The present invention relates to an orbital shaker and in one particular aspect, to an incubating orbital shaker.
Orbital shakers are known for use in a laboratory environment to agitate an assay or test samples with a generally orbital motion. Certain orbital shakers also include a heated chamber in order to keep certain materials at a predetermined temperature during the agitation.
In the past, devices for achieving such orbital motion and heating have not provided sufficient stability and accuracy for the drive speed, which result in sample-to-sample differences that introduce additional error and uncertainty into production or test results. Additionally, for incubating orbital shakers, the incubation chambers in some known devices lack generally uniform heating resulting in test samples located in different areas of the shaking platform being heated at different temperatures. This also results in sample-to-sample variations that can be unacceptable in various types of testing.
In addition, some known orbital shakers do nothing to address unbalanced load conditions which can result in the samples being damaged and/or the orbital shaker itself walking off the edge of a laboratory table if unobserved. Additionally, in the event of spillage it is often difficult to clean the shaking platform, since it is typically directly mounted to the drive system and requires disassembly beyond that which should typically done by a user and/or can result in the drive system being unbalanced upon reassembly.
The present invention provides an orbital shaker which provides a shaking motion that is both stable and accurate to allow repeatability. Additionally, it allows for ease of cleaning of the shaking platform.
In another aspect, the invention also includes is a vibration sensor that senses an unbalanced load on the orbital shaker and communicates with the orbital shaker controller to reduce the shaking speed in a pre-determined, trackable manner so that shaking of samples can be continued at a vibration level that is below a threshold value.
In another aspect of the invention, an incubating orbital shaker is provided in which a uniform heat is provided throughout the entire incubating chamber in order to assure minimum temperature fluctuations between samples being processed regardless of their position on the shaking platform.
The foregoing summary, as well as the following detailed description of the preferred embodiment of the present invention, will be further understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there is shown in the drawings an embodiment which is presently preferred. It is understood, however, that the invention is not limited to the precise arrangement and instrumentality shown. In the drawings:
Certain terminology is used in the following description for convenience only and is not limiting. The words “right,” “left,” “top,” and “bottom” designate directions in the drawings to which reference is made. The words “inwardly” and “outwardly” refer to directions toward and away from, respectively, the geometric center of the incubating orbital shaker and designated parts thereof. The words “a” and “one” are defined as including one or more of the referenced item unless specifically stated otherwise. This terminology includes the words above specifically mentioned, derivatives thereof, and words of similar import.
Referring now to
As shown in
The drive assembly 20, which is shown in detail in
As shown in detail in
The motor 38 is preferably a brushless DC motor with a Hall Effect sensor and therefore can be controlled to provide a desired speed. The encoder disc 54 and encoder sensor 56 preferably are a beam break optical sensor combination which detect the actual speed of the drive platform 46 rotations so that data on both the speed of the drive motor 38 and the actual movement of the drive platform 46 can be determined in order to account for slippage of the belt 40. In the preferred embodiment, the controller 102 can calculate the amount of belt slip, if any, and adjust the tray speed to be stable to plus or minus one rpm at speeds below 100 rpm and between plus or minus 1% of speeds between 101-500 rpm. This allows an extremely precise control of the shaker speed to be obtained according to the invention through the use of the two sensors in communication with the controller 102 to achieve the desired speed with both stability and accuracy. The controller 102 can also maintain the desired speed within the above-noted ranges throughout the entire cycle of a given test run therefore providing enhanced repeatability to the extent that multiple tests need to be run and compared with accuracy.
While the preferred motor 38 is a dc brushless motor, and the preferred sensor is an encoder disc 54 with an encoder sensor 56, those skilled in the art will recognize that other types of motors can be used and that other types of sensors can be employed to detect both the motor speed and actual speed of the drive platform 46 so that feedback adjustments can be made by the controller 102 to achieve the high stability and accuracy provided by the present invention.
Referring now to
Preferably, the base platform 32 is made of iron or heavy material in order to provide stability to the shaker 10. However, those skilled in the art will recognize they can be made from various other suitable materials and appropriate weights can be added to the base housing assembly 12, if necessary.
Additionally, rubber feet 62 are preferably connected to the bottom of the base panel 26 to help absorb vibration and to maintain a more stable platform. While in the preferred embodiment the drive assembly 20 and the base housing assembly 12 are assembled using threaded fasteners, those skilled in the art will recognize that other suitable types of fasteners and/or adhesives can be utilized depending upon the particular assembly and maintenance requirements.
Referring again to
A center wall 82 extends upwardly from the lower housing portion 72 to the front edge of the top wall 78 behind the shaking platform 60. This center wall 82 includes two spaced apart upper openings which receive fans 83, 84 that draw air from the incubating chamber 75 into the heating chamber 86 formed between the center wall 82, the rear panel 30, the back portions of the side walls 76 and the top wall 78. A heating coil 85 is located in the heating chamber 86 and heats the air drawn in by the fans 83, 84.
As shown in
Through the use of the fan arrangement which draws air from the incubating chamber 75 into the heating chamber 86 as well as the baffle 92 which directs the air flow out of the heating chamber 86 back into the incubating chamber 75 along the side walls of the incubating chamber 75, which rises upwardly due to heat convection, the present invention provides an extremely uniform heating throughout the entire incubating chamber and in particular through all areas on the shaking platform 60 so that uniform temperature can be achieved in all samples regardless of their position on the platform 60. This is extremely important for repeatability of testing and accuracy in test results. In comparison, the prior known incubating shakers provide fan driven airflow into the center of the incubating chamber resulting in higher temperature heating of samples located directly in the path of the heated air flow. Testing of the present invention has shown stability and accuracy in temperature control to less than 0.7° C. for samples located at any position on the shaking platform 60. In comparison, the prior known incubating shakers have temperature variations of plus or minus two degrees C. or more depending upon the location of the sample on the shaking platform. Thus, the present invention not only provides enhanced performance, but allows for higher accuracy testing of samples to be conducted.
Referring to
Referring to
The controller 102 will preferably signal the display panel 110 to display the last set points on the displays 112a, 112b, 112c for the temperature speed and time, even when the unit is shut off or power is interrupted. The controller 102 preferably also includes or is connected to a built in audible alarm when the elapsed time has counted down to zero so that a user is informed that the testing cycle has ended and the unit automatically shuts off. Additionally, the controller 102 will shut down the unit and activate an audible and visual alarm if the temperature limit is exceeded to prevent damage to the unit 10.
In the preferred embodiment, the incubating orbital shaker can run in a speed range of 15 to 500 rpm. However, the range can be extended, as desired. Optional stands and covers may be provided for the shaking platform 60 in order to allow attachment of various different types of holders, such as test tube racks, clamps for flasks and/or beakers. Optionally, a non-skid rubber mat can be attached to or set on the shaking platform 60 that allows a petri dish or a cell culture flask to be set on the platform 60 and maintained in position.
Those skilled in the art will recognize that the present invention provides an improved orbital shaker with a high accuracy drive system which provides extremely accurate control with respect to both the stability and accuracy of the drive speed. This is adapted for use with any type of orbital shaker. Additionally, the vibration sensor according to the invention can also be used in any type of orbital shaker in order to provide for continued testing without damage to samples and equipment at safe speeds in the event that an unbalanced load condition occurs and it can also sound an alarm to alert a user who may not necessarily be closely monitoring the testing once it has begun.
Further, the invention provides a drive system which allows a user to remove the shaking platform 60 from any orbital shaker in accordance with the invention for cleaning of spills which may occur in use, without affecting the balance of the drive system which could then require outside repair, such as by a factory or dealer representative. In the case of an incubating orbital shaker, this also allows the incubating chamber to be cleaned to avoid contamination through residue of spilled materials which were not thoroughly cleaned from the chamber.
Additionally, in connection with the incubating orbital shaker of the preferred embodiment that incorporates the above features, it is also possible to provide an incubating orbital shaker with improved temperature control through the use of a fan/heating system with baffles which direct the airflow into the incubating chamber along the side walls along the lower portion of the incubating chamber 75 so that the heated airflow does not directly impinge upon samples. This results in a more uniform temperature throughout the entire incubating chamber regardless of the position of the samples on the shaking platform 60.
Those skilled in the art will recognize that one or all of the above-referenced features can be used alone and/or in various combinations to provide an improved orbital shaker or incubating orbital in accordance with the present invention.
This application claims the benefit of U.S. Provisional Application No. 60/842,698, filed Sep. 6, 2006, which is incorporated by reference herein as if fully set forth.
Number | Name | Date | Kind |
---|---|---|---|
681254 | Northway | Aug 1901 | A |
2192233 | Mack | Mar 1940 | A |
3310292 | Moore | Mar 1967 | A |
3430926 | Liobis et al. | Mar 1969 | A |
4109319 | Brandt | Aug 1978 | A |
4628729 | Thoone | Dec 1986 | A |
4673297 | Siczek et al. | Jun 1987 | A |
4750845 | Nabetani | Jun 1988 | A |
5052812 | Tannenbaum et al. | Oct 1991 | A |
5060151 | Mikyska et al. | Oct 1991 | A |
5066135 | Meyer et al. | Nov 1991 | A |
5184893 | Steele et al. | Feb 1993 | A |
5268620 | Hellenberg | Dec 1993 | A |
5346303 | Heinonen et al. | Sep 1994 | A |
5372425 | Tannenbaum et al. | Dec 1994 | A |
5464773 | Melendez et al. | Nov 1995 | A |
5904421 | Mazzalveri | May 1999 | A |
6579002 | Bartick et al. | Jun 2003 | B1 |
7524104 | Malasky et al. | Apr 2009 | B2 |
7547516 | Light, II | Jun 2009 | B2 |
20060187743 | Carreras | Aug 2006 | A1 |
20070211566 | Ebers et al. | Sep 2007 | A1 |
Number | Date | Country |
---|---|---|
19652152 | Jun 1998 | DE |
2004255222 | Sep 2004 | JP |
WO 2005107931 | Nov 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20080056059 A1 | Mar 2008 | US |
Number | Date | Country | |
---|---|---|---|
60842698 | Sep 2006 | US |