INDANE DIMER COMPOUNDS WITH SMOOTH MUSCLE RELAXING AND/OR MAST CELL STABILISING AND/OR ANTIINFLAMMATORY ACTIVITY

Information

  • Patent Application
  • 20020052530
  • Publication Number
    20020052530
  • Date Filed
    June 08, 1998
    26 years ago
  • Date Published
    May 02, 2002
    22 years ago
Abstract
Indane dimer compounds of general formula 5, 6 or 9 and their pharmaceutical use, particularly to achieve smooth muscle relaxing activity and/or mast cell stabilizing activity and/or antiinflammatory activity are described, wherein in formulae 5 and 9, R1 and R3 to R15, and in formula 6, R1, R2 and R4 to R15, are selected from one or more of the same or different of: H, halo, hydroxy, alkoxy, aryloxy, acetoxy, carboxy, alkyl carbonyl, hydro carbonyl, amino, amido, alkylamino, hydroxylamino, amine oxide groups, azo groups, cyano, hydrazino groups, hydrazide groups, hydrazone groups, imide groups, iminoether groups, ureyl groups, oximc, nitro, nitrate, nitrite, nitroso groups, nitrile, heterocyclic groups containing one or more heteroatoms selected from N, O or S, aralkyl groups, mono and polybenzoid aryl groups, substituted aryl groups, thiol, thioureyl, phenylthiol groups, sulphonic acid groups, sulphoxide groups, sulphone groups, alkyl containing 1 to 10 carbon atoms or cycloalkyl groups containing 3 to 8 carbon atoms which may be saturated or unsaturated, substituted alkyl or cycloalkyl groups which may be satuated or unsaturated. In formulae 5, 6 and 9, X is O, NR (wherein R is acyl, alkyl or sulphonate groups), S, SO or SO2. In formulae 5, 6 and 9, any one or more of R1, 1R1; R2, 1R2; R3, 1R3; R9, 1R9; R10, 1R10 and R14, 1R14 may together represent oxo. 1
Description


[0001] The invention relates to indane compounds, processes for their production, compositions containing them and their pharmacological use.


[0002] According to the invention there is provided a compound of any of the formulae:
2


[0003] wherein


[0004] in Formulae 5 and 9


[0005] R1 and R3 to R15


[0006] in Formula 6


[0007] R1, R2 and R4 to R15


[0008] are selected from one or more of the same or different of:


[0009] H, halo, hydroxy, alkoxy, aryloxy, acetoxy, carboxy, alkyl carbonyl, hydro carbonyl, amino, amido, alkylamino, hydroxylamino, amine oxide groups, azo groups, cyano, hydrazino groups, hydrazide groups, hydrazone groups, imide groups, iminoether groups, ureyl groups, oxime, nitro, nitrate, nitrite, nitroso groups, nitrite, heterocyclic groups containing one or more heteroatoms selected from N, O or S, aralkyl groups, mono and polybenzoid aryl groups, substituted aryl groups, thiol, thioureyl, phenylthiol groups, sulphonic acid groups, sulphoxide groups, sulphone groups, alkyl containing 1 to 10 carbon atoms or cycloalkyl groups containing 3 to 8 carbon atoms which may be saturated or unsaturated, substituted akyl or cycloalkyl groups which may be saturated or unsaturated


[0010] in Formulae 5, 6 and 9


[0011] X is O, NR (wherein R is acyl, alkyl or sulphonate groups), S, SO or SO2


[0012] in Formula 5 any one or more of R1, 1R1; R31, 1R3; R9, 1R9; and R10, 1R10 may together represent oxo,


[0013] in Formula 6 any of R1, 1R1; R2, 1R2; R3, 1R9; and R14, 1R14 may together represent oxo, and


[0014] in Formula 9 any of R1, 1R1; R3, 1R3; R9, 1R9; and R14, 1R14 may together represent oxo


[0015] pharmacologically acceptable salts, esters, amides, solvates and isomers thereof.


[0016] In one embodiment of the invention the alkyl or cycloalkyl are substituted with one or more of the same or different of halo, oxo, hydroxy, alkoxy, aryloxy, acetoxy, carboxy, carbonyl, amino, amido, alkylamino, hydroxyamino, amine oxide groups, azo groups, cyano, hydrazino groups, hydrazide groups, hydrazone groups, imide groups, imino ether groups, ureyl groups, oxime, nitro, nitrate, nitrite, nitroso groups, nitrite, heterocyclic groups containing one or more heteroatoms selected from N, O or S, aralkyl groups, mono and polybenzoid aryl groups, substituted aryl groups, thiol, thioureyl, phenyl thiol groups, suiphonic acid groups, sulphoxide groups and sulphone groups.


[0017] In one embodiment of the invention the heterocyclic groups contain one or more heteroatoms selected from N, O or S.


[0018] In Formulae 5, 6 and 9 R4 to R7 may be hydrogen. In Formula 5, R11 to R14 and in Formulae 6 and 9, R10 to R13 may also be hydrogen.


[0019] In Formula 5, 6 and 9 preferred particularly because of pharmacological activity are those compounds in which X represents NR wherein R is acyl, alkyl or sulphonate groups.


[0020] Preferred particularly because of activity as anti-inflammatory agents are those compounds in which R represents acyl.


[0021] Preferred particularly because of activity as mast cell stabilising agents are those compounds in which R represents alkyl or sulphonate.


[0022] The invention relates to the compounds above for use particularly as smooth muscle relaxants and/or as mast cell stabilising agents and/or as anti-inflammatory agents.


[0023] The invention also relates to pharmaceutical compositions containing the compounds and to their use in methods of prophylaxis or treatment particularly to achieve smooth muscle relaxant activity and/or mast cell stabilising activity and/or anti-inflammatory activity.


[0024] The invention also relates to the compounds per se given in Appendix 2.


[0025] The invention also provides various processes for preparing the indane dimers as outlined in the claims. These processes are described in more detail below.


General Reaction Procedures

[0026] 1. Coupling of 1-amino and 2-amino indan derivatives to 3-bromo-indanone derivatives


[0027] The general reaction procedure for this reaction is as follows: Either 1-amino indan or 2-amino indan was dissolved in dry DCM and to this an equivalent of 3-bromo indanone was added. The reaction solution was then cooled to 0° C. and triethyl amine was added as the tertiary base. The solution was allowed to stir at 0° C. for 3 hours. The product was purified by flash column chromatography.


[0028] 2. N-Alkylation of the products from reaction procedure no. 1


[0029] The 1 or 2-aminoindan dimer was dissolved in DCM and to this was added triethylamine as the tertiary base. The desired alkylation agent was then added and the solution was allowed to stir at room temperature for 3 hours. The reaction mixture was then passed through a flash silica column and the product was eluted.


[0030] 3. N-sulfonylation of the products from reaction procedure no. 1


[0031] 1 or 2-aminoindan dimer was dissolved in DCM and to this was added p-toluenesulfonyl chloride and triethylamine. The solution was allowed to stir at 0° C. for 15 mins and then at room temperature for a further hour. Pyridine was then added to the reaction solution and the reaction was allowed to stir for a further 2 hours. The crude reaction mixture was passed through a flash silica column.


[0032] 4. N-acylation of the products from reaction procedure no. 1


[0033] 1 or 2 aminoindan dimer was dissolved in DCM and to this was added triethyiamine and acetic anhydride. To this stirring solution DMAP was added. The reaction was allowed to stir at room temperature for 3 hours. To the reaction mixture was added a 2M solution of aqueous HCl and the solvent was removed using toluene. To the crude material an aqueous solution of NaHCO3 was added and the product was extracted into ether, the organic layers were combined and the solvent removed. The crude material was then passed through a flash silica column.


[0034] 5. Sodium borohydride reduction of dimers


[0035] This reduction is particularly applicable to the reduction of the ketone functional group of the compounds. The reduction procedure was as follows.


[0036] The required dimer was dissolved in ethanol and sodium borohydride was added to the reaction in small portions over 10 mins. The reaction was then stirred at room temperature for 3 hours. The reaction mixture was poured onto water (20 ml) and extracted into diethyl ether (3×20 ml). Flash column chromatography over silica gel afforded the product.


[0037] 6. Cyanoborohydride reduction of dimers


[0038] This reduction procedure is particularly applicable to the reduction of the ketone functional group of the compounds. The reduction is as follows.


[0039] The required dimer was dispersed in 1,2-dichloroethane at room temperature. To this solution was added solid zinc iodide and sodium cyanborohydride. The reaction was stirred at reflux for 20 hours. The product was added to water and extracted into ethyl acetate. Flash column chromatography (eluent: petroleum ether:ethyl acetate, 9:1) was used to isolate the pure product.


[0040] 7. Hydrolysis of an ester


[0041] The required ester was dissolved in a solution of 1.45 M NaOH in THF:MeOH:H2O (6:3:2), which was then refluxed. After 20 minutes, TLC showed that the hydrolysis of the ester was complete. After cooling the reaction mixture, a saturated solution of aqueous ammonium chloride, aqueous HCl (2M) and ether was added. The organic layer was isolated and the aqueous layer was extracted with ether. The combined organic extracts were dried with Na2SO4 and filtered. Evaporation of the solvent, left the acid.


[0042] 8. Oxime synthesis


[0043] This procedure is particularly applicable for the synthesis of oxime derivatives of ketonic indane dimers which have hydrogens to the ketone. Generally the procedure was as follows.


[0044] The ketonic indanone dimer was dissolved in a solution of methanol:pyridine (4:1) and to this solution was then added hydroxylamine hydrochloride. Depending on the specific ketonic indan dimer, the reaction was carried out either at room temperature or at reflux conditions.


[0045] 9. O-alkylation of the oxime


[0046] This procedure is particularly applicable to O-alkylation of the oxime derivatives synthesised. Generally the procedure was as follows.


[0047] A solution of the oxime indane dimer was dissolved in ether:tert-butanol 3:1. Benzyl bromide was generally set as the alkylating reagent and it was added to the reaction mixture. Potassium tert-butoxide 1 eq. was added dropwise to this solution at room temperature. After workup using aqueous ammonium chloride and ether the desired oxime ether was isolated after chromatography.


[0048] 10. Indan ether dimers


[0049] This procedure is particularly applicable for the self coupling of two 1-indanol molecules to give indan ether dimeric compounds with the loss of water.


[0050] The desired 1-indanol derivative was dissolved in DCM at 0° C. and an equivalent of methane sulfonyl chloride or methane sulfonic anhydride was added to the reaction mixture. N,N-diisopropylethyl amine was added dropwise as the tertiary base. The reaction mixture was left stirring for either at 0° C. or at room temperature, depending on the particular 1-indanol.


[0051] 11. Acetylation of the hydroxyl indan-dimers


[0052] Generally the procedure was to dissolve the compound for acetylation in DCM and to use acetic anhydride as the acetylating reagent with triethylamine as tertiary base and DMAP as the acylation catalyst.
3


[0053] To a solution of 3-bromo-indan-1-one (200 mg, 0.952 mmol) and 1-aminoindan (130 mg, 0.952 mmol) in dry DCM (10 ml) at 0° C. was added triethylamine (0.19 g, 0.26 ml, 1.90 mmol). The solution was allowed to stir at 0° C. for 3 hours. The crude reaction mixture was passed through a plug of silica, eluting with petroleum ether:ethyl acetate (4:1). 5C3 was isolated as a white solid (150 mg, 60%).


[0054]

1
H NMR (CDCl3, 300 MHz) δH 1.77-1.89 (1H, m, CH of CHCH2CH2), 2.43-2.53 (1H, m, CH of CHCH2CH2), 2.58 (1H, dd, J=3.4 Hz & 18.5 Hz, CH of CHCH2), 2.79-2.89 (1H, m, CH of CHCH2CH2), 2.99-3.04 (1H, m, CH of CHCH2CH2), 3.09 (1H, dd, J=6.7 Hz & 18.7 Hz, CH of CHCH2), 4.43 (1H, t, J=6.7 Hz, CHCH2CH2), 4.65 (1H, q, J=3.5 Hz & 6.7 Hz, CHCH2), 7.21-7.27 (3H, m, 3×Ar—H), 7.41-7.47 (2H, m, 2×Ar—H), 7.65 (1H, dt, J=1.2, 7.7 Hz, 1×Ar—H), 7.75 (2H, 2 overlapping t, 2×Ar—H). 13C NMR (CDCl3, 75.47 MHz) δC 30.4, 36.0, 46.8 (3×CH2), 52.2, 62.5(2×CH), 123.3, 124.1, 124.9, 126.0, 126.3, 127.6, 128.6, 134.8 (8×Ar—CH) , 136.6, 143.4, 145.3, 156.6 (4×Ar—C), 204.6 (C═O).


[0055] Coupling of S-(+)-1-aminoindan to 3-bromoindanone to give two diastereomers of 5C3 which are called 5C3 bottom S and 5C3 top S
4


[0056] 3-bromoindanone (780 mg, 3.73 mmol) was placed in a dry flask with DCM (10 ml). To this was added S (+)-1-aminoindane (500 mg, 3.78 mmol) and triethylamine (750 mg, 0.96 ml, 7.42 mmol). The solution was allowed to stir at 0° C. for 2 hours. The crude reaction mixture was passed through a plug of silica, eluting the products with petroleum ether:ethyl acetate (7:3). The top diastereomer was obtained after evaporation of the eluent and was further purified by washing the solid with petroleum ether. The bottom diastereomer fraction was found to be insoluble in ether and this was used as a method of purification. Combined yield was recorded as (660 mg, 68.9%).


[0057] BOTTOM (S) diastereomer 5C3 bottom S


[0058]

1
H NMR (CDCl3, 300 MHz) δH 1.63 (1H, s, NH), 1.76-1.88 (1H, m, 1H of CHCH2CH2), 2.42-2.52 (1H, m, 1H of CHCH2CH2), 2.53 & 2.60 (1H, 2×d, J=3.5 Hz, H of CHCH2CO), 2.78-2.88 (1H, q, J=7.7 Hz, H of CHCH2CH2), 2.98-3.04 (1H, m, H of CHCH2CH2), 3.06 & 3.11 (1H, 2×d, J=6.6 Hz, H of CHCH2CO), 4.42 (1H, t, J=6.7 Hz, CHCH2CH2), 4.61 (1H, q, J=3.3 & 6.6 Hz, CHCH2CO), 7.21-7.28 (3H, m, 3×Ar—H), 7.41-7.46 (2H, superimposed t, J=0.9 & 7.9 Hz, 2×Ar—H), 7.65 (1H, 2×t, J=0.9 & 7.9 Hz, 1×Ar—H), 7.72-7.82 (2H, m, 2×Ar—H). 13C NMR (CDCl3, 75.47 MHz) δC 30.3 (CH2CH2CHNH), 36.0 (CH2CH2CHNH), 46.7 (NHCHCH2CO), 55.1 (NHCHCH2CO), 62.4 (CH2CH2CHNH), 123.1, 124.0, 124.8, 126.0, 126.2, 127.5, 128.5, 134.7 (8×Ar—CH), 136.5, 143.3, 145.3, 156.5 (4×Ar—C), 204.5 (C═O).


[0059] TOP (S) diastereomer 5C3 top S


[0060]

1
H NMR (CDCl3, 300 MHz) δH 1.70 (1H, s, NH), 1.94-2.00 (1H, q, J=7.1 z, H of CHCH2CH2), 2.51-2.58 (1H, m, 1H of CHCH2CH2), 2.61 & 2.67 (1H, dd, J=2.8, 18.4 Hz, H of CHCH2CO), 2.83-2.93 (1H, q, J=7.7 Hz, H of CHCH2CH2), 3.03 (1H, d, J=6.6 Hz, H of CHCH2CH2), 3.10 (1H, d, J=6.4 Hz, H of CHCH2CO), 4.39 (1H, t, J=6.6 Hz, CHCH2CH2), 4.64 (1H, t, J=2.8 Hz, CHCH2CO), 7.19-7.31 (4H, m, 4×Ar—H), 7.44 (1H, t, J=7.4 Hz, 1×Ar—H), 7.58-7.69 (2H, m, 2×Ar—H), 7.75-7.82 (1H, d, 1×Ar—H).


[0061]

13
C NMR (CDCl3, 75.47 MHz) δC 30.4 (CH2CH2CHNH), 34.3 (CH2CH2CHNH), 45.8 (NHCHCH2CO), 54.0 (NHCHCH2CO), 61.6 (CH2CH2CHNH), 123.4, 123.9, 124.8, 125.8, 126.5, 127.7, 128.7, 134.9 (8×Ar—CH), 136.9, 143.5, 144.8, 156.2 (4×Ar—C), 204.7 (C═O).


[0062] Coupling of R-(+)-1-aminoindan to 3-bromoindanone to give two diastereomers of 5C3 which are called 5C3 bottom R and 5C3 top R
5


[0063] 3-bromoindanone (780 mg, 3.73 mmol) was placed in a dry flask with DCM (10 ml). To this was added R (−)-1-aminoindane (500 mg, 3.73 mmol) and triethylamine (750 mg, 0.96 ml, 7.46 mmol). The solution allowed to stir at 0° C. for 2 hours. The crude reaction mixture was passed through a flash silica column, eluting the products with petroleum ether:ethyl acetate (7:3). The top diastereomer was obtained after evaporation of the eluent and was further purified by washing the solid with petroleum ether. The bottom diastereomer fraction was found to be insoluble in ether and this was used as a method of purification of the bottom spot. Combined yield for these compounds (680 mg, 68.9%).


[0064] Bottom (R) diastereomer 5C3 bottom R


[0065]

1
H NMR (CDCl3, 300 MHz) δH 1.63 (1H, s, NH), 1.83-1.85 (1H, m, 1H of CHCH2CH2), 2.42-2.52 (1H, m, 1H of CHCH2CH2), 2.53 & 2.60 (1H, 2×d, J=3.5 Hz, H of CHCH2CO), 2.78-2.88 (1H, q, J=7.7 Hz, H of CHCH2CH2), 2.98-3.04 (1H, m, H of CHCH2CH2), 3.06 & 3.11 (1H, 2×d, J=6.6 Hz, H of CHCH2CO), 4.42 (1H, t, J=6.7 Hz, CHCH2CH2), 4.61 (1H, q, J=3.3 & 6.6 Hz, CHCH2CO), 7.21-7.28 (3H, m, 3×Ar—H), 7.41-7.46 (2H, superimposed t, J=0.9 & 7.9 Hz, 2×Ar—H), 7.65 (1H, 2×t, J=0.9 & 7.9 Hz, 1×Ar—H), 7.72-7.72 (2H, m, 2×Ar—H).


[0066]

13
C NMR (CDCl3, 75.47 MHz) δC 30.3 (CH2CH2CHNH), 35.9 (CH2CH2CHNH), 46.6 (NHCHCH2CO), 55.0 (NHCHCH2CO), 62.4 (CH2CH2CHNH), 123.0, 123.9, 124.7, 125.9, 126.1, 127.4, 128.4, 134.6 (8×Ar—CH), 136.4, 143.2, 145.2, 156.4 (4×Ar—C), 204.4 (C═O).


[0067] Top (R) diastereomer 5C3 Top R


[0068]

1
H NMR (CDCl3, 300 MHz) δH 1.70 (1H, s, NH), 1.94-2.00 (1H, q, J=7.1 z, H of CHCH2CH2), 2.51-2.58 (1H, m, 1H of CHCH2CH2), 2.61 & 2.67 (1H, dd, J=2.8 Hz, H of CHCH2CO) 2.83-2.93 (1H, q, J=7.7 Hz, H of CHCH2CH2), 3.03 (1H, d, J=6.6 Hz, H of CHCH2,CH2), 3.10 (1H, d, J=6.4 Hz, H of CHCH2CO), 4.39 (1H, t, J=6.6 Hz, CHCH2CH2), 4.64 (1H, t, J=2.8 Hz, CHCH2CO), 7.19-7.31 (4H, m, 4×Ar—H), 7.44 (1H, t, J=7.4 Hz, 1×Ar—H), 7.58-7.69 (2H, m, 2×Ar—H), 7.75-7.82 (1H, d, J=7.5Hz, 1×Ar—H).


[0069]

13
C NMR (CDCl3, 75.47 MHz) δC 30.3 (CH2CH2CHNH), 34.2 (CH2CH2CHNH), 45.8 (NHCHCH2CO ), 53.9 (NHCHCH2CO), 61.6 (CH2CH2CHNH), 123.3, 123.8, 124.7, 125.7, 126.4, 127.6, 128.6, 134.8 (8×Ar—CH), 136.8, 143.4, 144.8, 156.2 (4×Ar—C), 204.6 (C═O).
6


[0070] Dimer 5C3 (100 mg, 0.38 mmol) was dissolved in ethanol (4 ml) and ethyl acetate (8 ml). To this solution sodium borohydride (0.1 g, 2.63 mmol) was added to the reaction in small portions over 10 minutes. The reaction was stirred at room temperature for 3 hours. Evaporation of the solvent left a white solid and to this was added DCM. Filtration followed by evaporation left a mobile oil which was taken up in the minimum amount of DCM and passed through a plug of silica, eluting with petroleum ether (b.p. 40-60° C.):ethyl acetate, 98:2) afforded 5C4 as a mixture of diastereomers (25 mg, 25%).


[0071]

1
H NMR (CDCl3, 300 MHz) δH:


[0072] 1.84-1.90 (1H, m, CH of CHCH2CH2)


[0073] 1.93 (1H, t, J=3.7 Hz CH of CHCH2CH2)


[0074] 2.06-2.37 (1H, m, CH of CHCH2CH2)


[0075] 2.48-2.68 (2H, m, CH of NHCH2)


[0076] 2.86 (1H, q, J=8.5 Hz, CH of CHCH2)


[0077] 2.98-3.01 (1H, m, CH of CHCH2CH2)


[0078] 4.63 (1H, t, J=5.9, CHCH2CH2)


[0079] 5.02-5.31 (1H, 2×m, CH2CHOH)


[0080] 7.18-7.50 (8H, m, 8×Ar—H)


[0081]

13
C NMR (CDCl3, 75.47 MHz) δC 30.3, 34.3, 45.0, (CH2), 59.1, 61.5, (CHNH), 74.5, (CHOH), 124.0, 124.1, 124.2, 124.3, 124.6, 124.7, 124.8, 126.3, 126.4, 127.3, 127.4, 127.5, 128.0, 128.0, 128.1, 128.3, 128.4, 128.5, 128.6 (8×Ar—CH), 143.2, 143.2, 143.3, 143.3, 143.5, 143.5, 144.1, 144.5, 144.5, 144.6, 144.7, 144.8, 144.8, 145.0, 145.3, 145.4, 145.6, 145.7 (4×Ar—C).
7


[0082] To a solution of dimer 5C3 (200 mg, 0.76 mmol) in DCM (5 ml) was added triethylamine (0.09 g, 0.13 ml, 0.91 mmol) and methyiodide (1.08g, 0.48 ml, 7.61 mmol). The solution was allowed to stir at room temperature for 2 hours. The solvent was removed and the crude reaction mixture was passed through a plug of silica, eluting with petroleum ether:ethyl acetate (8:2) to yield dimer 5C5 as a yellow oil (0.80 g, 38%).


[0083]

1
H NMR (CDCl3, 300 MHz) δH 1.89 & 2.27 (3H, 2×s, CH3), 1.98-2.19 (2H, m, CHCH2CH2), 2.55 & 2.69 (1H, dd J=6.9Hz, CH of CHCH2CO), 2.74-2.89 (2H, m, CH of CHCH2CO & CH of CHCH2CH2), 2.91-3.05 (1H, m, CH of CHCH2CH2), 4.34 & 4.63 (1H, 2×t, J=7.7Hz, NCH3CHCH2CH2), 4.55 & 4.77 (1H, 2×dd, J=6.9Hz, CHCHCO), 7.20-7.29 (3H, m, 3×Ar—H), 7.44 (1H, m, 1×Ar—H) , 7.52 (1H, m, 1×Ar—H) , 7.67 (1H, dabq, J=1.2 Hz & 7.4 Hz, 1×Ar—H), 7.75 (1H, t, J=6.7Hz, 1×Ar—H), 7.84 (1H, dt, J=0.9 Hz & 7.7 Hz, 1×Ar—H).


[0084]

1
C NMR (CDCl3, 75.47 MHz) δC 26.5, 27.1 (CH2), 30.4, 31.8 (CH2), 37.9, 38.8 (CH2), 27.9, 34.2, (CH3), 58.0, 61.7 (CH), 66.9, 69.9 (CH), 122.7, 122.8, 124.4, 124.5, 124.7, 126.1, 126.2, 126.3, 126.3, 126.3, 127.3, 127.3, 128.3, 128.3, 134.7, 134.7 (8×Ar—CH), 136.8, 136.9, 142.9, 143.1, 143.7, 143.9, 156.0, 156.3 (4×Ar—C), 204.7, 204.7 (C═O).
8


[0085] To a solution of dimer 5C3 (200 mg, 0.76 mmol) in DCM (5 ml) was added triethylamine (0.09 g, 0.13 ml, 0.91 mmol) and allyl bromide (0.90 g, 0.65 ml, 7.61 mmol). The solution was allowed to stir at room temperature for 2 hours. The solvent was removed and the crude reaction mixture was passed through a plug of silica, eluting with petroleum ether:ethyl acetate (8:2) to yield dimer 5C6 as a yellow oil (185 mg, 80%).


[0086]

1
H NMR (CDCl3, 300 MHz) δH 2.05 (2H, br m, CH2), 2.47 (1H, dd, C=9.5 Hz, CH of CH2), 2.72 (2H, m, CH2CH═CH2), 3.11 (3H, br m, CH of CH2′s), 4.40, 4.50 (1H, 2×t, J=3.0 Hz, NCHC2,CH2), 4.65 (1H, m, CHCH2CO), 4.97, 5.00, 5.10, 5.11, 5.14, 5.18, 5.27, 5.33 (2H, 8×br m, CH2CH═CH2), 5.80 (1H, br m, CH2CH═CH2), 7.20 (3H, br m, 3×Ar—H), 7.40, 7.50 (2H, 2×br m, 2×Ar—H), 7.64 (1H, br m, 1×Ar—H), 7.74, 7.86 (2H, 2×br m, 2×Ar—H).


[0087]

13
C NMR (CDCl3, 75.47 MHz) δC 27.9, 29.6 (CH2), 30.1, 30.3, 30.6 (CH2), 40.1, 41.3 (CH2), 49.5, 49.6 (CH2), 55.8 57.0 (CH), 63.6, 64.6 (CH), 116.2, 116.8 (C═CH2), 122.9, 123.0, 124.1, 124.6, 124.7, 124.9, 126.2, 126.2, 126.4, 126.6, 127.3, 127.6, 128.4 (8×Ar—CH & 1×CH═CH2), 134.5, 134.9, 137.0, 137.2, 137.4, 143.0, 143.3, 144.0, 144.5, 156.7 (4×Ar—C), 204.9 (C═O).


[0088] Alkylation of 5C3 bottom R diastereomer with allyl bromide to yield 5C6 bottom S diastereomer
9


[0089] Dimer 5C3 Bottom R (200 mg, 0.76 mmol) was dissolved in DCM (2 ml) in a round bottomed flask and this was allowed to stir. To this solution was added triethylamine (0.09 g, 0.13 ml, 0.94 mmol) and allyl bromide (0.91 g, 0.65 ml, 7.38 mmol). The reaction was allowed to stir at room temperature for 8 hours. The crude reaction mixture was passed through a plug of flash silica, eluting with petroleum ether:ethyl acetate 7:3. On evaporation of the solvent a white solid 5C6 Bottom R was obtained (193 mg, 83.5%).


[0090]

1
H NMR (CDCl3, 300 MHz) δH 1.95-2.15 (2H, br m, CHCH2CH2), 2.54 (2H, 2×ab q, J=18.9 & 16.9 Hz, CHCH2), 2.74 & 2.94 (2H, m CHCH2CH2), 3.10 & 3.23 (2H, 2×ab q, J=14.7, 16.0, 1.5 & 1.3 Hz, CH2CHCH2), 4.50 (1H, t, J=7.2 Hz, CHCH2CH2), 4.66 (1H, q, J=6.6 Hz, CHCH2CO), 4.97 & 5.18 (1H, 2×dd, J=1.7 & 59.3, CH of CH2CH═CH2), 5.01 & 5.11 (1H, 2×dd, J=1.5 & 32.0 Hz, CH of CH2CH═CH2), 5.73 (1H, m, CH2CHCH2), 7.20 (3H, m, 3×Ar—H), 7.39 (2H, m, 2×Ar—H), 7.62 (1H, dt, J=1.32 & 7.26 Hz, 1×Ar—H), 7.74 (2H, m, 2×Ar—H).


[0091]

13
C NMR (CDCl3, 75.47 MHz) δC 30.1, 30.5, 41.3, 49.4, 116.1 (5×CH2), 57.1, 64.6 (2×CH), 122.9, 124.8, 124.8, 126.2, 126.6, 127.5, 128.3, 134.4, 137.4 (8×Ar—CH & 1×CH═CH2), 137.1, 143.3, 144.0, 156.6 (4×Ar—C), 204.7 (C═O).


[0092] Alkylation of 5C3 bottom S diastereomer with allyl bromide to yield 5C6 bottom S
10


[0093] 5C3 Bottom S (200 mg, 0.76 mmol) was dissolved in DCM (2 ml) in a round bottomed flask and this was allowed to stir. To this was added triethylamine (0.09 g, 0.13 ml, 0.94 mmol) and allyl bromide (0.91 g, 0.65 ml, 71.36 mmol). The reaction was allowed to stir at room temperature for 8 hours. The crude reaction mixture was passed through a plug of flash silica, eluting with petroleum ether:ethyl acetate 7:3. On evaporation of the solvent a white solid 5C6 Bottom S was obtained as a yellow solid (205 mg, 88.7%)


[0094]

1
H NMR (CDCl3, 300 MHz) δH 1.95-2.15 (2H, br m, CHCH2CH2), 2.54 (2H, 2×ab q, J=18.9 & 16.9 Hz, CHCH22), 2.74 & 2.94 (2H, m, CHCH2CH), 3.11 & 3.25 (2H, 2×ab q, J=14.5 & 14.7 Hz, CH2CHCH2), 4.51 (1H, t, J=7.2 Hz, CHCH2CH2), 4.67 (1H, m, CHCH2CO), 4.99 & 5.15 (2H, 2×dd, J=9.9 & 17.1 Hz, CH2CH═CH2), 5.73 (1H, m, CH2CHCH2), 7.20 (3H, m, 3×Ar—H) 7.41 (2H, m, 2×Ar—H), 7.63 (1H, t, J=7.2 Hz, 1×Ar—H), 7.74 (2H, m, 2×Ar—H).


[0095]

13
C NMR (CDCl3, 75.47 MHz) δC 30.1, 30.5, 41.2, 49.4 , 116.1 (5×CH2), 57.0, 64.6 (2×CH), 122.9, 124.8, 124.8, 126.2, a126.5, 127.5, 128.3, 134.4, 137.4 (8×Ar—CH & 1 ×CH═CH2), 137.1, 143.2, 143.9, 156.6 (4×Ar—C), 204.7 (C═O).


[0096] Alkylation of 5C3 Top R diastereomer with allyl bromide to yield 5C6 Top R
11


[0097] Dimer 5C3 Top R (200 mg, 0.76 mmol) was dissolved in DCM (2 ml) in a round bottomed flask and this was allowed to stir. To this was added triethylamine (0.09 g, 0.13 ml, 0.94 mmol) and allyl bromide (0.91 g, 0.65 ml, 7.35 mmol). The reaction was allowed to stir at room temperature for 8 hours. The crude reaction mixture was passed through a plug of flash silica, eluting with petroleum ether:ethyl acetate 7:3. On evaporation of the solvent a white solid 5C6 Top R was obtained (189 mg 81.8%).


[0098]

1
H NMR (CDCl3, 300 MHz) δH 1.87-2.16 (2H, br m, CHCH2CH2), 2.72 (2H, m, CHCH2), 2.72 (1H, m, CH of CHCH2CH2), 2.93 (1H, m, CH of CHCH2CH2), 2.95-3.15 (2H, m, CH2CH═CH2), 4.41 (1H, t, J=7.7 Hz, CHCH2CH2), 4.64 (1H, t, J=5.0 Hz, CHCH2CO), 5.13-5.29 (2H, 2×dd, J=10.1 & 17.1 Hz, CH2CH═CH2), 5.85 (1H, m, CH2CHCH2), 7.23 (3H, m, 3×Ar—H), 7.42 (1H, t, J=7.3 Hz, 1×Ar—H), 7.52 (1H, d, J=7.0 Hz, 1×Ar—H), 7.66 (1H, t, J=7.3 Hz, 1×Ar—H), 7.73 (1H, d, J=7.4 Hz, 1×Ar—H), 7.86 (1H, d, J=7.4 Hz, 1×Ar—H).


[0099]

13
C NMR (CDCl3, 75.47 MHz) δC 27.9, 30.3, 40.1, 49.6, 116.8 (5×CH2), 55.9, 63.7 (2×CH), 122.9, 124.2, 124.5, 126.2, 126.4, 127.4, 28.4, 134.9, 137.0 (8×Ar—CH & 1×CH═CH2), 137.3, 143.0, 144.5, 156.7 (4×Ar—C), 204.8 (C═O).


[0100] Alkylation of 5C3 Top S diastereomer with allyl bromide to yield 5C6 Top S diastereomer
12


[0101] Dimer 5C6 Top S (200 mg, 0.76 mmol) was dissolved in DCM (2 ml) in a round bottomed flask and this was allowed to stir. To this was added triethylamine (0.9 g, 0.13 ml, 0.94 mmol) and allyl bromide (0.91 g, 0.65 ml, 7.35 mmol). The reaction was allowed to stir at room temperature for 8 hours. The crude reaction mixture was passed through a plug of flash silica, eluting with petroleum ether:ethyl acetate 7:3. On evaporation of the solvent a white solid 5C6 Top S was obtained (197 mg, 85.3%).


[0102]

1
H NMR (CDCl3, 300 MHz) δ 1.91-2.15 (2H, br m, CHCH2CH2), 2.72 (2H, m, CHCH2), 2.72 (1H, m, CH of CHCH2CH2), 2.93 (1H, m, CH of CHCH2CH2), 2.95-3.15 (2H, m, CH2CH═CH2), 4.41 (1H, t, J=7.7 Hz, CHCH2CH2), 4.64 (1H, t, J=5.0 Hz, CHCH2CO), 5.13-5.29 (2H, 2×dd, J=9.9 & 17.1 Hz, CH2CH═CH2), 5.84 (1H, m, CH2CHCH2), 7.19-7.26 (3H, br m, 3×Ar—H), 7.41 (1H, t, J=7.2 Hz, 1×Ar—H), 7.73 (1H, d, J=6.8 Hz, 1×Ar—H), 7.73 (1H, d, J=6.8 Hz, 1×Ar—H), 7.86 (1H, d, J=7.6 Hz, 1×Ar—H).


[0103]

13
C NMR (CDCl3, 75.47 MHz) δC 27.9, 30.2, 40.1, 49.6, 116.7 (5×CH2), 55.8, 63.6 (2×CH), 122.8, 124.1, 124.5, 126.1, 126.4, 127.3, 128.4, 134.8, 137.0 (8×Ar—CH & 1×CH═CH2), 137.2, 143.0, 144.4, 156.7 (4×Ar—C), 204.7 (C═O).
13


[0104] To a solution of dimer 5C3 (200 mg, 0.76 mmol) in DCM (5 ml) was added triethylamine (0.09 g, 0.13 ml, 0.91 mmol) and benzyl bromide (1.30 g, 0.90 ml, 7.61 mmol). The solution was allowed to stir at room temperature for 2 hours. The solvent was removed and the crude reaction mixture was passed through a plug of silica, eluting with petroleum ether:ethyl acetate (8:2) to yield 5C7 as a yellow oil (175 mg, 76%).


[0105]

1
H NMR (CDCl3, 300 MHz) δH 2.45, 2.76 (1H, 2×dd, J=7.1 Hz & 19.3 Hz, CH of COCH2CH), 2.63, 2.89 (1H, 2×dd, J=3.7 Hz & 19.3 Hz, CH of COCH2CH), 2.10, 2.78, 2.95 (4H, 3×br m, 2×CH2), 3.60 (1H, ab q, J=12.8 Hz & 17.9 Hz, H of PhCH2), 3.75 (1H, ab q, J=14.4 Hz & 52.8 Hz, CH of PhCH2) pair of diastereomers, 4.37, 4.42 (1H, 2×t, J=8.2 Hz & 7.3 Hz, NCHCH2CH2), 4.58, 4.64 (1H, 2×dd, J=7.0 Hz & 4.0 Hz, 3.8 Hz, 7.0 Hz, NCHCH2CO), 7.35, 7.65 (12H, 2×br m, 12×Ar—H), 7.83 & 7.98 (1H, 2×dd J=0.9 & 7.7 Hz, 1×Ar—H).


[0106]

13
C NMR (CDCl3, 75.47 MHz) δC 27.2 (29.6), 30.3 (30.6), 39.5 (41.3), 50.6 (50.7), (4×CH2), 55.6 (56.1), 63.4 (63.2), (2×CH), 122.8, 124.0, 124.5, 126.2, 126.3, 126.3, 126.8, 128.0, 128.0, 128.2, 128.2, 128.4, 134.7 (13×Ar—CH), 137.2 (137.2), 139.6 (139.3), 143.4 (143.1), 144.2 (143.6), 156.5 (156.2), (5×Ar—C), 204.6 (204.8), (C═O).
14


[0107] 5C3 (200 mg, 0.76 mmol) was dissolved in methanol and to this was added a 2M aqueous HCl (5 ml). Toluene was then added and the solvent evaporated to dryness to afford a yellow solid. The solid was then dissolved in water and ethyl acetate was added to remove any organic impurities which were present. The water phase was extracted and was evaporated to dryness. The solid was then dissolved in the minimum amount of methanol and ethyl acetate was added. The product was then allowed to crystallise out. 5C8 was then afforded as a white powder (205 mg, 90.31%).
15


[0108] 5C3 (200 mg, 0.76 mmol) was dissolved in DCM (5 ml) and to this was added triethylamine (1.54 g, 2.11 ml, 15.2 mmol) and acetic anhydride (1.55 g, 1.43 ml, 15.2 mmol). Then to this stirring solution DMAP (460 mg, 0.38 mmol) was added. The reaction mixture was allowed to stir at room temperature for 3 hours. To the reaction solution was added 2M aqueous HCl (5 ml) and 10 ml DCM. The organic layer was obtained and washed with water. To the organic was added to a 10% solution of NaHCO3 (30 ml). The organic phase was collected and the aqueous layer was washed with DCM. All the organic layers were combined and dried over Na2SO4. The crude reaction was then passed through a plug of flash silica, eluting with petroleum ether 100% and grading to petroleum ether:ethyl acetate 1:4. The product 5C9 was obtained as a brownish solid (145 mg, 62.7%).
16


[0109] To a stirring solution of 5C3 (200 mg, 0.76 mmol) and p-toluenesulfonyl chloride (1.45 g, 7.60 mmol) in DCM (10 ml) was added triethylamine (0.09 g, 0.13 ml, 0.91 mmol). The solution was allowed to stir at 0° C. for 15 mins. The solution was allowed to stir at room temperature for a further hour then to this solution was added pyridine (0.26 ml) and the reaction was allowed to stir for a further 2 hours. The crude reaction mixture was passed through a flash silica column, eluting with petroleum ether:ethyl acetate 1:4. 5C10 was isolated as a yellow solid (284 mg, 89.3%).
17


[0110] Compound 5C6 (100 mg) was dissolved in dry methanol (5 ml), dry HCl gas was bubbled through the solution for 5 mins. The methanol was then evaporated off and a white solid remained. The solid was then partioned between water and ether. The aqueous layers were combined and evaporated to dryness. The white solid 5C11 which remained was dried on the vac line (97%).
18


[0111] To a solution of 1-indanol 90.25 g, 1.87 mmol) in DCM (15 ml) at 0° C. was added methane sulphonic anhydride (0.325 g, 1.87 mmol) and diisopropyethylamnine (0.24 g, 1.87 mmol). The solution was left stirring at 0° C. for 5 hrs. The solvent was then evaporated to leave a mobile oil. The oil was then passed through a plug of silica. Evaporation of the relevant eluent gave a compound as a mobile oil which slowly crystallised overnight to give white crystals (0.20 g).


[0112]

1
H NMR (CDCl3, 300 MHz) all 2.21 (2H, m, CH2), 2.53 (2H, m, CH2), 2.92 (2H, m, CH2), 3.21 (2H, mn, CH2), 5.28 (2H, br m, CH2CHOCHCH2), 7.32 (6H, br m, 6×Ar—H), 7.51 (1H, d, J=6.8 Hz, 1×Ar—H), 7.55 (1H, d, J=7.0 Hz, 1×Ar—H) .


[0113]

13
C NMR (CDCl3, 75.47MHz) δC 29.9, 29.9, 32.2, 33.8 (CH2), 81.6, 82.2 (CH2CHOCHCH2), 124.6, 124.6, 124.7, 124.9, 126.2, 126.3, 127.9, 128.0 (8×Ar—H), 143.3, 143.3 (2×Ar—C), 143.5, 143.6 (2×Ar—C).
19


[0114] To a solution of 3-bromo-indan-1-one (200 mg, 0.952 mmol) and 2-aminoindan hydrochloride (160 mg, 0.952 mmol) in dry DCM (10 ml) at 0° C. was added triethylamine (0.19 g, 0.26 ml, 1.90 mmol). The solution was allowed to stir at 0° C. for 3 hours. The crude reaction mixture was passed through a plug of silica, eluting with petroleum ether:ethyl acetate (4:1). Salt formation 6C4 was isolated as a brown solid (150 mg, 60%).


[0115]

1
H NMR (CDCl3, 300 MHz) δH 2.54 (1H, dd, J=3.2 Hz & 18.7 Hz, CH of CHCH2CO), 2.81 (1H, dd, J=6.8 Hz & 45.1 Hz, CH of CHCH2), 2.86 (1H, dd, J=6.9 Hz & 14.1 Hz, CH of CHCH2), 3.0 (1H, dd, J=6.7 Hz & 18.5 Hz, CH of CHCH2CO), 3.18 (1H, dd, J=6.9 Hz & 19.1 Hz, CH of CHCH2), 3.22 (1H, dd, J=6.9 Hz & 19.3 Hz, CH of CHCH2), 3.81 (1H, quin, J=7.0 Hz, CHCH2), 4.51 (1H, q, J=3.1 Hz & 6.7 Hz, CHCH2CO), 7.14-7.29 (4H, m, 4×Ar—H), 7.42-7.45 (1H, m, 1×Ar—H), 7.59-7.75 (3H, m, 3×Ar—H) .


[0116]

13
C NMR (CDCl3, 75.47 MHz) δC 39.5, 40.1, 45.0 (3×CH2), 54.1, 57.8 (2×CH), 122.7, 124.0, 124.1, 125.4, 125.9, 125.9, 128.1, 134.2 (8×Ar—CH), 136.1, 140.7, 140.9, 155.5 (4×Ar—C), 203.9 (C═O).
20


[0117] Dimer 6C4 (100 mg, 0.38 mmol) was dissolved in ethanol (4 ml) and ethyl acetate (8 ml). To this sodium borohydride (0.1 g, 2.63 mmol) was added to the reaction in small portions over 10 minutes. The reaction was stirred at room temperature for 3 hours. Evaporation of the solvent left a white solid and to this was added DCM. Filtration followed by evaporation left a mobile oil, which was then taken up in the minimum amount of DCM and passed through a plug of silica, eluting with petroleum ether (b.p. 40-60° C.):ethyl acetate, 98:2) afforded dimer 6C5 (39 mg, 39%).


[0118]

1
H NMR (CDCl3, 300 MHz) δH 1.90 & 1.94 (1H, 2×t, J=3.5 Hz, CH of CH2CHOH), 2.55 & 2.59 (1H, 2×t, J=5.9 Hz, CH of CH2CHOH), 2.77-2.87 (2H, m, CHCH2), 3.18-3.29 (2H, m, CHCH2), 3.78-3.85 (1H, quin, J=6.7 Hz, CHCH2), 4.25 (1H, q, J=3.5 Hz & 5.7 Hz, CHCH2CHOH), 5.03 (1H, q, J=3.4 Hz & 6.0 Hz, CH2CHOH), 7.15-7.26 (4H, m, 4×Ar—H), 7.29-7.38 (3H, m, 3×Ar—H), 7.47-7.49 (1H, m, 1×Ar—H).
21


[0119] To a solution of dimer 6C5 (200 mg, 0.76 mmol) in DCM (5 ml) was added triethylamine (0.09 g, 0.13 ml, 0.91 mmol) and methyl iodide (1.08 g, 0.48 ml, 7.61 mmol). The solution was allowed to stir at room temperature for 2 hours. The solvent was removed and the crude reaction mixture was passed through a flash silica column, eluting with petroleum ether:ethyl acetate (8:2) to yield dimer 6C6 as a yellow oil (0.80 g, 38%).


[0120]

1
H NMR (CDCl3, 300 MHz) δH 2.03 (3H, s, NCH3), 2.57 (1H, dd, J=7.1 Hz & 18.9 Hz, CH of CHCH2), 2.77 (1H, dd, J=3.8 Hz, & 18.9 Hz, CH of CHCH2), 2.93-3.17 (4H, m, 2×CH2), 3.46-3.57 (1H, quin, CHCH2), 4.78 (1H, q, J=3.5 Hz, CHCH2), 7.13-7.21 (4H, m, 4×Ar—H), 7.43 (1H, t, J=7.0 Hz, 1×Ar—H), 7.61 (1H, dt, J=1.0 Hz & 7.8 Hz, 1×Ar—H), 7.72 (2H, t, J=6.0 Hz, 2×Ar—H).


[0121]

13
C NMR (CDCl3, 75.47 MHz) δC 33.1 (CH3), 35.8, 37.7, 38.0 (3×CH2), 59.6, 65.1 (2×CH), 123.0, 124.3, 124.4, 126.3, 126.4, 126.4, 129.0, 134.7 (8×Ar—CH), 137.2, 141.2, 141.4, 155.3 (4×Ar—C), 205.0 (C═O).
22


[0122] To a solution of 6C4 (200 mg, 0.76 mmol) in DCM (5 ml) was added triethylamine (0.09 g, 0.13 ml, 0.91 mmol) and allyl bromide (0.90 g, 0.65 ml, 7.61 mmol). The solution was allowed to stir at room temperature for 2 hours. The solvent was removed and the crude reaction mixture was passed through a plug of silica, eluting with petroleum ether:ethyl acetate (8:2) to yield 6C7 as a yellow oil (0.80 g, % yield).


[0123]

1
H NMR (CDCl3, 300 MHz) δH 2.58 (1H, dd, J=6.7 Hz & 18.8 Hz, CH of CHCH2CO), 2.68 (1H, dd, J=4.2 Hz & 18.8 Hz, CH of CHCH2CO), 2.9-3.09 (6H, m, 3×CH2), 3.72-3.82 (1H, quin, J=7.6 Hz, CHCH2), 4.67 (1H, dd, J=6.7 Hz & 4.2 Hz, CHCH2CO), 5.05 & 5.08 (2H, 2×dd, J=10.2 Hz & 1.8 Hz & 1.3 Hz, CH2CH═CH2), 5.80 (1H, m, CH2CHCH2), 7.11-7.21 (4H, m, 4×Ar—H), 7.42 (1H, dt, J=7.8 Hz, 1×Ar—H), 7.64 (1H, dt, J=7.7 Hz & 1.2 Hz 1×Ar—H), 7.74 (2H, dt, J=7.6 Hz, 2×Ar—H).


[0124]

13
C NMR (CDCl3, 75.47 MHz) δC 36.0, 38.7, 39.2, 50.2, 116.3 (5×CH2), 57.4, 61.0 (2×CH), 122.9, 124.2, 124.6, 126.3, 126.4, 128.5, 134.8, 137.2 (8×Ar—CH), 126.4, 141.4, 141.6, 156.4 (4×Ar—C), 204.7 (C═O).
23


[0125] To a solution of dimer 6C4 (200 mg, 0.76 mmol) in DCM (5 ml) was added triethylamine (0.09 g, 0.13 ml, 0.91 mmol) and benzyl bromide (1.30 g, 0.90 ml, 7.61 mmol). The solution was allowed to stir at room temperature for 2 hours. The solvent was removed and the crude reaction mixture was passed through a plug of silica, eluting with petroleum ether:ethyl acetate (8:2) to yield 6C8 as a yellow oil (0.80 g, 30%).


[0126]

1
H NMR (CDCl3, 300 MHz) δH 2.63 (1H, dd, J=7.0 Hz & 18.8 Hz, CH of CHCH2CO), 2.81 (1H, dd, J=3.8 Hz & 18.8 Hz, CH of CHCH2CO), 2.95-3.13 (4H, m, 2×CH2), 3.58-3.71 (2H, m, CH2Ph), 3.76 (1H, t, J=7.6 Hz, CHCH2CO), 4.65-4.68 (1H, m, CHCH2), 7.14-7.48 (10H, m, 10×Ar—H), 7.67 (1H, dt, J=1.2 Hz, 7.68 Hz, 1×Ar—H), 7.76 (1H, d, J=7.7 Hz, 1×Ar—H), 7.87 (1H, d, J=7.7 Hz, 1×Ar—H).


[0127]

13
C NMR (CDCl3, 75.47 MHz) δC 35.2, 38.6, 38.7, 50.9 (4×CH2), 56.9, 60.4 (2×CH), 122.8, 124.0, 124.5, 126.2, 126.3, 126.8, 128.0, 128.2, 128.2, 128.4, 128.6, 128.8, 134.7 (13×Ar—CH), 137.1, 139.9, 141.2, 141.4, 156.1 (5×Ar—C), 204.5 (C═O).
24


[0128]

6
C4 (100 mg, 0.38 mmol) was dissolved in methanol. To this was added a 2M aqueous HCl solution (5 ml), the flask was stirred vigorously and toluene was added to the flask and it was evaporated to dryness. The salt of this dimer was then extracted into water and evaporation of the water left 6C9 as a yellow solid. This was then partitioned between ethyl acetate and water. The aqueous layer was isolated and washed with ethyl acetate. Evaporation of the aqueous layer left the BRA 128 as a white solid, which was then recrystallised from water and methanol to yield white crystals of 6C9 (84 mg, 72.4%).


[0129]

1
H NMR (D2O, 300 MHz) δH 2.89 (2H, d, J=19.4 Hz, CHCH2CO), 3.07 & 3.14 (1H, d, J=6.2 Hz, CH of CH2CHCH2), 3.18 & 3.26 (1H, d, J=5.5 Hz, CH of CH2CHCH2), 3.22 (1H, d, J=8.1 Hz, CH of CH2CHCH2), 3.31-3.42 (1H, q, J=8.1 Hz, CH of CH2CHCH2), 4.26 (1H, t, J=6.8 Hz, CH2CHCH2), 5.18 (1H, d, J=6.4 Hz, CHCH2CO), 7.17 (2H, m, 2×Ar—H), 7.59 (1H, superimposed d, J=7.1 & 6.4 Hz, 1×Ar—H), 7.76 (1H, d, J=6.8 Hz, 1×Ar—H).


[0130]

13
C NMR (D2O, 75.47 MHz) δC 38.4, 38.8, 42.6 (CH2), 56.8, 60.0 (CH), 127.2, 127.6, 127.7, 129.7, 130.2, 130.3, 134.1, 139.4 (8×Ar—CH), 141.5, 141.6, 142.0, 150.3 (4×Ar—C), 207.3 (C═O).
25


[0131] To a stirring solution of 6C4 (200 mg, 0.76 mmol) and p-toluenesulfonyl chloride (1.45 g, 7.60 mmol) in DCM (10 ml) was added triethylamine (0.09 g, 0.13 ml, 0.91 mmol). The solution was allowed to stir at 0° C. for 15 mins. The solution was allowed to stir at room temperature for a further hour then to this solution was added pyridine (0.26 ml) and the reaction was allowed to stir for a further 2 hours. The crude reaction mixture was passed through a flash silica column, eluting with petroleum ether:ethyl acetate 1:4. 6C10 was isolated as a yellow solid (284 mg, 89.3%).


[0132]

13
C NMR (CDCl3, 75.47 MHz) δC 21.2 (CH3), 37.4, 37.4, 38.0 (3×CH2), 54.8, 57.9 (CH), 123.1, 124.0, 124.2, 125.0, 125.6, 126.5, 126.9, 127.9, 128.7, 128.9, 129.5, 134.6 (12×Ar—CH), 136.9, 137.5, 138.2, 138.3, 139.7, 139.9, 143.3, 151.9 (6×Ar—C & 2×qC), 201.8 (C═O).
26


[0133] To a solution of 6C4 (200 mg, 0.76 mmol) in DCM (5 ml) was added triethylamine (0.15 g, 0.20 ml, 1.48 mmol) and acetic anhydride (0.12 g, 0.11 ml, 1.17 mmol). To this stirring solution was added N,N-dimethylaminopyridine (0.10 g, 0.82 mmol). The reaction was allowed to stir at room temperature for 2 hours. Additional acetic anhydride (0.12 g, 0.11 ml, 1.17 mmol) was added and the reaction was allowed to stir at room temperature for 1 hour. The solvent was removed and the crude reaction mixture was passed through a plug of flash silica, eluting with petroleum ether:ethyl acetate, 4:1. 6C11 was isolated as a solid (110 mg, 47.5%).


[0134]

1
H NMR (CDCl3, 300 MHz) δH 2.09-5.50 (11H, br m, CH3, CH2′s and CH), 7.00-7.95 (8H, br. m, 8×Ar—H)


[0135] \


[0136]

13
C NMR (CDCl3, 75.47 MHz) δC 20.6, 20.9 (CH3), 23.0, 23.8, 29.5, 35.8, 36., 38.0, 42.1, 42.3, 43.9 (3×CH2), 52.3, 55.9, 57.0, 58.7, 60.2, (2×CH), 123.3, 123.8, 124.0, 124.2, 124.5, 124.6, 124.8, 125.3, 126.0, 127.2, 127.9, 129.5, 134.5, 135.4, 137.6, (Ar—CH), 139.6, 139.7, 141.1, 152.2, 154.3 (Ar—C) 170.1, 171.0 (CH3CON), 201.5, 202.8 (CO)
27


[0137] Compound 6C7 (100 mg) was dissolved in dry methanol (5 ml), dry HCl gas was bubbled through the solution for 5 mins. The methanol was then evaporated off and a white solid remained. The solid was then partioned between water and ether. The aqueous layers were combined and evaporated to dryness. The white solid 6C12 which remained was dried on the vac line (93%).


[0138] It will be appreciated that the compounds include pharmacologically acceptable salts, asters, isomers and solvates thereof. One example of a possible ester is a salicylate in at least one and possibly several suitable positions on the compound. This opens up the possibility of a combination therapy using an indane dimer and aspirin in a single molecule. The weight ratio of the base indane dimer to aspirin may be selected by providing a salicylate at a number of selected positions on the dimer.


[0139] It will be appreciated most of the compounds have one or more chiral centres and hence exist as a pair of enantiomers or as a mixture of diastereomers. This may have an effect on the pharmacological properties.


[0140] It will be appreciated that for pharmaceutical purposes the active compounds may be formulated in any desired form using any suitable excipients and/or carriers. For example, particularly in the case for use to achieve antiinflammatory activity the compound may be formulated in a pharmaceutical composition suitable for topical/transdermal application.







PHARMACOLOGY


Introduction

[0141] The indane dimers according to the invention have potent mast cell stabilising activity, smooth muscle relaxing activity, and anti-inflammatory activity. Such compounds are, therefore, potential anti-asthmatic agents with bronchodilator activity. The mast cell stabilising activity of the compounds suggests their potential use in the treatment of allergic rhinitis, allergic conjunctivitis and other anaphylactic or allergic conditions. The anti-inflammatory activity may have applications in gout, rheumatic diseases, ankylosing spondylitis, polymyalgia rheumatica, temporal arteritis, polyarteritis nodosa, polymyositis and systemic lupus arteriosis and other inflammatory conditions. Topical applications may include: atopic excema, weeping excemas psoriasis, chronic discoid lupus erythematosus, lichen simplex chronicus, hypertrophic lichen planus, palmar plantar pustulosis. They may also have potential in the treatment of some malignant diseases and as immunosuppressants.


[0142] The smooth muscle relaxing activity of the compounds may have potential in the treatment of hypertension and peripheral vascular disease, such as intermittent claudication and Reynaud's syndrome, as well as other cardiovascular disorders, such as congestive heart failure, angina pectoris, cerebral vascular disease and pulmonary hypertension. Such compounds are also indicated for potential use in the treatment of certain disorders of the gastrointestinal tract, such as diverticular disease and irritable bowel syndrome. Similarly, these compounds may have potential as agents for the treatment of disorders of the genito-urinary tract, such as premature labour, incontinence, renal colic and disorders associated with the passage of kidney stones. Members of this group of compounds may also have potential as diuretics, analgesics, antipyretics, local anaesthetics, central nervous system depressants and hypoglycaemic agents.


[0143] The compounds were assessed for their ability to stabilize mast cell membranes in vitro. Mast cells treated with the compounds and untreated mast cells were stimulated to release histamine. A reduction in histamine release by the treated cells compared to the un-treated cells indicates stabilisation of the membrane. The compounds were assessed for their ability to relax smooth muscle in vitro. Intestinal smooth muscle was stimulated to contract, using calcium chloride and subsequently treated with the compounds, relaxation of the contraction was measured for each compound. The effects of the compounds were also studied on relaxation of guinea-pig tracheal muscle. In the rat paw oedema test, the drugs were administered systemically prior to inducing inflammation by the injection of carageenan below the plantar aponeurosis of the hind paw. The volume of the paw was determined both before and after treatment as an index of oedema. In the mouse ear oedema test, the drugs were administered topically prior to inducing inflammation by the topical application of arachidonic acid. The width of the ear was determined both before and after treatment as an index of oedema.


[0144] There follows protocols of each of the assays used and a summary of the results.
1ABBREVIATIONSBSSbuffered salt solutionCaCl2calcium chlorideCO2carbon dioxideDMSOdimethyl sulphoxideDSCGdisodium cromoglycatedH2Odistilled waterHClhydrochloric acidHEPESN-2-hydroxyethylpiperazine-N-2-ethanesulphonic acidKClpotassium chloridelememission wavelengthlexexcitation wavelengthMMolarMgCl2magnesium chlorideminminutesμlmicrolitersmMmilli-molarMaClsodium chlorideNaHCO3sodium hydrogen carbonateNaH2POsodium hydrogen phosphateNaOHsodium hydroxideO2oxygenoPTo-phthaldialdehydeS.E.M.standard error of meanw/vweight per volumev/vvolume per volume



METHODS


Histamine Release Assay

[0145] The buffered salt solution (BSS) was prepared in advance (NaCl 137 mM; KCl 2.7 mM; MgCl2 1.0 mM; CaCl2 0.5 mM; NaH2PO4 0.4 mM; Glucose 5.6 mM; HEPES 10 mM). This was dispensed into test tubes and heated to 37° C., each test tube contained 4.5 ml BSS. The solvent blank was supplemented with 0.5% (v/v) dimethyl sulphoxide (DMSO) or 0.5% (v/v) distilled water (dH2O). The two positive controls were supplemented with 0.5% (v/v) dH2O/2×10−5M disodium cromogiycate (DSCG) and 0.5% (v/v) DMSO/2×10−5M DSCG. The test compounds' incubation tubes contained 2×10−5M test compound/0.5% (v/v) DMSC. The basal release, maximum release and total histamine content incubation tubes contained no additions.


[0146] Female Wistar rats (200-300g) were killed in an atmosphere of saturated CO2. Pre-warmed BSS (10 ml) was injected i.p. and the abdomen was massaged for 3 min. The BSS, with suspended mast cells and other cells, was aspirated following a mid-line incision. The aspirate was centrifuged for 5 min at 400 g and the supernatant removed. The cells were re-suspended in BSS, at 4° C., and centrifuged as before. the cells were washed in this manner a total of three times. Following the final wash, the pelleted cells were stored at 4° C., for use as soon as possible.


[0147] The cells were re-suspended in 7 ml BSS. From this, 0.5 ml aliquots were transferred to each of the incubation tubes. After 10 min at 37° C. with gentle agitation, Compound 48/80 was added to a final concentration of 2 mg/ml, in order to stimulate histamine release. The cell stimulation was stopped after 2 min by the addition of 0.5 ml ice cold BSS, the incubation tubes were transferred to an ice bath. The cell suspensions were centrifuged for 5 min at 400 g. The “total histamine content” tube was placed at 100° C. for 2 min prior to centrifugation. The supernatants were retained for histamine assay.


[0148] To 2 ml of supernatant from each tube was added 0.4 ml of 1M NaOH and 0.1 ml oPT (1% (w/v) in methanol). This was incubated at room temperature for 4 min. The reaction was stopped by the addition of 0.2 ml of 3M HCl. The supernatant from each incubation tube was assayed in duplicate and run simultaneously with a standard curve in the range 0-1000 ng/ml. The presence of the fluorescent product of the reaction was measured using a Shimazu RF-1501 spectrofluorophotometer set at 2ex-360 nm, em-450 nm.


[0149] Each drug was tested on at least five animals (n=5). The results were expressed as a percentage of maximum, compound 48/80 induced, histamine release in the solvent blank sample. Each drug was compared to DSCG on the same tissues. The basal histamine release in untreated cells was noted, expressed as a percentage of the total histamine content of the cells in suspension. The maximum histamine released by the cells in response to compound 48/80, in the relevant solvent blank sample, was expressed in the same manner. Overall, the mean basal release was 9.60% (S.E.M.=1.02) of total histamine content of the cells (n=55). The maximum stimulated histamine release was 67.38% (S.E.M.=2.90) in the present of 0.5% (v/v) dH2O and 54.87% (S.E.M.=2.69) on the presence of 0.5% (v/v) DMSO of total histamine content of the cells (n=55).



Smooth Muscle Effects

[0150] Guinea pigs (350 g approx.), of either sex, were killed in an atmosphere of saturated CO2. The abdomen was opened by a mid-line incision and the small intestine was removed. The trachea was removed and sectioned between the cartilage rings, which were then split through.


[0151] Segments of ileum (1-1.5 cm) were suspended in a high potassium, no calcium Krebs buffer (NaCl 160.4 mM); KCl 45 mM; MgCl2 0.54 wM; NaH2PO4 0.89mM; NaH2CO3 24.9 mM; Glucose 11.1 mM). Tracheal sections were suspended in normal Krebs buffer (NaCl 236.5 mM; KCl 4.7 mM; CaCl2 2.5 mM; MgCl2 0.54 mM; NaH2PO4 0.89 mM; NaHCO3 24.9 mM; Glucose 11.1 mM). The solutions were maintained at 37° C. by a jacketed organ bath and gassed with 95% O2 and 5% CO2. The tissues were anchored by thread to the bottom of the organ bath and suspended from force displacement transducers under a resting tension of 1 g approx. in the case of ileum and 4 g approx. in the case of trachea. Isotonic contractions were recorded using a MacLab/4e system in conjunction with the Chart 3.3.1 software package. Surplus tissue was stored at 4° C. in Krebs buffer, for a maximum of 48 hours.


[0152] Four segments of tissue were suspended and observed concurrently. Contractions were initiated by the addition of 25 μl of 1M CaCl2 (a final concentration of 2.5 mM). The contractions stabilized with time, 10-15 min, and could be maintained for up to 45 min. from the addition of the CaCl2. The tracheal sections were allowed to develop spontaneous resting tension over a period of 30 mins.


[0153] Stock solutions of drug were prepared at 10−3M in 50% (v/v) DMSO. These were diluted to give; 10−4M in 5% (v/v) DMSO and 10−5M in 0.5% (v/v) DMSO. In cases of poor solubility the 10−3M stock was made up in higher concentrations of DMSO. Solvent ‘blank’ solutions were prepared containing 50%, 5% and 0.5% (v/v) DMSO (or as appropriate). A cumulative dose-response assay was carried out in the range 5×10−3M to 10−5M. A second cumulative dose-response assay was carried out using DMSO ‘blank’ solutions only.


[0154] Each drug was tested, in duplicate, on at least three different animals (n=3). The results were expressed as percentage inhibition of the CaCl2 induced contraction in the case of ileal tissue and percentage relaxation in the case of tracheal tissue, for each tissue, at each concentration of drug in DMSO. The effect of DMSO, for each tissue at each concentration, was subtracted from the effect of the drug in DMSO, to give the effect of the drug alone. A log dose vs. response curve was plotted for each drug using the mean and the standard error of the mean for the cumulated results.



In vivo Inflammation Models

[0155] The mouse ear oedema model was performed using Laca mice (25-35 g), of either sex. The animals were sedated with fentanyl/fluanisone (Hypnorm, Janssen). One ear was treated by the topical application of one of a range of test compounds, indomethacin or dexamethasone (all at 300 μg ear in acetone) drug. After 30 min, oedema was induced by the topical application of arachidonic acid (10 μl at 0.4 g/ml in acetone). The thickness of each ear was measured, both before and 60 min after the induction of oedema, using a micrometer screw gauge. Ear oedema was calculated by comparing the ear width before and after induction of oedema and expressed as percentage normal.



RESULTS


Mast Cell Stabilisation and Smooth Muscle Relaxation

[0156] The findings of the histamine release and the smooth muscle effect assays are summarised in the accompanying tables of results. The results from some of the compounds are illustrated in the accompanying graphs. The results indicate that these compounds show a wide variety of smooth muscle relaxing and mast cell stabilising activity, and that these two effects are not related (i.e. a good mast cell stabiliser is not necessarily a good smooth muscle relaxant and vice versa).



Results for Histamine Release Assay and Smooth Muscle

[0157]

2

















Percentage Inhibition of:











Histamine



CaCl2 Induced Contractions
Release


Conc.
(± S.E.M.)
(± S.E.M.)














(M)
3 × 10−8
10−7
3 × 10−7
10−6
3 × 10−6
10−5
2 × 10−5

















5C3
0.53
2.61
3.78
7.21
15.05
29.99
32.77



±0.38
±0.77
±1.80
±2.02
±2.90
±2.92
±7.24


5C4
−0.86
−0.86
−0.99
1.15
5.08
19.14
5.68



±0.40
±0.68
±1.28
±1.38
±1.60
±1.80
±2.21


5C5
−0.26
0.28
0.43
1.56
3.56
10.50
58.68



±0.27
±0.44
±0.54
±1.16
±1.00
±1.54
±2.47


5C6
−1.00
0.02
0.36
1.31
8.84
20.94
77.77



±0.89
±0.90
±0.69
±1.59
±0.91
±0.80
±1.94


5C7
0.16
−0.44
−0.36
−1.72
0.00
2.06
24.12



±0.24
±0.50
±0.88
±0.69
±1.25
±1.75
±4.41


6C4
2.16
3.02
4.63
8.84
17.11
33.46
14.92



±0.65
±1.10
±1.11
±1.77
±2.03
±2.43
±8.55


6C6
0.15
2.75
4.64
9.01
12.62
22.95
68.05



±0.37
±1.92
±2.60
±3.48
±3.55
±4.32
±6.96


6C7
1.16
3.15
4.52
5.36
10.67
21.83
89.46



±1.66
±1.57
±1.60
±1.89
±1.61
±3.74
±1.84


6C8
1.97
2.94
3.26
4.69
11.29
31.14
88.59



±1.58
±1.62
±1.37
±1.35
±1.33
±3.18
±0.61


6C9
0.31
0.61
−1.76
−2.94
−0.86
1.58
43.60



±0.33
±0.54
±0.72
±1.06
±0.89
±2.01
±7.11












Percentage Inhibition of:











CaCl2 Induced
Spontaneous
Histamine



Contractions
Tone
Release


Conc.
(± S.E.M)
(± S.E.M)
(= S.E.M)














(M)
ileum
3 × 10−6
10−6
trachea
3 × 10−6
10−6
2 × 10−5

















5C3






46.02


TS






±4.65


5C3

−0.50
4.59

1.58
2.78
45.30


TR

±0.93
±2.03

±1.34
±1.15
±2.42


5C3






67.47


BS






±3.65


5C3

1.39
10.71

0.44
0.09
52.20


BR

±0.99
±1.67

±1.55
±1.88
±3.35


5C6

5.29
19.41

1.63
2.71
75.15


TS

±2.16
±4.22

±0.93
±1.39
±5.42


5C6




1.50
4.97
79.98


TR




±1.05
±1.03
±3.19


5C6

13.66
31.47

2.03
4.09
80.29


BS

±6.91
±9.12

±1.37
±1.51
±3.81


5C6

8.72
31.64



78.84


BR

±2.02
±3.38



±3.99


5C8






14.33









±2.47


5C9

9.06
18.31

2.64
2.38
14.33




±3.90
±3.80

±2.59
±1.72
±2.47


5C10






40.75









±8.05


5C11






90.27









±2.70 (n = 4)


6C10




−0.75
0.50
51.12







±1.43
±1.66
±8.40


6C11

8.00
12.49



4.26




±5.62
±6.40



±6.80


6C12






91.35









±2.19 (n = 4)











Inflammation Model


Mouse Ear Oedema

[0158] Responses of the mouse ear to single doses of a range of compounds compared to the response to indomethacin and dexamethasone, each at a dose of 300 μg per ear administered topically 30 min prior to administration of 400 μg of arachidonic acid. Values are expressed as the percentage increase in ear thickness 1 hour after administration of arachidonic acid (all n=4, solvent controls (n=8)). The results suggest that anti-inflammatory activity is not linked to mast cell stabilising activity.
3CompoundMean %SEMDexamethasone37.98.5Indomethacin39.65.86C771.515.76C673.08.75C652.020.36C1126.06.3Solvent Control78.815.2


[0159] It will be appreciated that the compounds may have useful pharmacological properties other than those described above.


[0160] The invention is not limited to the embodiments hereinbefore described which may be varied in detail.
4APPENDIX 1LIST OF ABBREVIATIONS USEDAlCl3 835aluminium chlorideaqaqueousb.p.boiling pointBrCH2C6H4CO2CH3methyl 4-(bromomethyl)benzoateBrCH2CO2CH3bromomethyl acetateBSSbuffered salt solutionCaCl2calcium chlorideC2H5IiodoethaneC6H3(CH3)Br(CH3)bromo-m-xyleneC6H5CH2Brbenzyl bromideCDCl3chloroform-dCF3SO3Si(CH3)3trimethylsilyl trifluoromethanesulfonate(TMS triflate)CH(OCH3)3trimethylsilyl orthoformateCH3C6H4SO3H.H2Op-toluenesulfonicCH3IiodomethaneCLCH2CH2COClβ-chloropropionylchlorideCO2carbon dioxideCS2carbon disulfide[(C6H5)3RhCltris(triphenlylphosphine)rhodium(1)chloride (wilkinsons catalyst)[(CH3)3CO]3Alaluminium tri-tert-butoxideDCMdichloromethanedH2Odistilled waterDMSOdimethyl sulphoxideDSCGdisodium cromoglycateEt2OetherEt3NtriethylamineEtOAcethyl acetateEtOHethanolH2C═CHCH2Brallyl bromideH2NNH2.H2Ohydrazine hydrate.monohydrateH2OwaterH2SO4sulphuric acidHClhydrochloric acidHEPESN-2-hydroxyethylpiperazine-N-2-ethanesulphonic acidHOCH2CH2OHethylene glycolIRinfra redKClpotassium chlorideLDAlithium diisopropylamideMMolarMgCl2magnesium chlorideminminutesμlmicrolitersmMmilli-molarm.p.melting pointN2nitrogenNaBH4sodium borohydrideNaClsodium chlorideNaCN(BH3)sodium cyanoborohydrideNaHCO3sodium hydrogen carbonateNaHCO3sodium bicarbonateNaH2POsodium hydrogen phosphateNaOHsodium hydroxideNa2SO4sodium sulphateNH4Clammonium chlorideNMRnuclear magnetic resonanceO2oxygenoPTo-phthaldialdehydePdpalladiumRTroom temperaturetBuOHtert butanoltBuOKpotassium tert butoxideS.E.M.standard error of meanTHFtetrahydrofuranTLCthin layer chromatographyμlmicrolitersTriflic Acidtrifluoromethanesulfonic acidTMS Triflatetrimethyl silyltrifluoromethanesulfonatev/vvolume per volumew/vweight per volumeZnI2zinc iodideλememission wavelengthλ2exexcitation wavelength


[0161]

5








APPENDIX 2













5C3
3-(N-1-indanylamino)-indan-1-one



5C4
3-(N-1-indanylamino)indan-1-ol



5C5
3-(N-methyl-N-1-indanylamino)-indian-1-one



5C6
3-(N-prop-2-enyl-N-1-indanylamino)-indian-1-one



5C7
3-(N-benzyl-N-1-indanylamino)-indian-1-one



5C8
3-(N-1-indanylamino)-indan-1-one. Hydrochloride



5C9
N-1-Indanyl-N-3-indan-1-onylethanamide




toluenesulfonamide



5C11
3-(N-prop-2-enyl-N-1-indanylamino)-indan-1-one




hydrochloride



5C12
1-diindanyl ether



6C4
3-(N-2-indanylamino)-indan-1-one



6C5
3-(N-2-indanylamino)-indan-1-ol



6C6
3-(N-methyl-N-2-indanylamino)-indan-1-one



6C7
3-(N-prop-2-enyl-N-2-indanylamino)-indan-1-one



6C8
3-(N-benzyl-N-2-indanylamino)-indan-1-one



6C9
3-(N-2-indanylamino)indan-1-one. Hydrochloride



6C10
N-2-Indanyl-N-3-indan-l-onyl-p-




toluenesulfonamide



6C11
N-2-Indanyl-N-3-indan-1-onlyethanamide



6C12
3-(N-prop-2-enyl-N-2-indanylamino)-indan-1-one




hydrochloride











Claims
  • 1. A Compound of any of the formulae:
  • 2. A compound as caimed in claim 1 wherein the alkyl or cydoalkyl are substituted with one or more of the same or different of halo, oxo, hydroxy, alkoxy, acetoxy, carboxy, carbonyl, amino, amido, alkylamino, hydroxylamino, amine oxide groups, azo groups, cyano, hydrazino groups, hydrazide groups, hydrazone groups, imide groups, immo ether groups, ureyl groups, oxime, nitro, nitrate, nitrite, nitroso groups, nitrile, heterocyclic groups, containing one or more hetero atoms selected form N, O or S, aralkyl groups, mono and polybenzoid aryl groups, substituted aryl groups, thiol, thioureyl, phenyl thiol groups, sulphonic acid groups, sulphoxide groups, sulphone groups.
  • 3. A compound as claimed in claim 1 wherein the hetrocyclic groups contain one or more hetero atoms selected from N, O or S.
  • 4. A compound as claimed in claim 1 wherein in Formula 5 R4 to R7 are hydrogen.
  • 5. A compound as claimed in claim 1 wherein in Formula 5 R11 to R14 are hydrogen.
  • 6. A compound as claimed in claim 1 wherein in Formula 6 R4 to R7 are hydrogen.
  • 7. A compound as claimed in claim 1 wherein in Formula 6 R10 to R13 are hydrogen.
  • 8. A compound as claimed in claim 1 wherein in Formula 9 R4 to R7 are hydrogen.
  • 9. A compound as claimed in claim 1 wherein in Formula 9 R10 to R13 are hydrogen.
  • 10. A compound as claimed in claim 1 wherein X represents NR in which R is acyl, alcyl or sulphonate groups.
  • 11. A compound as claimed in claim 1 wherein X represents NR in which R is acyl.
  • 12. A compound as claimed in claim 1 wherein X represents NR in which R is alkyl or sulphonate groups.
  • 13. A compound selected from: 3-(N-1-indanylamino)-indan-1-one 3-(N-1-indanylamino)indan-1-one 3-(N-methyl-N-1-indanylamino)-indan-1-one 3-(N-prop-2-enyl-N-1-indanylamino)indan-1-one 3-(N-benzyl-N-1-indanylamino)-indan-1-one 3-(N-1-indanylamino)-indan-1-one. Hydrochloride N-1-Indanyl-N-3-indan-1-onylethanamide N-1-Indanyl-N-3-indan-1-onyl-p-toluenesulfonamide 3-(N-prop2enyl-N-1-indanylamino)-indan-1-one hydrochloride 1-diindanyl ether 3-(N-2-indanylamino)-indan-1-one 3-(N-2-indanylamino)-indan-1-ol 3-(N-methyl-N-2-indanylamino)-indan-1-one 3-(N-prop-2-enyl-N-2-indanylamino)-indan-1-one 3-(N-benzyl-N-2-indanylamino)-indan-1-one 3-(N-2-indanylamino)indan-1-one. Hydrochloride N-2-Indanyl-N-3-indan-1-onyl-p-toluenesulfonamide N-2-Indanyl-N-3-indan-1-onylethanamide 3-(N-prop2-enyl-N-2-indanylamino)-indan-1-one hydrochloride
  • 14. A pharmaceutical composition comprising a compound as defined in claim 1 and a pharmaceutically acceptable carrier.
  • 15. A method of prophylaxis or treatment to achieve smooth muscle relaxing activity and/or mast cell stabilising activity and/or anti-inflammatory activity by administering to a patient an effctive amount of a compound as defined in claim 1.
  • 16. A process for prearing a compound of claim 1 by coupling a 1-amino or 2 amino idan derivative to a 3-bromo-indanone derivative, preferably including the step of N-alkylation of the 1 or 2-aminoindan dimer thus formed or including the step of N-sulfonylation of the 1 or 2-aminoindan dimer, peferably p-toluenesulfonyl chloride is added to the 1 or 2-aminoindan dimer, or including the step of N-acylation of the 1 or 2-aminoindan dimer.
  • 17. A process for preparing a compound of claim 1 by reduction of ketone functional groups using sodium borohydnide or by reduction of ketone functional groups using sodium cyanoborohydride.
  • 18. A process for a compound of claim 1, particularly a water soluble compound of claim 1 by forming an oxime, particularly using hydroxylamine hydro-chloride, with either pyridine or sodium acetate as base, preferably including the step of O-alkylation of an oxime functional group with either potassium tert-butoxide or lithium diisopropylamide as base.
  • 19. A process for preparing a compound of claim 1 by coupling two 1-indanol molecules to give indan ether dimeric compounds, preferably using N,N-diisopropylethyl amine as tertiary base.
  • 20. A process for preparing a compound of claim 1 by acetylation of hydroxyl indan dimers using an acetylating agent (preferably acetic anhydride), a tertiary base (preferably triethylamine), and preferably an acylation catalyst.
Priority Claims (2)
Number Date Country Kind
95 0922 Dec 1995 IE
96 0762 Oct 1996 IE
Continuations (1)
Number Date Country
Parent PCT/IE96/00081 Dec 1996 US
Child 09092903 Jun 1998 US