TECHNICAL FIELD
This invention relates to gas-to-liquids production, and more particularly to incremental hydrogen production from an existing steam/natural gas reformer.
BACKGROUND
An integrated plant for the conversion of a hydrocarbon gas such as natural gas to useful hydrocarbon liquid fuels and feed-stocks comprises an H2+CO syn-gas generation system which provides feed gas to a Fischer-Tropsch catalytic hydrocarbon synthesis system with an associated power and heat energy system.
High efficiency, low capital cost, together with a low carbon footprint, are the major objectives of a total facility. U.S. Pat. Nos. 6,534,551 and 6,669,744 describe an integrated synthesis gas generation system comprising a two-stage synthesis gas generation unit integrated with a gas turbine which provides at least part of the energy required to drive an O2 production plant. The O2 plant can be either a cryogenic air separation unit, a high temperature mixed oxide O2 ion transfer membrane reactor integrated with the gas turbine, or other unit. The two stage synthesis gas generator comprises a Partial Oxidation (PDX) or an Auto-thermal Reformer (ATR) coupled in either case in a parallel or series configuration with a gas heated catalytic steam/hydrocarbon reformer (GHR) in which the heating gas is the mixed product from each synthesis gas generation reactor. The hot exhaust gas from the gas turbine provides at least part of the heat used to preheat the feed streams to the synthesis gas generation reactors.
DESCRIPTION OF DRAWINGS
FIG. 1 is an example system for incremental hydrogen production.
Like reference symbols in the various drawings indicate like elements.
DETAILED DESCRIPTION
FIG. 1 illustrates an example system for incremental hydrogen production. For example, the process for incremental hydrogen production from an existing catalytic steam/natural gas reformer may use a low-temperature CO2 condensation process to separate the CO2 present in the waste gas from an existing reformer pressure swing adsorption (PSA) hydrogen separation unit so that the remaining hydrogen enriched waste gas may then be sent to a second PSA unit where more H2 can be separated. The waste gas stream 16 may initially be compressed from, for example, about 1.2 bar to 40 bar in the compressor 17 and then the compressed waste gas stream 4 is dried in, for example, an adsorbent bed drier 12, which is regenerated by a nitrogen gas stream 5 and 6. As illustrated, the compressed waste gas steam 7 enters the CO2 condensation system 3 where it is cooled to, for example, within 2° C. of its triple point temperature. The liquid CO2 is separated and evaporated to produce refrigeration for the process and the CO2 product leaves as two separate streams 10 and 11 at an average pressure of about 10 bar. The remaining compressed waste gas, stream 8, containing about 65% H2, is separated in the PSA 2 producing a substantially pure H2 stream 9 at 35 bar pressure and a waste gas stream 14 which is used as part of the fuel gas in the existing reformer furnace. In some implementations, the system described can produce an incremental 11% more H2 from the existing reformer synthesis gas product stream 1. The incremental H2 production may use additional natural gas to replace the H2 which would have been burned in the reformer furnace. The fuel consumption for the incremental H2 production is, in some implementations, 280 Btu/scf H2. In these instances, the produced CO2 in streams 10 plus 11 can be about 85% of the CO2 present in the reformer product stream 1.
A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims.