As mobile devices grow in popularity, patch-based image retrieval allows a user to photograph current surroundings via a camera-embedded mobile telephone or other device, transmit the photograph to a server as a query, and receive a corresponding GPS location and/or other location information. Additional location-related information may include shopping information, restaurant reviews and so forth, and may be returned to the user as part of the query results.
To determine the location corresponding to a photograph, images are offline-indexed for use by the server, using patch-based scene recognition model. However, to ensure sufficient coverage of a large area such as a city, enormous amounts of data need to be used. This means that the scene recognition model has to be effectively constructed and maintained in large-scale scenario.
In this technology, textual descriptors of scenes are quantized by hierarchical k-means clustering to generate a vocabulary tree, which produces “visual words” (quantized clusters with SIFT features) to represent each image as a Bag-of-Word (BoW) vector. In retrieval, the similarity of images is evaluated by the cosine distance between their BoW vectors. While this system works to a reasonable extent, the scene dataset requires a substantial amount of updating and extending, which is computationally expensive given the enormous amounts of data being maintained and accessed.
This Summary is provided to introduce a selection of representative concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used in any way that would limit the scope of the claimed subject matter.
Briefly, various aspects of the subject matter described herein are directed towards a technology by which an image retrieval system is updated incrementally as new image data becomes available, with updating triggered in a controlled manner based upon characteristics of the new image data. When new image data is received, the image data is evaluated to determine whether it meets a triggering criterion. If so a vocabulary tree model structure based upon the new image data is updated.
In one aspect, one triggering criterion corresponds to and amount (how much volume) of new image data is available. In one aspect, one triggering criterion corresponds to how diverse the new image data is with respect to other image data currently being used for image retrieval.
In one aspect, incremental updating updates the leaf nodes of a vocabulary tree based upon the new image data. Each leaf node's feature frequency is evaluated against upper and/or lower threshold values, to split a leaf node when the feature frequency exceeds an upper threshold value, delete a leaf node when the feature frequency is below a lower threshold value and the leaf node has at least one sibling leaf node, and withdraw a parent node to a leaf node when the feature frequency is below a lower threshold value and the leaf node has no sibling leaf node or nodes.
In one aspect, upon completion of the incremental updating, the server that performed the incremental updating is switched to an active state with respect to handling client queries for image retrieval, and another server that was actively handling client queries is switched to an inactive state, awaiting a subsequent incremental updating before switching back to active
Other advantages may become apparent from the following detailed description when taken in conjunction with the drawings.
The present invention is illustrated by way of example and not limited in the accompanying figures in which like reference numerals indicate similar elements and in which:
Various aspects of the technology described herein are generally directed towards enabling a scene recognition system to be maintained in a scalable and incremental way. To this end, scene images from different sources, such as web search results and user query examples, are incrementally uploaded to extend the server's scene dataset. More particularly, described is a scalable vision-based location recognition system in which the backend database is updated incrementally. Further described is a trigger mechanism that determines when the incremental updating is to occur.
While some of the examples described herein are directed towards a particular vocabulary tree structure, it is understood that these are only examples. Other structures and scene recognition models may be used. As such, the present invention is not limited to any particular embodiments, aspects, concepts, structures, functionalities or examples described herein. Rather, any of the embodiments, aspects, concepts, structures, functionalities or examples described herein are non-limiting, and the present invention may be used various ways that provide benefits and advantages in computing and scene recognition in general.
Turning to
Further note that while each model 106, 108 includes a server 107 or 109 respectively, the server may be the same physical machine that is switched to use the appropriate data store (110 or 112) and vocabulary tree model (111 or 113) according to the incremental updating state. However, in one implementation, to provide consistent service while performing incremental indexing, there are two separate central computers at the server-end, e.g., server 107 and 109 as represented in
In general, the system collects incremental scene images as well as their GPS locations from scene images uploaded by system administrators, which are carefully selected and treated as fully trusted, from query images sent by users to the server-end computer, which are considered as under evaluated, and images periodically crawled from a remote third-party source (also considered under evaluated); the scene name and the city name may be used as crawling criteria.
For under evaluated scene images, pre-processing is conducted to further filter for irrelevance. More particularly, considering each new image as a query, the scene recognition process is simulated in a server, in which the cosine distance between this query and the best matched image is compared with a maximum diversity threshold Tmax. If the distance is larger than Tmax, the image is discarded, otherwise it is added to the fully trusted image set (data store 105), which is treated as the new data batch to update the database.
As generally represented in
Thus, via the logic and a trigger mechanism, there is provided a unified solution to adapt a vision-based location recognition system to handle dataset changes. More particularly, the recognition model is incrementally updated by an adaption implementation algorithm, but is only updated when triggered by an adaption trigger criteria. To summarize via
Note that when the distribution of new image patch is sufficiently different with respect to the original dataset, the performance decreases as new image batches arrive. This is handled by having the model be scalable to data variation, wherein “scalable” generally indicates that the recognition model is adaptive to data addition and removal in an incremental dataset.
To achieve scalability in vision-based location recognition, a vocabulary tree incremental indexing algorithm is presented to match a vocabulary tree-based recognition model to frequent distribution of new data. In general, the SIFT (Scale Invariant Feature Transform) features of a new data batch are re-indexed using the original tree, based on which new TF-IDF (term frequency-inverse document frequency) term weightings for each word is calculated. The frequency of each word corresponds to its relevance and its possible need for further expansion. Further, words in the vocabulary tree that contain overabundant or over-limited features are adapted to fit the new data.
In one implementation, three operations are defined to iteratively refine the model structure to fit the new data distribution, as generally represented in Table 1. One operation is a Leaf Split, wherein if the number of features contained in a leaf node is higher than a maximum threshold Lmax, the features of this node are clustered to m leaves in its sub-level (m is the same branching factor as in vocabulary tree construction). Another operation is Leaf Delete, wherein if the feature frequency of a newly generated leaf is lower than a pre-defined minimum threshold Lmin, its features are reassigned to the nearest leaves within the sibling nodes of this deleted leaf. Another operation is Parent Withdraw: if the feature frequency of a newly-generated leaf is lower than minimum threshold, and this leaf is the only child of its parent, this leaf is withdrawn and its parent degraded as a new leaf.
With respect to the updating criteria based on relative entropy estimation, when a new batch of images is available, it is not always necessary to activate the incremental indexing process in the inactive model. In general, the vocabulary tree can be regarded as a data driven model; if the distribution of new data is almost identical to that of original dataset, the updating may be postponed awaiting additional new images.
In one implementation, triggering occurs based on one of two (or both) criteria being met, namely when the volume of new images is sufficiently large, and/or when the distribution of new images is extremely diverse from that of original dataset.
One adaption trigger criteria uses Kullback-Leibler diversity based relative entropy estimation. In a first step, data distribution is measured by its sample density, which is further discretely approximated by point density. Initially, a Density Field of current dataset in SIFT space is estimated and approximated by the density of each SIFT point, in which the density of a SIFT point in 128-dimensional SIFT space is defined as:
where D(i) is the point-density of ith SIFT point; n is the total number of SIFT points in this dataset; xj is jth SIFT point. L2 distance evaluates the distance between two SIFT points. To reduce computational cost, the density of each SIFT point by its local neighbors are estimated as an approximation:
where {tilde over (D)}(x,m) is the point-density of ith SIFT feature in its m neighborhood. By neighborhood approximation, point based density is estimated. Their m nearest neighbors are stored for Density Field updating of new data batch. The data dissimilarity between the original dataset and the new data batch is evaluated by their density-based KL-like relative entropy estimation as:
in which {tilde over (D)}new(i,m) is the density of new data at ith data point in mth neighborhood; {tilde over (D)}org(Nearest(i),m) is the density of old data at the nearest old point of ith new data in mth neighborhood. It can be observed from the above equation that data diversity increases as the volume of new data batch increases, and/or as the distribution of original dataset and new data batch become more diverse.
Based on data diversity evaluation, the incremental indexing process is controlled by the triggering criteria as follows:
When merging the new data batch into original dataset, the density in the original dataset need not be updated. Indeed, their former density estimations can be partially preserved, and only need to be modified by the new data as:
{tilde over (D)}Update(i,m)={tilde over (D)}org(i,k)+{tilde over (D)}New(i,m−k) (4)
where k is the number of remaining original points in m nearest neighbors, which is achieved by comparing the new data with the former-stored m nearest neighbors of each point.
Exemplary Operating Environment
The invention is operational with numerous other general purpose or special purpose computing system environments or configurations. Examples of well known computing systems, environments, and/or configurations that may be suitable for use with the invention include, but are not limited to: personal computers, server computers, hand-held or laptop devices, tablet devices, multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics, network PCs, minicomputers, mainframe computers, distributed computing environments that include any of the above systems or devices, and the like.
The invention may be described in the general context of computer-executable instructions, such as program modules, being executed by a computer. Generally, program modules include routines, programs, objects, components, data structures, and so forth, which perform particular tasks or implement particular abstract data types. The invention may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules may be located in local and/or remote computer storage media including memory storage devices.
With reference to
The computer 310 typically includes a variety of computer-readable media. Computer-readable media can be any available media that can be accessed by the computer 310 and includes both volatile and nonvolatile media, and removable and non-removable media. By way of example, and not limitation, computer-readable media may comprise computer storage media and communication media. Computer storage media includes volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can accessed by the computer 310. Communication media typically embodies computer-readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. Combinations of the any of the above may also be included within the scope of computer-readable media.
The system memory 330 includes computer storage media in the form of volatile and/or nonvolatile memory such as read only memory (ROM) 331 and random access memory (RAM) 332. A basic input/output system 333 (BIOS), containing the basic routines that help to transfer information between elements within computer 310, such as during start-up, is typically stored in ROM 331. RAM 332 typically contains data and/or program modules that are immediately accessible to and/or presently being operated on by processing unit 320. By way of example, and not limitation,
The computer 310 may also include other removable/non-removable, volatile/nonvolatile computer storage media. By way of example only,
The drives and their associated computer storage media, described above and illustrated in
The computer 310 may operate in a networked environment using logical connections to one or more remote computers, such as a remote computer 380. The remote computer 380 may be a personal computer, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to the computer 310, although only a memory storage device 381 has been illustrated in
When used in a LAN networking environment, the computer 310 is connected to the LAN 371 through a network interface or adapter 370. When used in a WAN networking environment, the computer 310 typically includes a modem 372 or other means for establishing communications over the WAN 373, such as the Internet. The modem 372, which may be internal or external, may be connected to the system bus 321 via the user input interface 360 or other appropriate mechanism. A wireless networking component 374 such as comprising an interface and antenna may be coupled through a suitable device such as an access point or peer computer to a WAN or LAN. In a networked environment, program modules depicted relative to the computer 310, or portions thereof, may be stored in the remote memory storage device. By way of example, and not limitation,
An auxiliary subsystem 399 (e.g., for auxiliary display of content) may be connected via the user interface 360 to allow data such as program content, system status and event notifications to be provided to the user, even if the main portions of the computer system are in a low power state. The auxiliary subsystem 399 may be connected to the modem 372 and/or network interface 370 to allow communication between these systems while the main processing unit 320 is in a low power state.
While the invention is susceptible to various modifications and alternative constructions, certain illustrated embodiments thereof are shown in the drawings and have been described above in detail. It should be understood, however, that there is no intention to limit the invention to the specific forms disclosed, but on the contrary, the intention is to cover all modifications, alternative constructions, and equivalents falling within the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
5867799 | Lang et al. | Feb 1999 | A |
6084595 | Bach et al. | Jul 2000 | A |
6275801 | Novak et al. | Aug 2001 | B1 |
6307548 | Flinchem et al. | Oct 2001 | B1 |
6459388 | Baron | Oct 2002 | B1 |
6597818 | Kumar et al. | Jul 2003 | B2 |
6646573 | Kushler et al. | Nov 2003 | B1 |
6775664 | Lang et al. | Aug 2004 | B2 |
7043468 | Forman et al. | May 2006 | B2 |
7246745 | Hudnut et al. | Jul 2007 | B2 |
7627474 | Kim et al. | Dec 2009 | B2 |
7711747 | Renders et al. | May 2010 | B2 |
7870548 | Chu Chen et al. | Jan 2011 | B2 |
7903883 | Zitnick et al. | Mar 2011 | B2 |
7949186 | Grauman et al. | May 2011 | B2 |
8015129 | Thiesson et al. | Sep 2011 | B2 |
8165878 | Roberge et al. | Apr 2012 | B2 |
20040181544 | Anderson | Sep 2004 | A1 |
20050063563 | Soliman | Mar 2005 | A1 |
20050162523 | Darrell et al. | Jul 2005 | A1 |
20050234973 | Zeng et al. | Oct 2005 | A1 |
20060106832 | Ben-Dyke et al. | May 2006 | A1 |
20070038451 | Cogne et al. | Feb 2007 | A1 |
20070047782 | Hull et al. | Mar 2007 | A1 |
20070195167 | Ishiyama | Aug 2007 | A1 |
20070214172 | Nister et al. | Sep 2007 | A1 |
20070217676 | Grauman et al. | Sep 2007 | A1 |
20070294333 | Yang et al. | Dec 2007 | A1 |
20080205770 | Jia et al. | Aug 2008 | A1 |
20080301133 | Brown et al. | Dec 2008 | A1 |
20090024504 | Lerman et al. | Jan 2009 | A1 |
20090083332 | Datta et al. | Mar 2009 | A1 |
20090240500 | Tachimori et al. | Sep 2009 | A1 |
20090281981 | Chen et al. | Nov 2009 | A1 |
20090304582 | Rousso et al. | Dec 2009 | A1 |
20100049711 | Singh et al. | Feb 2010 | A1 |
20100195914 | Isard et al. | Aug 2010 | A1 |
20100254614 | Baker et al. | Oct 2010 | A1 |
20100257202 | Szummer et al. | Oct 2010 | A1 |
20120218424 | Gotoh et al. | Aug 2012 | A1 |
Entry |
---|
Ji R., Xie X., Yao H., Wu Y., and Ma W., “Vocabulary tree incremental indexing for scalable location recognition”, in Proc. ICME 2008, pp. 869-872, Jun. 2008. |
Schindler, G., “City-Scale Location Recognition,” IEEE CVPR 2007, Jun. 2007. |
Bolle et al., “A Complete and Scalable Architecture for 3D Model-Based Vision”, vol. 1, Digital Object Identifier , IEEE, 1990, pp. 212-219. |
Vasconcelos, et al., “Scalable Discriminant Feature Selection for Image Retrieval and Recognition”, IEEE Conf. on Computer Vision and Pattern Recognition, Washington DC, 2004, pp. 1-9. |
Kosecka, et al., “Location Recognition and Global Localization Based on Scale-Invariant Keypoints”, Wokshop on Statistical Learning in Computer Vision, European Conference on Computer Vision 2004, 10 Pages. |
Yeh, et al., “Adaptive Vocabulary Forests for Dynamic Indexing and Category Learning”, IEEE 11th International Conference, 2007, pp. 2-9. |
Schindler, et al., “City-Scale Location Recognition”, IEEE Conference on Computer Vision and Pattern Recognition, 2007, 7 Pages. |
Robertson, et al., “An Image-Based System for Urban Navigation”, British Machine Vision Conference, 2004, 10 Pages. |
Zhang, et al., “Image Based Localization in Urban Environments”, Proceedings of the Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06), 2006, pp. 33-40. |
Mikolajczyk, et al., “Local Features for Object Class Recognition”, Computer Vision, Tenth IEEE International Conference on ICCV 2005, 8 Pages. |
Nister, et al., “Scalable Recognition with a Vocabulary Tree”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, Jun. 2006, pp. 2161-2168. |
Jia, et al., “Photo-to-Search: Using Camera Phones to Inquire of the Surrounding World”, Proceedings of the 7th International Conference on Mobile Data Management (MDM'06), IEEE 2006, 3 Pages. |
Kennedy, et al., “How Flickr helps us Make Sense of the World: Context and Content in Community-Contributed Media Collections”, ACM, Sep. 23-28, 2007, 10 Pages. |
Cadez, et al., “Model Based Population Tracking and Automatic Detection of Distribution Changes”, in Proceedings of the NIPS, 2001, 8 Pages. |
Campbell, et al., “A Linear Programming Approach to Novelty Detection”, 2000, 7 Pages. |
Number | Date | Country | |
---|---|---|---|
20100088342 A1 | Apr 2010 | US |