used to achieve a range of aerial mycelium densities and mechanical performances. In this embodiment, the air flow can be set at a constant rate, such that the air flow velocity is passively modulated at the tissue grows, or the rate can be adjusted through the course of incubation to deliver a constant rate over the growing tissue. Higher airflow rates have demonstrated the production of denser tissues, while lower airflow rates result in a higher loft of tissue that is less dense when dried.

Claims
  • 1. A method of growing a biopolymer material comprising the steps of: providing a plurality of containers, each said container defining a cavity containing a growth media comprising nutritive substrate and a fungus;placing said plurality of containers in a closed incubation chamber;maintaining said closed incubation chamber with a predetermined environment of humidity, temperature, carbon dioxide content and oxygen content sufficient to produce a mycelium biopolymer consisting essentially of fungal mycelium;directing flows of air containing said carbon dioxide content through said incubation chamber;incubating the growth media in each said container; andpassing said flows of air over the growth media in each said container;wherein the incubating is for a period of time sufficient for said fungus to digest said nutritive substrate and produce the mycelium biopolymer consisting essentially of fungal mycelium in each said container.
  • 2. The method of claim 1 wherein said flows of air are directed into said closed incubation chamber laterally of said containers.
  • 3. The method of claim 2 wherein said flows of air are directed horizontally of said containers.
  • 4. The method of claim 1 wherein said plurality of containers are stacked within said incubation chamber in a plurality of vertically spaced apart rows.
  • 5. The method of claim 4 wherein said environment is maintained at 99% relative humidity, 5% carbon dioxide content, and a fluctuating temperature of from 85° F. to 90° F. during said step of incubating.
  • 6. The method of claim 5 wherein said flows of air are directed into said closed incubation chamber laterally of said containers.
  • 7. The method of claim 6 wherein said flows of air are directed horizontally of said containers.
  • 8. The method of claim 1 wherein said flows of air are pulsed during said step of incubating.
  • 9. The method of claim 1 wherein said flows of air contain a carbon dioxide content of at least 5% to 7% by volume.
  • 10. The method of claim 1, wherein the fungal mycelium comprises aerial mycelium.
  • 11. The method of claim 10, wherein said flows of air provide a directed force that modulates the structure of the aerial mycelium.
  • 12. The method of claim 1, wherein passing said flows of air over the growth media in each said container comprises passing said flows of air across the surface of the growth media in each said container.
  • 13. The method of claim 1, wherein the mycelium biopolymer consisting essentially of fungal mycelium is a panel of mycelium biopolymer consisting essentially of fungal mycelium.
  • 14. The method of claim 1, further comprising passing said flows of air over growing mycelium in each said container.
  • 15. The method of claim 1, wherein the containers are not outfitted with lids.
  • 16. The method of claim 1, further comprising distributing a mist through said incubation chamber for passage over the growth media in each said container.
  • 17. The method of claim 16, wherein the mist contains moisture and a solute.
  • 18. The method of claim 16, wherein aerial hyphae grow out of each said container during said incubation time period, and said mist is distributed at regulated amounts onto a top surface of said aerial hyphae.
Parent Case Info

This is a Non-Provisional patent Application and claims the benefit of Provisional Patent Application 62/707,704, filed Nov. 14, 2017.

US Referenced Citations (259)
Number Name Date Kind
1979176 Schicht Oct 1934 A
2509984 Morrow May 1950 A
2657647 Rapisarda Nov 1953 A
2723493 Stoller Nov 1955 A
2815621 Carter Dec 1957 A
2964070 Linhardt Dec 1960 A
3268606 Jaeger Aug 1966 A
3316592 Forrest May 1967 A
3317375 Molinet et al. May 1967 A
3421554 Carter Jan 1969 A
3477558 Fleischauer Nov 1969 A
3499261 Hullhorst et al. Mar 1970 A
3708952 Schulze et al. Jan 1973 A
3717953 Kuhn et al. Feb 1973 A
3782033 Hickerson Jan 1974 A
3810327 Giansante May 1974 A
3828470 Stoller Aug 1974 A
3961938 Iizuka et al. Jun 1976 A
4027427 Stoller et al. Jun 1977 A
4036122 Langen Jul 1977 A
4038807 Beardsley et al. Aug 1977 A
4063383 Green Dec 1977 A
4073956 Yates Feb 1978 A
4127965 Mee Dec 1978 A
4136767 Sarovich Jan 1979 A
4226330 Butler Oct 1980 A
4263744 Stoller Apr 1981 A
4265915 MacLennan et al. May 1981 A
4294929 Solomons et al. Oct 1981 A
4337594 Hanacek et al. Jul 1982 A
4370159 Holtz Jan 1983 A
4568520 Ackermann et al. Feb 1986 A
4620826 Rubio et al. Nov 1986 A
4716712 Gill Jan 1988 A
4722159 Watanabe et al. Feb 1988 A
4878312 Shimizu Nov 1989 A
4922650 Akao et al. May 1990 A
4960413 Sagar et al. Oct 1990 A
5021350 Jung et al. Jun 1991 A
5030425 Bowers-Irons et al. Jul 1991 A
5074959 Yamanaka et al. Dec 1991 A
5085998 Lebron et al. Feb 1992 A
5088860 Stockdale et al. Feb 1992 A
5123203 Hiromoto Jun 1992 A
5230430 Kidder Jul 1993 A
5306550 Nishiyama et al. Apr 1994 A
5335770 Baker et al. Aug 1994 A
5370714 Ogawa Dec 1994 A
5433061 Hutchinson et al. Jul 1995 A
5440860 Meli et al. Aug 1995 A
5475479 Hatakeyama et al. Dec 1995 A
5498384 Volk et al. Mar 1996 A
5503647 Dahlberg et al. Apr 1996 A
5511358 Morita et al. Apr 1996 A
5532217 Silver et al. Jul 1996 A
5569426 Le Blanc Oct 1996 A
5589390 Higuchi et al. Dec 1996 A
5590489 Hattori et al. Jan 1997 A
5598876 Zanini et al. Feb 1997 A
5606836 Insalaco et al. Mar 1997 A
5647180 Billings et al. Jul 1997 A
5681738 Beelman et al. Oct 1997 A
5682929 Maginot et al. Nov 1997 A
5685124 Jandl Nov 1997 A
5711353 Ichikawa et al. Jan 1998 A
5802763 Milstein Sep 1998 A
5854056 Dschida Dec 1998 A
5888803 Starkey Mar 1999 A
5897887 Haeberli Apr 1999 A
5919507 Beelman et al. Jun 1999 A
5944928 Seidner Aug 1999 A
5948674 Mankiewicz Sep 1999 A
5979109 Sartor et al. Nov 1999 A
6041544 Kananen et al. Mar 2000 A
6041835 Price Mar 2000 A
6098677 Wegman et al. Aug 2000 A
6112504 McGregor et al. Sep 2000 A
6197573 Suryanarayan et al. Mar 2001 B1
6226962 Eason et al. May 2001 B1
6300315 Liu Oct 2001 B1
6306921 Ghatta et al. Oct 2001 B1
6329185 Kofod et al. Dec 2001 B1
6349988 Foster et al. Feb 2002 B1
6402953 Gorovoj et al. Jun 2002 B1
6425714 Waddell Jul 2002 B1
6471993 Shastri et al. Oct 2002 B1
6475811 Babcock Nov 2002 B1
6482942 Vittori Nov 2002 B1
6491480 Waddell Dec 2002 B2
6500476 Martin et al. Dec 2002 B1
6523721 Nomoto et al. Feb 2003 B1
6603054 Chen et al. Aug 2003 B2
6620614 Lüth et al. Sep 2003 B1
6660164 Stover Dec 2003 B1
6679301 Makino et al. Jan 2004 B2
6726911 Jülich et al. Apr 2004 B1
7043874 Wasser et al. May 2006 B2
7073306 Hagaman Jul 2006 B1
7122176 Stamets Oct 2006 B2
7179356 Aksay et al. Feb 2007 B2
7395643 Franchini et al. Jul 2008 B2
7514248 Gower et al. Apr 2009 B2
7573031 Behar et al. Aug 2009 B2
7621300 Bonney et al. Nov 2009 B2
7661248 Conti et al. Feb 2010 B2
7754653 Hintz Jul 2010 B2
7836921 Isomura et al. Nov 2010 B2
8001719 Bayer et al. Aug 2011 B2
8205646 Isomura et al. Jun 2012 B2
8227224 Kalisz et al. Jul 2012 B2
8227233 Kalisz et al. Jul 2012 B2
8241415 Wantling et al. Aug 2012 B2
8298810 Rocco et al. Oct 2012 B2
8313939 Kalisz et al. Nov 2012 B2
8517064 Isomura et al. Aug 2013 B2
8658407 Lyons et al. Feb 2014 B2
8763653 Weigel et al. Jul 2014 B2
8999687 Bayer et al. Apr 2015 B2
9079978 Räsänen et al. Jul 2015 B2
9085763 Winiski et al. Jul 2015 B2
9253889 Bayer et al. Feb 2016 B2
9332779 Marga May 2016 B2
9394512 Bayer et al. Jul 2016 B2
9469838 Schaak et al. Oct 2016 B2
9485917 Bayer et al. Nov 2016 B2
9555395 Araldi et al. Jan 2017 B2
9714180 McIntyre et al. Jul 2017 B2
9752122 Marga et al. Sep 2017 B2
9795088 Bayer et al. Oct 2017 B2
9801345 Bayer et al. Oct 2017 B2
9803171 Bayer et al. Oct 2017 B2
9879219 McIntyre et al. Jan 2018 B2
9914906 Winiski et al. Mar 2018 B2
10125347 Winiski Nov 2018 B2
10144149 Araldi et al. Dec 2018 B2
10154627 McIntyre et al. Dec 2018 B2
10172301 McNamara et al. Jan 2019 B2
10266695 Lucht et al. Apr 2019 B2
10407675 Bayer et al. Sep 2019 B2
10525662 Bayer et al. Jan 2020 B2
10537070 Betts et al. Jan 2020 B2
10583626 Bayer et al. Mar 2020 B2
10589489 Bayer et al. Mar 2020 B2
10687482 Ross et al. Jun 2020 B2
10785925 McNamara et al. Sep 2020 B2
20010012235 Schuchardt Aug 2001 A1
20020110427 Waddell Aug 2002 A1
20020131828 Waddell Sep 2002 A1
20020131933 Delmotte Sep 2002 A1
20030017565 Echigo et al. Jan 2003 A1
20030056451 Pisek et al. Mar 2003 A1
20030121201 Dahlberg et al. Jul 2003 A1
20030232895 Omidian et al. Dec 2003 A1
20040000090 Miller Jan 2004 A1
20040020553 Amano Feb 2004 A1
20040166576 Sadaie Aug 2004 A1
20040177585 Vermette Sep 2004 A1
20050133536 Kelsey et al. Jun 2005 A1
20050137272 Gaserod et al. Jun 2005 A1
20060134265 Beukes Jun 2006 A1
20060280753 McNeary Dec 2006 A1
20070079944 Amidon et al. Apr 2007 A1
20070196509 Riman et al. Aug 2007 A1
20070225328 Fritz et al. Sep 2007 A1
20070227063 Dale et al. Oct 2007 A1
20070294939 Spear et al. Dec 2007 A1
20080017272 Isomura et al. Jan 2008 A1
20080046277 Stamets Feb 2008 A1
20080047966 Carson Feb 2008 A1
20080145577 Bayer et al. Jun 2008 A1
20080234210 Rijn et al. Sep 2008 A1
20080295399 Kawai et al. Dec 2008 A1
20080296295 Kords et al. Dec 2008 A1
20090107040 Vandnhove Apr 2009 A1
20090191289 Lutz et al. Jul 2009 A1
20090241623 Matano et al. Oct 2009 A1
20090246467 Delantar Oct 2009 A1
20090272758 Karwacki et al. Nov 2009 A1
20090307969 Bayer et al. Dec 2009 A1
20090321975 Schlummer Dec 2009 A1
20100101190 Dillon Apr 2010 A1
20100158976 O'Brien et al. Jun 2010 A1
20100159509 Xu et al. Jun 2010 A1
20100199601 Boldrini et al. Aug 2010 A1
20100227931 Kuwano et al. Sep 2010 A1
20100243135 Pepper et al. Sep 2010 A1
20100326564 Isomura et al. Dec 2010 A1
20110094154 Joaquin Apr 2011 A1
20110108158 Huwiler et al. May 2011 A1
20110265688 Kalisz et al. Nov 2011 A1
20110268980 Kalisz et al. Nov 2011 A1
20110269209 Rocco et al. Nov 2011 A1
20110269214 Kalisz et al. Nov 2011 A1
20110306107 Kalisz et al. Dec 2011 A1
20120000165 Williams Jan 2012 A1
20120006446 Isomura et al. Jan 2012 A1
20120060446 Merz Mar 2012 A1
20120076895 Kirejevas et al. Mar 2012 A1
20120115199 Li et al. May 2012 A1
20120132314 Weigel et al. May 2012 A1
20120135504 Ross May 2012 A1
20120225471 McIntyre et al. Sep 2012 A1
20120227899 McIntyre et al. Sep 2012 A1
20120231140 Hofmann et al. Sep 2012 A1
20120270031 Guan et al. Oct 2012 A1
20120270302 Bayer et al. Oct 2012 A1
20120315687 Bayer et al. Dec 2012 A1
20130095560 McIntyre et al. Apr 2013 A1
20130105036 Smith et al. May 2013 A1
20130210327 Corominas Aug 2013 A1
20130224840 Bayer et al. Aug 2013 A1
20130274892 Lelkes et al. Oct 2013 A1
20130309755 McIntyre et al. Nov 2013 A1
20140038619 Moulsley Feb 2014 A1
20140056653 Scully et al. Feb 2014 A1
20140069004 Bayer et al. Mar 2014 A1
20140093618 Forgacs et al. Apr 2014 A1
20140173977 Juscius Jun 2014 A1
20140186927 Winiski et al. Jul 2014 A1
20140371352 Dantin et al. Dec 2014 A1
20150033620 Greetham Feb 2015 A1
20150038619 McIntyre et al. Feb 2015 A1
20150101509 McIntyre et al. Apr 2015 A1
20150197358 Larsen Jul 2015 A1
20150342138 Bayer et al. Dec 2015 A1
20150342224 Medoff Dec 2015 A1
20160002589 Winiski Jan 2016 A1
20160264926 Winiski et al. Sep 2016 A1
20160355779 Ross Dec 2016 A1
20170000040 Bayer et al. Jan 2017 A1
20170028600 McIntyre et al. Feb 2017 A1
20170071214 Rehage Mar 2017 A1
20170218327 Amstislavski et al. Aug 2017 A1
20170253849 Miller et al. Sep 2017 A1
20170253852 Bayer et al. Sep 2017 A1
20180014468 Ross et al. Jan 2018 A1
20180148682 Ross et al. May 2018 A1
20180282529 Kaplan-Bie Oct 2018 A1
20180368337 McIntyre et al. Dec 2018 A1
20190059431 Kozubal et al. Feb 2019 A1
20190090436 Betts et al. Mar 2019 A1
20190284307 Chase et al. Sep 2019 A1
20190322997 Schaak Oct 2019 A1
20190330668 Kozubal et al. Oct 2019 A1
20190338240 Carlton et al. Nov 2019 A1
20190357454 Mueller et al. Nov 2019 A1
20190359931 Mueller et al. Nov 2019 A1
20190390156 Bayer et al. Dec 2019 A1
20200024577 Carlton et al. Jan 2020 A1
20200025672 Scullin et al. Jan 2020 A1
20200055274 Bayer et al. Feb 2020 A1
20200095535 Kozubal et al. Mar 2020 A1
20200102530 Winiski et al. Apr 2020 A1
20200157506 Bayer et al. May 2020 A1
20200208097 Winiski Jul 2020 A1
20200239830 O'Brien et al. Jul 2020 A1
20200268031 Macur et al. Aug 2020 A1
20200270559 Macur et al. Aug 2020 A1
20200392341 Smith et al. Dec 2020 A1
Foreign Referenced Citations (61)
Number Date Country
1059662 Mar 1992 CN
1732887 Feb 2006 CN
101248869 Aug 2008 CN
101653081 Feb 2010 CN
106947702 Jul 2017 CN
0226292 Jun 1987 EP
1312547 May 2003 EP
2677030 Dec 2013 EP
2735318 May 2014 EP
2875805 May 2015 EP
2878340 Jun 2015 EP
2485779 Feb 2018 EP
3292769 Mar 2018 EP
142800 Jan 1921 GB
1525484 Sep 1978 GB
2032456 May 1980 GB
2165865 Apr 1986 GB
358266 Jul 2020 IN
H03234889 Oct 1991 JP
H049316 Jan 1992 JP
6111510 Apr 2017 JP
20050001175 Jan 2005 KR
101851655 Apr 2018 KR
WO 1999024555 May 1999 WO
WO 2001087045 Nov 2001 WO
WO 2005067977 Jul 2005 WO
WO 2008025122 Mar 2008 WO
WO 2008073489 Jun 2008 WO
WO 2010005476 Jan 2010 WO
WO 2012122092 Sep 2012 WO
WO 2014031810 Feb 2014 WO
WO 2014039938 Mar 2014 WO
WO 2014195641 Dec 2014 WO
WO 2016149002 Sep 2016 WO
WO 2016168563 Oct 2016 WO
WO 2017056059 Apr 2017 WO
WO 2017120342 Jul 2017 WO
WO 2017136950 Aug 2017 WO
WO 2017151684 Sep 2017 WO
WO 2017205750 Nov 2017 WO
WO 2018011805 Jan 2018 WO
WO 2018014004 Jan 2018 WO
WO 2018064968 Apr 2018 WO
WO 2018183735 Oct 2018 WO
WO 2018189738 Oct 2018 WO
WO 2019046480 Mar 2019 WO
WO 2019099474 May 2019 WO
WO 2019178406 Sep 2019 WO
WO 2019217175 Nov 2019 WO
WO 2019226823 Nov 2019 WO
WO 2019246636 Dec 2019 WO
WO 2020023450 Jan 2020 WO
WO 2020072140 Apr 2020 WO
WO 2020082043 Apr 2020 WO
WO 2020082044 Apr 2020 WO
WO 2020102552 May 2020 WO
WO 2020106743 May 2020 WO
WO 2020176758 Sep 2020 WO
WO 2020186068 Sep 2020 WO
WO 2020186169 Sep 2020 WO
WO 2020237201 Nov 2020 WO
Non-Patent Literature Citations (173)
Entry
PhpBB SHOPSMITH Forums, “Cracks in wide paneling boards”, Excerpt from Oct. 28, 2017, downloaded from URL <https://www.shopsmith.com/ss_forum/viewtopic.php?p=214601>; 2 pages.
Griffin et al., “Regulation of macromolecular synthesis, colony development and specific growth rate of Achlya bisexualis during balanced growth”. J General Microbiol. (1974) 80(2): 381-388.
Haneef et al., “Advanced Materials from Fungal Mycelium: Fabrication and Tuning of Physical Properties”, Scientific Reports 7(1): 1-11; DOI: 10.1038/srep41292, Jan. 24, 2017.
Heisig et al., USGS, “Ground-Water Resources of the Clifton Park Area, Saratoga County, New York”, 2002, retrieved from the internet (Oct. 15, 2016): http://ny.water.usgs.gov/pubs/wri/wri014104/wrir01-4104.pdf.
Instructables, How to Grow Oyster Mushroom Spawn (Low Tech), retrieved from the internet Aug. 19, 2018: http://www.instructables.com/id/1-How-to-Grow-Oyster-Mushroom-Spawn-Low-Tech/.
Zadrazil et al., “Influence of CO2 Concentration on the Mycelium Growth of Three Pleurotus Species”, European J. Appl. Microbiol., vol. 1, pp. 327-335 (1975).
International Search Report for PCT/US2018/060983, dated Jan. 24, 2019.
Appels et al., “Hydrophobin gene deletion and environmental growth conditions impact mechanical properties of mycelium by affecting the density of the material”, Scientific Reports 8:4703 DOI:10.1038/s41598-018-23171-2, Mar. 16, 2018.
Jones et al., “Leather-like material biofabrication using fungi”, Nature Sustainability (2020) https://doi.org/10.1038/s41893-020-00606-1, Sep. 7, 2020.
Howden et al., “The effects of breathing 5% CO2 on human cardiovascular responses and tolerance to orthostatic stress”, Experimental Physiology, vol. 89, Issue 4, pp. 465-471, Jun. 23, 2004.
Bartnicki-Garcia, “Cell wall chemistry, morphogenesis, and taxonomy of fungi”, Annual Review Microbiol. (1968) 22(1): 87-108.
Cha et al., “Biomimetic synthesis of ordered silica structures mediated by block copolypeptides”. Nature (2000) 403(6767): 289-292.
Dugdale J. “This new surf company is making boards of mushrooms”. Blog post—Jun. 25, 2015.
Halseide P., “Cutting brick the safe way”. The Aberdeen Group (1988) Publication #M880354 in 2 pages.
Highland Woodworking, “Making Thin Lumber and Veneer Out of Ordinary Boards”, Sales Website (2017) in 3 pages.
Holt et al., “Biobased Composition Boards Made from Cotton Gin and Guayule Wastes: Select Physical and Mechanical Properties”, Int J Mater Prod Tech. (2009) 36: 104-114.
Islam et al., “Morphology and mechanics of fungal mycelium”, Scientific Reports, (2017) 7(1): 1-12.
Kerem et al., “Chemically defined solid-state fermentation of Pleurotus Ostreatus”. Enzyme Microbiol Tech. (1993) 15(9): 785-790.
Kokubo et al., “Ca,P-rich layer formed on high-strength bioactive glass-ceramic A-W”. J Biomed Mater Res. (1990) 24(3): 331-343.
Koutsoukos et al., “Precipitation of calcium carbonate in aqueous solutions”. J Chem Soc., Faraday Trans. 1, Physical Chemistry in Condensed Phases, (1984) 80(5): 1181-1192.
Lu et al., “Theoretical Analysis of Calcium Phosphate precipitation in simulated Body Fluid”. Biomaterials (2005) 26(10): 1097-1108—Pre-Pub. Version by Hong Kong University of Science and Technology, Department of Mechanical Engineering, Kowloon; 34 pages.
Molvinger et al., “Porous chitosan-silica hybrid microspheres as a potential catalyst”. Chem Mater. (2004) 16(17): 3367-3372.
Monmaturapoj et al., “Influence of preparation method on hydroxyapatite porous scaffolds”. Bull Mater Sci. (2011) 34(7): 1733-1737.
Manoli et al., “Crystallization of calcite on chitin”. J Cryst Growth, (1997) 182(1-2): 116-124.
Mushroom Source, “Aspen Wood Shavings for Mushroom Cultivation”, Website (2015) in 2 pages.
National Institute of Health (NIH/NIBIB), “Tissue Engineering and Regenerative Medicine”, Retrieved Sep. 24, 2018 from https://www.nibib.nih.gov/science-education/science-topics/tissue-engineering-and-regenerative-medicine in 13 pages.
Passauer U et al., “Pilze in Höhlen” [Cave Mushrooms]. Denisia (2016) 37: 211-224.
Stewart B., “Concrete Fence Posts: Fact Sheet”, Texas Agriculture Extension Service, Texas A & M University (1975) Article L-1368 in 4 pages.
Trinci et al., “II. Unrestricted Growth of Fungal Mycelia”, The Mycota—Growth, Differenciation and Sexuality by Wessels et al. [Eds], Springer, Berlin, Heidelberg, (1994) Chapter II: 175-193.
Udawatte et al., “Solidification of xonotlite fibers with chitosan by hydrothermal hot pressing”. J Mater Sci. Lttrs. (2000) 45(6): 298-301.
University of Sydney, “Competition Between Fungi”. Webpage, accessed Jul. 16, 2014—http://bugs.bio.usyd.edu.au/learning/resources/Mycology/Ecology/competition.shtml in 3 pages.
Varma et al., “Porous calcium phosphate coating over phosphorylated chitosan film by a biomimetic method”. Biomaterials (1999) 20(9): 879-884.
Wagner A. “Mycelium Biking—Eco-Design at its Best”, Master's Thesis at Lulea University of Technology (2016) in 92 pages.
Woller R. “The Pearl Oyster Mushroom”, University of Wisconsin Website (2011) in 2 pages.
Wan-Mohtar et al., “The morphology of Ganoderma lucidum mycelium in a repeated-batch fermentation for exopolysaccharide production”, Biotechnology Reports (2016) 11:2-11.
Weaver et al., “The stomatopod dactyl club: a formidable damage-tolerant biological hammer”. Science (2012) 336(6086): 1275-1280.
Yamasaki et al., “A hydrothermal hot-pressing method: Apparatus and Application”. J Mater Sci Lttrs. (1986) 5(3): 355-356.
Zivanovic et al., “Changes in Mushroom Texture and Cell Wall Composition Affected by Thermal Processing”. J Food Service (2004) 69: 44-49.
Agnese et al., “Investigating the Influence of Various Plasticizers on the Properties of Isolated Films of Polyvinyl Acetat”. The 37th Annual meeting and Exposition of the Controlled Release Society, Jul. 2010, Portland, OR U.S.A.
Amsellem et al., “Long-term preservation of viable mycelia of two mycoherbicidal organisms”. Crop Protection (1999) 18: 643-649.
Angelini et al., “Effect of antimicrobial activity of Melaleuca alternifolia essential oil on antagonistic potential of Pleurotus species against Trichoderma harzianum in dual culture.” World J Microbiol Biotech. (2008) 24(2): 197-202.
Antón et al., “PimM, a PAS Domain Positive Regulator of Pimaricin Biosynthesis in Streptomyces natalensis.” Microbiol. (2007) 153: 3174-3183.
Arshad et al., “Tissue engineering approaches to develop cultured meat from cells: a mini review.” Cogent Food & Agriculture (2017) 3(1): 1320814 in 11 pages.
Ashiuchi et al., “Isolation of Bacillus subtilis (chungkookjang), a poly-gamma-glutamate producer with high genetic competence”. Appl Microbiol Biotechnol. (2011) 57: 764-769.
Bajaj et al., “Poly (glutamic acid)—An emerging biopolymer of commercial interest”. Bioresource Tech. (2011) 102(10): 5551-5561.
Baysal et al., “Cultivation of oyster mushroom on waste paper with some added supplementary materials”. Biosource Technology (2003) 89: 95-97.
Begum et al., “Bioconversion and saccharification of some lignocellulosic wastes by Aspergillus oryzae ITCC-4857.01 for fermentable sugar production”. Elect J Biotech. (2011) (14)5: 3 in 8 pages.
Belardinelli et al., “Actions of Adenosine and Isoproterenol on Isolated Mammalian Ventricular Myocytes.” Circulation Res. (1983) 53(3): 287-297.
Belay et al., “Preparation and Characterization of Graphene-agar and Graphene Oxide-agar Composites.” JOAPS (2017) 134(33): 45085.
Binder et al., “Phylogenetic and phylogenomic overview of the Polyporales”. Mycologia (Nov.-Dec. 2013) 105(6): 1350-1373.
Blanchette et al., “Fungal mycelial mats used as textile by indigenous people of North America”, Mycologia (Feb. 20, 2021) pp. 1-7.
Booth et al., “Potential of a dried mycelium formulation of an indigenous strain of Metarhizium anisopliae against subterranean pests of cranberry.” Biocontrol Science and Technology (2000) 10: 659-668.
Bormann et al., “Characterization of a Novel, Antifungal, Chitin-binding Protein from Streptomyces tendae Tü901 that Interferes with Growth Polarity.” J Bacter. (1999) 181(24): 7421-7429.
Bowman et al., “The structure and synthesis of the fungal cell wall”. Bioassays (2006) 28(8): 799-808.
Bru{hacek over (z)}auskaite et al., “Scaffolds and Cells for Tissue Regernation: Different Scaffold Pore Sizes—Different Cell Effects.” Cytotechnology (2016) 68(3): 355-369.
Cerimi et al., “Fungi as source for new bio-based materials: a patent review”, Fungal Biol Biotechnol. (2019) 6: 17; 10 pgs.
Chai et al., “β-Glucan Synthase Gene Overexpression and β-Glucans Overproduction in Pleurotus ostreatus Using Promoter Swapping”. PLoS ONE (2013) 8(4): e61693 in 7 pages.
Chaudhary et al., “Understanding rice hull ash as fillers in polymers: a review”. Silicon Chemistry (2002) 1:281-289.
Chi et al., “Can Co-culturing of Two White-rot Fungi Increase Lignin Degradation and the Production of Lignin-degrading Enzymes?” Inter'l Biodeter Biodegrad. (2007) 59(1): 32-39.
Collins English Dictionary, “Mould”, retrieved from http://collinsdictionary.com/dictionary/english/mould, archived on Apr. 8, 2015, 3 pages.
Dias et al., “Synthesis and characterization of chitosan-polyvinyl alcohol-bioactive glass hybrid membranes”. Biomatter (2011) 1(1): 114-119.
Elleuche et al., “Carbonic anhydrases in fungi”. Microbiology (2010) 156: 23-29.
Elsacker et al., “Growing living and multifunctional mycelium composites for large-scale formwork applications using robotic abrasive wire-cutting”, Construction Bldg Mater. (2021) 283: 122732 in 16 pages.
Fleet G.H., “Cell walls”. in The Yeasts, by Rose et al. [Eds.] 2nd Edition. vol. 4. London: Academic Press. (1991) pp. 199-277.
Frandsen R.J.N., “A guide to binary vectors and strategies for targeted genome modification in fungi using Agrobacterium tumefaciens-mediated transformation”. J Microbiol Methods (2011) 87: 247-262.
Gardening KnowHow, Perlite Soil Info: Learn About Perlite Potting Soil, online at www.gardeningknowhow.com/garden-how-to/soil-fertilizers/perlite-potting-soil.htm downloaded on Dec. 16, 2015., 3 pages.
Glowacki et al., “Bioconjugation of Hydrogen-bonded Organic Semiconductors with Functional Proteins.” J Mate Chem. C (2015) 3(25): 6554-6564.
Goodell et al., “Fungal Decay of Wood: Soft Rot-Brown Rot-white Rot”. In Development of Commercial Wood Preservatives; Schultz et al. [Ed.] ACS Symposium Series; American Chemical Society, Washington, D.C. (2008), Chapter 2, pp. 9-31.
Google Report, Complete colonization substrate mushroom (2 pages) Jan. 30, 2018., 2 pages.
Google Dictionary Definition “Composite”, downloaded on Nov. 21, 2018; 1 page.
Gourmet Mushroom, Inc., “What is Mushroom?” —Mushroom Facts Mushroom Information—Educational & Science Projects (2004). Downloaded from www.gmushrooms.com, on Nov. 27, 2017; 5 pages.
Greetham et al., “Pheotypic characterisation of Saccharomyces sensu stricto to Inhibitory Compounds Released During the Deconstruction of Lignocellulosic Material.” 3th International Congress on Yeasts, ICY 2012, Aug. 26-30, Madison, USA; 1 page.
Growers Supply. “Horticultural Coarse Perlite—4 Cubic Fee—Growers Supply”. URL: https://growerssupply.com; Growers Supply 2012; www.growerssupply.com/farm/supplies/prod1 :gs_growing_mediums:pg111049.html; downloaded Dec. 14, 2020 in 3 pages.
Heinzkill et al., “Characterization of laccases and peroxidases from wood-rotting fungi (family Coprinaceae).” Appl Environ Microbiol. (1998) 64: 1601-1606.
Home Depot “Miracle Gro® Perlite Mix”, retrieved from the internet: http://homedepot.com/p/Miracle-Gro-8-pt-Perlite-Mix-74278430/204502291; 2 pages.
Home Depot “Pennington—Fast Acting Gypsum”, retrieved from the internet: http://homedepot.com/p/Miracle-Gro-8-pt-Perlite-Mix-74278430/204502291; 2 pages.
Horton et al., “Regulation of Dikaryon-Expressed Genes by FRT1 in the Basidiomycete Schizophyllum commune”. Fungal Genet Biol. (1999) 26(1): 33-47.
Hüttner et al., “Recent advances in the intellectual property landscape of filamentous fungi”, Fungal Biol Biotechnol. (2020) 7:16; 17 pgs.
Hyde et al., “The amazing potential of fungi: 50 ways we can exploit fungi industrially”. Fungal Diversity (2019) 97(1): 1-136.
Kamzolkina et al., “Micromorphological features of Pleurotus pulmonarius (Fr.) Quel, and P. ostreaturs (Jacq.) P. Kumm. Strains in pure and binary culture with yeasts”. Tsitologiia (2006) 48(2): 153-160.
Kemppainen et al., “Transformation of the Mycorrhizal Fungus Laccaria Bicolor using Agrobacterium tumefaciens.” Bioengin Bugs (2011) 2(1): 38-44.
Kerem et al., “Effect of Mananese on Lignin Degradation by Pleurotus ostreatus during Solid-State Fermentation”. Applied and Environmental Microbiology (1993) 59(12): 4115-4120.
Kilaru et al., “Investigating dominant selection markers for Coprinopsis cinerea: a carboxin resistance system and re-evaluation of hygromycin and phleomycin resistance vectors”. Curr Genet. (2009) 55: 543-550.
Kim et al., “Current Technologies and Related Issues for Mushroom Transformation.” Mycobiology (2015) 43(1): 1-8.
Kotlarewski et al., “Mechanical Properties of Papua New Guinea Balsa Wood.” European J Wood Wood Products (2016) 74(1): 83-89.
Kück et al., “New tools for the genetic manipulation of filamentous fungi”. Appl Microbiol Biotechnol. (2010) 86: 51-62.
Kües, U., “Life History and Development Processes in the Basidiomycete Coprinus Cinereus.” Micro Molecular Biol Rev. (2000) 64(2): 316-353.
Kuhar et al., by Ingredi Potassium Sorbate vs Campden Tablets in Wine Making; Jun. 4, 2018. [online]; Retrieved from the Internet <URL: https://ingredi.com/blog/potassium-sorbate-vs-campden-tables-in-wine-making/>; 2 pages.
Kuo, 2005-2006. Glossary of Mycological Terms. Mushroom Expert. Com., pp. 1-13; downloaded from http://www.mushroomexpert.com/glossary.html (May 8, 2015).
Li et al., “Preparation and Characterization of Homogeneous Hydroxyapatite/Chitosan Composite Scaffolds via In-Situ Hydration”. J Biomaterials Nanobiotech. (2010) 1: 42-49.
Luo et al., “Coprinus comatus: a basidiomycete fungus forms novel spiny structures and infects nematode.” Mycologia (2004) 96(6): 1218-1225.
McPherson et al., “Dissolvable Antibiotic Beads in Treatment of Periprosthetic Joint Infection and Revision Arthroplasty: The Use of Synthetic Pure Calcium Sulfate (Stimulan®) Impregnated with Vancomycin & Tobramycin.” Reconstructive Review (2013) 3(1) 12 pages.
Merriam-Webster, “Chamber” dictionary definition; https://www.merriam-webster.com/dictionary accessed Jul. 10, 2017; in 4 Pages.
Merriam-Webster, “pack” Thesaurus definition; https://www.merriam-webster.com/thesaurus; synonyms accessed Aug. 19, 2019; in 10 Pages.
Michielse et al., “Agrobacterium-mediated Transformation of the Filamentous Fungus Aspergillus Awamori.” Nature Protocols (2008) 3(10): 1671-1678.
Mitchell et al., [Eds.] “Solid-State Fermentation Bioreactors.” Springer Verlag, Berlin/Heidelberg (2006); TOC in 12 Pages.
Moore D., “Fungal Morphogenesis.” Cambridge University Press, Cambridge, UK; (1998) TOC in 8 Pages.
Moore D., “Tolerance of Imprecision in Fungal Morphogenesis.” In Proceedings of the 4th Meeting on the Genetics and Cellular Biology of Basidiomycetes (Mar. 1998) pp. 13-19.
Mushroom Growers' Handbook 1, “Oyster Mushroom Cultivation”. Part II, Chapter 5, (2005) pp. 75-85.
Mushroom Growers' Handbook 2, “Shiitake Bag Cultivation”, Part I Shiitake. Published by Mush World (2005) Chapter 4, pp. 73-90 and pp. 105-109.
Naknean et al., “Factors Affecting Retention and Release of Flavor Compounds in Food Carbohydrates.” Inter'l Food Res J. (2010) 17(1): 23-34.
Newaz et al., “Characterization of Balsa Wood Mechanical Properties Required for Continuum Damage Mechanics Analysis.” Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications (2016) 230(1): 206-218.
Norvell L., Fungi Biology. Encyclopedia.(2002); 2 pages.
Novoselova et al., “Cocultivation of Pleurotus ostreatus (Jacq.) P. Kumm, with yeasts”. Moscow University Biol Sciences Bulletin (2011) 66(3): 102-105.
Nussinovitch “Polymer Macro-and Micro-Gel Beads: Fundamentals and Applications”, DOI 10.1007/978-1-4419-6618_2, Springer Science & Business Media LLC (2010) TOC in 8 Pages.
Paz et al., “One Step Contruction of Agrobacterium-Recombination-ready-plasmids (OSCAR): An Efficient and Robust Tool for ATMT Based Gene Deletion Construction in Fungi.” Fungal Gen Biol. (2011) 48(7): 677-684.
Peksen et al., “Favourable Culture Conditions for mycelial growth of Hydnum repandum, a medicinal mushroom.” African Journal of Traditional, Complementary and Alternative Medicines (2013) 10(6): 431-434.
Peng et al., “Microbial biodegradation of polyaromatic hydrocarbons”. FEMS Microbiol Rev. (2008) 32:927-955.
Perez et al., “Myxococcus xanthus induces actinorhodin overproduction and aerial mycelium formation by Streptomyces coelicolor.” Microbial Biotech. (2011) 4(2): 175-183.
Philippoussis et al., “Production of Mushrooms Using Agro-Industrial Residues as Substrates”, in Biotechnology for Agro-Industrial Residues, Chapter 9, (2009) pp. 163-187.
Poppe J., Mushroom Growers' Handbook 1, 2004, Part II. Chapter 5, “Substrate”, pp. 80-81.
Pompei et al., “The Use of Olive Milling Waste-Water for the Culture of Mushrooms on Perlite”. Acta Horticulturae (1994) 361:179-185.
Rai et al., “Production of Edible Fungi”, in Fungal Biotechnology in Agricultural, Food, and Environmental Applications, D.K. Arora [Ed.], Marcel Dekker, Inc., (2003), Chapter 21, pp. 383-404.
Ross, P., “Pure Culture” 1997-Present; URL: <http://billhoss.phpwebhosting.com/ross/index.php?kind>; downloaded Dec. 14, 2016 in 11 pages.
Royse et al., “Influence of substrate wood-chip particle size on shiitake (Lentinula edodes) yield”. Bioresource Tehnology (2001) 76(3): 229-233.
Sapak et al., “Effect of endophytic bacteria on growth and suppression of Tganoderma infection in oil palm”. Int J Agric Biol. (2008) 10(2): 127-132.
Schaner et al., “Decellularized Vein as a Potential Scaffold for Vascular Tissue Engineering.” J Vascular Surg. (2004) 40(1): 146-153.
Schirp et al., “Production and characterization of natural fiber-reinforced thermoplastic composites using wheat straw modified with the fungus Pleurotus ostreatus”. J Appl. Polym Sci. (2006) 102:5191-5201.
Scholtmeijer et al., “Effect of introns and AT-rich sequences on expression of the bacterial hygromycin B resistance gene in the basidiomycete Schizophyllum commune”. Appl Environ Microbiol. (2001) 67(1): 481-483.
Schuurman J., “Unique agar Pearls.” YouTube video; Feb. 16, 2012, <https://www.youtube.com/watch?v=8GqTTOHETPQ>; 1 page.
Science Daily, May 7, 2007, retrieved from the Internet; http://www.sciencedaily.com/releases/2007/05/070506085628.htm., 3 pages.
Seamon K.B., “Forskolin: Unique Diterpene Activator of Adenylate Cyclase in Membranes and in Intact Cells.” PNAS (1981) 78(6): 3363-3367.
Sinotech et al., (2015): retrieved from the Internet http://www.sinotech.com/compressionAndTransferMolding.html., 4 pages.
Slater, M. “Young SoRo Entrepreneur Develops Environmentally Friendly Insulation.” The Herald of Randolph. Jun. 21, 2007, pp. 1-2.
Staib et al., “Differential expression of the NRG1 repressor controls species-specific regulation of chlamydospore development in Candida albicans and Candida dubliniensis.” Molecular Microbiol. (2005) 55(2): 637-652.
Stamets P., “Mycelium Running”. Ten Speed Press (2005); pp. 18, 56, 58, 59, 85, 149, 157, 160 and 291 only.
Stanev et al., “Open Cell Metallic Porous Materials Obtained Through Space Holders. Part I: Production Methods, A Review”. JMSE (2016) 139(5): 21 pages.
Stephens et al., “Bringing Cultured Meat to Market: Technical, Socio-political, and Regulatory Challenges in Cellular Agriculture.” Trends in Food Science & Technology (2018) 78:155-166.
Sundari et al., “Freeze-drying vegetative mycelium of Laccaria fraterna and its subsequent regeneration”. Biotechnology Techniques (1999) 13: 491-495.
Tartar et al., “Differential expression of chitin synthase (CHS) and glucan synthase (FKS) genes correlates with the formation of a modified, thinner cell wall in in vivo-produced Beauveria bassiana cells.” Mycopathologia (2005) 160(4): 303-314.
Téllez-Jurado et al., “Expression of a heterologous laccase by Aspergillus niger cultured by solid-state and submerged fermentations.” Enzyme Microbial Tech. (2006) 38(5): 665-669.
Téllez-Téllez et al., “Growth and laccase production by Pleurotus ostreatus in submerged and solid-state fermentation.” Appl Microbiol Biotechnol. (2008) 81(4): 675-679.
Thomas et al., “Growing Orchids in Perlite”. In Perlite Plant Guide, The Schundler Company 1951, pp. 1-6, downloaded from http://www.schundler.com/index.html, archived on May 11, 2015.
Timberpress—“How Do Mushrooms Grow So Quickly.”, downloaded from the internet: www.timberpress.com/blog/2017/01/how-do-mushrooms-grow-so-quickly, download Feb. 27, 2018 in 7 Pages.
Ugalde U., “Autoregulatory Signals in Mycelial Fungi” in The Mycota: A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research. K. Esser [Ed.] Springer Publisher, 2nd Edition (2006) Chapter 11; pp. 203-213.
Universal Oil Field, “Sawdust”, downloaded from universaloilfield.org on Aug. 23, 2018, 4 pages.
Vara et al., “Cloning and expression of a puromycin N-acetyl transferase gene from Streptomyces alboniger in Streptomyces lividans and Escherichia coli”. Gene (1985) 33(22): 197-206.
Visser et al., “Pseudoxylaria as stowaway of the fungus-growing termite nest: Interaction asymmetry between Pseudoxylaria, Termitomyces and free-living relatives”. Fungal Ecology (2011) 4(5): 322-332.
Volk (2003) “Tom Volk's Fungus of the Month for Oct. 1998”. This month's fungus is Pleurotus ostreatus; the Oyster mushroom, pp. 1-4, downloaded from http://botit.botany.wise.edu/toms_fungi/oct98.html on May 8, 2015.
Wang et al., “Influence of fungal elicitors on biosynthesis of natamycin by Streptomyces natalensis HW-2”. Appl Microbiol Biothechnol. (2003) 97: 5527-5534.
Wikipedia, “Water gel (plain)”, Wikipedia Contributors downloaded Aug. 21, 2017 in 1 Page.
Wikipedia, “Wood”, downloaded on Nov. 26, 2018, 1 page.
Xiao et al., “A Water-soluble Core Material for Manufacturing Hollow Composite Sections.” Comp. Structures (2017) 182: 380-390.
Yang et al., “Medicinal Mushroom Ganoderma lucidum as a Potent Elicitor in Production of t-Resveratrol and t-Peceatannol in Peanut Calluses”. J Agric Food Chem. (2010) 58(17): 9518-9522.
Zimin et al., “The MaSuRCA genome assembler”. Bioinformatics (2013) 29(21): 2669-2677.
Grant, James. J.—“An investigation of the airflow in mushroom growing structures, the development of an improved, three-dimensional solution technique for fluid flow and its evaluation for the modelling of mushroom growing structures”, Doctoral Thesis Sep. 2002; 326 pages.
Antinori et al., “Advanced mycelium materials as potential self-growing biomedical scaffolds.” Scientific reports (2021) 11(1): 1-14.
Hidayat et al., “Characterization of polylactic acid (PLA)/kenaf composite degradation by immobilized mycelia of Pleurotus ostreatus”. Inter Biodeter Biodegrad. (2012) 71: 50-54.
Jiang et al., “Bioresin Infused then Cured Mycelium-based Sandwich-structure Biocomposites: Resin Transfer Molding (RTM) Process, Flexural Properties, and Simulation.” J Cleaner Production (2019) 207:123-135.
Jones et al., Chitin-chitosan Thin Films from Microbiologically Upcycled Agricultural By-products. In 13th International Conference on the Mechanical Behavious of Materials, Melbourne, Australia (Jun. 2019) p. 66; in 7 pages.
Williams, J. “Growth Industry”, Financial Times Jan. 12, 2019 (Mogu—Radical by Nature); download from URL <: https://mogu.bio/growth-industry-financial-times-uk-article/> in 1 page.
Wösten et al., “Growing Fungi Structures in Space”, ACT Research Category/Space Architecture; Noordwijk, The Netherlands (Oct. 15, 2018) in 17 pages.
Meyer et al., “Comparison of the Technical Performance of Leather, Artificial Leather, and Trendy Alternatives.” Coatings (Feb. 2021) 11(2): 226; 14 pages.
Abbadi et al., “Immunocytochemical identification and localization of lipase in cells of the mycelium of Penicillium cyclopium variety”, Applied Microbial Cell Physiology (1995) 42: 923-930.
Ando et al., “Cosmetic material for skin whitening - contains mushroom mycelium cultured matter and e.g. ginseng extract, chondroitin sodium sulphate and/or hyaluronic acid”, WPI/Thomson (Jan. 14, 1992), 1992(8): Accession #1992-062018; Abstract of JP4009316A; in 9 pages.
Attias et al.., “Biofabrication of Nanocellulose-Mycelium Hybrid Materials”, Adv Sustainable Syst. (2020) 5(2): 2000196 in 12 pages; Supporting Information in 7 pages.
Borrás et al., “Trametes versicolor pellets production: Low-cost medium and scale-up”, Biochem Eng J. (2008) 42(1): 61-66.
Green et al., “Mechanical Properties of Wood”, Forest Products Laboratory, 1999. in Wood Handbook—Wood as an engineering material. Gen Tech. Rep. FPL-GTR-113, Chapter 4 in 46 pages.
Holt et al. “Fungal mycelium and cotton plant materials in the manufacture of biodegradable molded packaging material: Evaluation study of select blends of cotton byproducts.” J Biobased Mater Bioenergy (2012) 6(4): 431-439.
Jiang et al., “Manufacturing of Natural Composites with a Mycelium Binder and Vacuum-infused Vegetable Oil-based Resins”, Poster dated May 2014; 1 page.
Jiang et al., “Vacuum Infusion of Mycelium-Bound Biocomposite Preforms with Natural Resins”, CAMX ExpoConference Proceedings, Oct. 13-16, 2014, 13 pages.
Jones et al., “Mycelim Composites: A Review of Engineering Characteristics and Growth Kinetics”, J Bionanoscience (2017) 11 (4): 241-257.
Jones et al., “Waste-derived Low-cost Mycelium Composite Construction Materials with Improved Fire Safety”, FAM (Fire and Materials) (2018) 42(7): 816-825.
Kuhn et al., [Eds.] Cell Walls and Membranes in Fungi—An Introduction (Abstract) in Biochemistry of Cell Walls and Membranes in Fungi, Chapter 1, Springer Verlag Berlin/Heidelberg 1990, 2 pages.
Pathway-27, “Beta-glucan”, Aug. 2012, retrieved from http://http://www.pathway27.eu/topstory/beta-glucan/on Oct. 7, 2021 in 2 pages.
Stamets P., “Growing Gourmet and Medicinal Mushrooms”, (1993) Chapter 21; p. 363. (Best Available Copy).
Vetchinkina et al., “Bioreduction of Gold (III) Ions from Hydrogen Tetrachloaurate...” Scientific Practical J Health Life Sciences No. 4, ISSN 22188-2268, (2013) pp. 51-56.
Wosten et al., “How a fungus escapes the water to grow into the air”, Current Biology. (1999) 9(2): 85-88.
Zeng Z., “Cosmetic composition for cleaning skin, comprises glossy ganoderma spores and collagens, content of glossy ganoderma spores in composition and content of collagens in composition”, WPI/Thomson (Feb. 5, 2006) 7: Accession #2007-057767; Abstract of CN1732887A; in 11 pages.
Ziegler et al., “Evaluation of Physico-mechanical Properties of Mycelium Reinforced Green Biocomposites Made from Cellulosic Fibers”, Appl Engin Agricult. (2016) 32(6): 931-938.
Collins English Dictionary, “Cavity”, Definition; retrieved on Nov. 8, 2021; 1 page.
Merriam-Webster, “desiccated” (Adj.) Definition; downloaded on Nov. 8, 2021; 1 page.
Wang et al., “Chemical and structural factors influencing enzymatic saccharification of wood from aspen, birch and spruce”. Biomass Bioengin. (2018) 109: 125-134.
Related Publications (2)
Number Date Country
20200146224 A1 May 2020 US
20210127601 A9 May 2021 US
Provisional Applications (1)
Number Date Country
62707704 Nov 2017 US