The present invention relates to medical implants, and more specifically to a novel ossicular prosthesis arrangement.
A normal ear transmits sounds as shown in
Hearing is impaired when there are problems in the ability to transduce external sounds into meaningful action potentials along the neural substrate of the cochlea 104. To improve impaired hearing, auditory prostheses have been developed. For example, when the impairment is related to operation of the middle ear 103, a conventional hearing aid may be used to provide acoustic-mechanical stimulation to the auditory system in the form of amplified sound.
Middle ear implants also have been developed that employ electromagnetic transducers to mechanically stimulate the structures of the middle ear 103. A coil winding is held stationary by attachment to a non-vibrating structure within the middle ear 103 and a microphone signal current is delivered to the coil winding to generate an electromagnetic field. A magnet is attached to an ossicle within the middle ear 103 so that the magnetic field of the magnet interacts with the magnetic field of the coil. The magnet vibrates in response to the interaction of the magnetic fields, causing vibration of the bones of the middle ear 103. See U.S. Pat. No. 6,190,305, which is incorporated herein by reference.
Middle ear implants using electromagnetic transducers can present some problems. Many are installed using complex surgical procedures which present the usual risks associated with major surgery and which also require disarticulating (disconnecting) one or more of the bones of the middle ear 103. Disarticulation deprives the patient of any residual hearing he or she may have had prior to surgery, placing the patient in a worsened position if the implanted device is later found to be ineffective in improving the patient's hearing.
Embodiments of the present invention are directed to an ossicular prosthesis which includes an elongated prosthesis member having a proximal end and a distal end. A cochlea striker mass is at the distal end of the prosthesis member and includes an outer striking surface for coupling vibration of the striker mass to an outer cochlea surface of a recipient patient. A locking clamp is at the proximal end of the prosthesis member and includes a clamp strap having a fixed end and a free end, and a locking head at the fixed end of the clamp strap which has a strap opening for insertion of the free end of the clamp strap. The clamp strap passes around an ossicle of the middle ear (e.g., a disarticulated incus) in a closed loop and is fixedly engaged by the locking head such that acoustic vibration of the ossicle is coupled by the prosthesis member to the cochlea surface.
The cochlea surface may include the round window membrane and/or the oval window membrane of the cochlea. The locking clamp may be a cable tie-type clamp. The prosthesis member may be made of titanium. The clamp strap may be made of plastic or a polymer material.
Embodiments of the present invention also include an ossicular connector having an elongated connector member. At least one end of the connector member includes a locking clamp having a clamp strap with a fixed end and a free end. A locking head is at the fixed end of the clamp strap and has a strap opening for insertion of the free end of the clamp strap. The clamp strap passes around an ossicle of the middle ear (e.g., a disarticulated incus) and an implanted acoustic signal transducer in a closed loop and is fixedly engaged by the locking head for attaching the signal transducer to the ossicle such that acoustic vibration of the signal transducer is coupled to the ossicle.
The connector member may have a locking clamp at each end for attaching the signal transducer to the ossicle. The locking clamp may be a cable tie-type clamp. The prosthesis member may be made of titanium. The clamp strap may be made of plastic or a polymer material.
Embodiments of the present invention also include a middle ear prosthesis having an elongated prosthesis member with a proximal end and a distal end. A cochlea striker mass is at the distal end of the prosthesis member including an outer striking surface for coupling vibration of the striker mass to the ossicular chain of a recipient patient. A transducer clamp is at the proximal end of the prosthesis member and includes clamping fingers for securely engaging the outer surface of an enclosed acoustic signal transducer such that acoustic vibration of the signal transducer is coupled by the prosthesis member to the ossicular chain.
The ossicular chain may include, for example, an outer cochlea surface such as the round window membrane and/or the oval window membrane of the cochlea. The prosthesis member may be made of titanium. The striker mass includes a striking surface that is a rod-shaped, conical, or spherical. The striker mass may be disc-shaped and may be made of a resilient material.
In some embodiments, some or all of a middle ear prosthesis may be formed from a single foldable plane structure. For example, the prosthesis member and the striker mass, or the prosthesis member and the transducer clamp, or the entire prosthesis may be formed from a single foldable plane structure.
Various embodiments of the present invention are directed to an ossicular prosthesis specifically referred to as a partial ossicular replacement prosthesis (PORP). The PORP uses a locking clamp having a clamp strap to connect a prosthesis member to an ossicle so as to couple vibration from the ossicle to the outer cochlea surface of a recipient patient for otologic reconstruction thereby providing sound sensation to the patient.
Embodiments of the present invention may be useful more generally in other surgeries for repair of structures where a clamp is called for, such as for limb repair other than in the middle ear. For example, a prosthesis member using a cable-tie type locking clamp to connect to a limb in some cases may avoid the need to use titanium screws. Similarly, a prosthetic strut may be implemented with a cable-tie type locking mechanism at either or both ends.
Although various exemplary embodiments of the invention have been disclosed, it should be apparent to those skilled in the art that various changes and modifications can be made which will achieve some of the advantages of the invention without departing from the true scope of the invention.
This application claims priority from U.S. Provisional Patent Application 61/296,928, filed Jan. 21, 2010, and from U.S. Provisional Patent Application 61/365,824, filed Jul. 20, 2010, which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61296928 | Jan 2010 | US | |
61365824 | Jul 2010 | US |