The present invention relates to a vehicle electrical system having increased voltage. It includes in particular a residual current protective circuit and is used in a vehicle electrical system.
It is understood that a protective circuit is integrated in electrical circuits that are suitable for higher voltages, the protective circuit responding if the energized areas of the circuit are contacted unintentionally and separating the normally present energy storage from the rest of the electrical system. Associated residual current monitoring systems normally operate using a current transformer that measures residual currents that occur. All current-carrying conductors are routed through the current transformer and the differential current is measured. If it is not equal to zero, the circuit breaker or the circuit breakers are opened.
The current flowing in leads 3, 4 is measured in an ammeter device, a current transformer 7 which determines the differential current, for example, being used for the current measurement. A control device 8 evaluates the measured current and opens switch 5 if the measured differential current exceeds predefinable values. Appropriate activation signals generated by control device 8 trigger the switching operation.
Since all current-carrying leads must be routed through current transformer 7, a relatively large and expensive current transformer is required. In addition, there is little flexibility when positioning the current transformer, since it must be situated in such a way as to include all current-carrying leads. Consequently, the residual current interruption after the output signals of a summation current transformer or of a forward converter are evaluated is quite complex.
The vehicle electrical system according to
DE 41 38 943 C1 describes an example of such a dual-voltage vehicle electrical system. In this dual-voltage vehicle electrical system, which is shown schematically in
In domestic electrical installations, so-called ground fault circuit interrupters are installed which provide increased safety against dangerous electrical shocks. Such ground fault circuit interrupters, also referred to as residual current circuit breakers, trip whenever a connection is produced between the neutral conductor and the protective conductor. Dangers are averted by disconnecting the part of the circuit downstream from the circuit breaker. Available esidual current protective devices are designed in such a way that they need only a low triggering current for triggering and have a relatively short break time.
The increased voltage vehicle electrical system according to the exemplary embodiment and/or exemplary method of the present invention having a residual current protective circuit including the features of Claim 1 has the advantage that a residual current interruption is implemented without current measurement; it is usable in particular in a vehicle electrical system and is usable to particular advantage in a vehicle electrical system having a sub-area which is connected to increased voltage.
These advantages are obtained through a circuit in which the two connecting leads between the battery and the inverter or the generator connected to the inverter are connected to ground via at least one high-impedance resistor and the voltage dropping across these two resistors is measured. The two voltages are checked for a residual current using an evaluation logic system and in the event of a fault, i.e., if a residual current is detected, both leads are disconnected using a trip signal generated by the evaluation logic system which is supplied to the associated switches.
Additional advantages of the exemplary embodiment and/or exemplary method of the present invention are derived from the measures specified in the subclaims. A particular advantage is that solely by evaluating the measured voltage drop at the two resistors, i.e., without any additional measuring device and without additional sensors, it is possible to perform overvoltage and/or undervoltage monitoring. To prevent rapid load changes from resulting in potential shifts, capacitors may in addition be connected in parallel to the two resistors. A plausibility check, i.e., a comparison of the two measured voltages, makes it advantageously possible to differentiate between a load change and the occurrence of residual currents.
The response threshold at which the evaluation logic system emits a trip signal or an activation signal may advantageously be set to nearly any residual currents; advantageously, such a limiting value is less than 30 mA. The disconnection may occur very rapidly.
In the embodiment of an increased voltage vehicle electrical system in the form of a dual-voltage vehicle electrical system, an advantageous coupling of the two sub-systems is possible, which ensures that in the event of a fault on the high-voltage side, i.e., in the sub-system connected to the higher voltage, the high-voltage side is powerfully forced to contact ground. This advantage is obtained by connecting the two vehicle electrical systems coupled via a DC voltage converter using a switching element connected in parallel to the DC voltage converter, the switching element may monitor the voltage between the negative high-voltage terminal of the DC voltage converter and the vehicle electrical system ground and keeping it within specific limits. In an advantageous manner, the switching element is a voltage-dependent resistor, a Zener diode or a switching element that is controlled by the voltage difference between the negative voltage terminal and ground.
Using this circuit, which does not in fact represent a residual current circuit breaker, it is possible to ensure that the maximum allowable insulation voltage between the high-voltage and low-voltage area is not exceeded, or using such a circuit breaker, the system may be designed for a significantly lower insulation voltage, thus preserving a protection of the vehicle electrical system components or elements.
In the exemplary embodiment according to
Both voltmeter 18, which measures the voltage drop at resistor 16, as well as voltmeter 21, which determines the voltage drop at resistor 19, are connected to evaluation logic system 24 and supply it with the measured variables to be evaluated. The associated connections between voltmeters 18 and 21 are denoted as 22 and 23, respectively. If evaluation logic system 24 detects a residual current by evaluating the voltages, it sends control signals to switch 14 via a connection 25 and disconnects the battery. This cuts off voltage to the vehicle electrical system. When predefinable conditions that make it possible to infer a fault are reached, both connecting leads 12, 13 between battery 15 and inverter 11 or generator 10 connected to inverter 11 are interrupted and residual current protection is assured.
The exemplary embodiment of the present invention according to
In the exemplary embodiment according to
In the vehicle electrical system shown in
If a person touches one of leads 12 or 13 and simultaneously touches the vehicle or body ground, a residual current is produced which results in a significant potential shift. According to the exemplary embodiment and/or exemplary method of the present invention, this potential shift may be evaluated. In this connection, the person acts like a resistor that is connected in parallel to resistor 16 or 19. In this case, the voltage divider is thus also “distorted”; this may also be used for fault detection.
To prevent rapid load changes, i.e., rapid changes of the electrical system load from resulting in potential shifts, capacitors 17, 20 are connected in parallel to resistors 16, 19. If the two voltages, which are present or drop at resistors 16, 19, are measured, it is possible to infer that a residual current is clearly present. It is then necessary to measure both voltages. A plausibility check makes it possible to differentiate between load changes, i.e., between rapidly changing loads of the vehicle electrical system and residual currents.
Evaluation logic system 24 that detects the residual current from the comparison of the two voltages may be set to nearly any residual current, normally to a residual current of less than 30 milliamperes (mA). When the set residual current is reached, evaluation logic system 24 emits a corresponding signal to switch 15 and it opens.
In a vehicle having a dual-voltage electrical system, if no other protective measures are taken, the high-voltage system should for safety reasons be designed to be potential-free to ground, for example, to the housing, and also be touch-safe. This means that electrical isolation must be assured between the high-voltage and the low-voltage vehicle electrical system. This is in particular the case because the vehicle body represents the negative pole in the low-voltage vehicle electrical system which normally has a nominal voltage of 12 volts. At the same time, the high-voltage vehicle electrical system, which may, for example, be as high as 288 volts and possibly even higher, is connected to the body potential at high resistivity to prevent the electric potential from drifting randomly. This voltage connection is maintained by symmetry resistors 16, 19 and/or capacitors 17, 20. Given these facts, it is possible to determine if the total system is in order from the two measured voltages or voltage drops at resistors 17, 19 by comparing the voltages with one another.
If no fault is present and the electric potentials are within specifiable limits, the ratio of the resistance values of resistors 16 and 19 will be equal to the ratio of the two measured voltages. If due to contact or another error in the vehicle electrical system, the current in the high-voltage vehicle electrical system is entirely or partially drained off across the vehicle body, the resistive voltage divider is distorted accordingly because different currents flow through the two resistors 16, 19. It is possible for the change of the ratio of the two voltage drops which then occurs to be detected in evaluation logic system 24 and then trigger a reaction. This reaction may, for example, be an interruption of the high voltage. Such a reaction is triggered, for example, when the shift of the voltage divider reaches predefinable values. In turn, it is possible to select these values relatively freely.
Three possibilities for implementing switching element 38 are provided in
The function of switching element 38 connected in parallel to DC voltage converter 32 in its embodiments is as follows: As soon as the reference potential of the high-voltage side exceeds a specific voltage in relation to the vehicle ground, the value of voltage-controlled resistor 38a drops and the reference potential of the high-voltage side is again drawn to ground, the curve being continuous. If a Zener diode 38b is used as switching element 38, the reference potential of high-voltage side 3 of the switching element is in contrast abruptly drawn to ground. If the voltage between the high-voltage side reference potential and ground is roughly equal to zero, the two electrical systems are not connected or are connected to one another only at very high resistivity.
In order to keep external interference from the high-voltage side to the 14-V vehicle electrical system as low as possible, it may be expedient to use an active switching element instead of a Zener diode or a voltage-dependent resistor. A possible embodiment is shown as 38c. Such a switching element 39 must be made up of at least one unit for voltage measurement and a switch. In order to suppress interference peaks when switching, a network made up of a coil, capacitor and resistor may be provided and situated upstream of the switch. In the event of a fault, the switch may be closed and the high-voltage side drawn to ground.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 057 694.7 | Nov 2004 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP05/55897 | 11/11/2005 | WO | 00 | 7/25/2008 |