The invention had the object of finding novel compounds having valuable properties, in particular those which can be used for the preparation of medicaments.
The present invention relates to compounds and the use of compounds of diseases in which the inhibition, regulation and/or modulation of mitotic motor proteins, in particular the mitotic motor protein Eg5, plays a role, furthermore to pharmaceutical compositions which comprise these compounds.
In detail, the present invention relates to compounds of the formula I which preferably inhibit, regulate and/or modulate one or more mitotic motor proteins, to compositions which comprise these compounds, and to methods for the use thereof for the treatment of diseases and complaints such as angiogenesis, cancer, tumour formation, growth and propagation, arteriosclerosis, ocular diseases, choroidal neovascularisation and diabetic retinopathy, inflammatory diseases, arthritis, neurodegeneration, restenosis, wound healing or transplant rejection. In particular, the compounds according to the invention are suitable for the therapy or prophylaxis of cancer diseases.
During mitosis, various kinesins regulate the formation and dynamics of the spindle apparatus, which is responsible for correct and coordinated alignment and separation of the chromosomes. It has been observed that specific inhibition of a mitotic motor protein—Eg5—results in collapse of the spindle fibres. The result of this is that the chromosomes can no longer be distributed correctly over the daughter cells. This results in mitotic arrest and can thus cause cell death. Upregulation of the motor protein Eg5 has been described, for example, in tissue from breast lung and colon tumours. Since Eg5 takes on a mitosis-specific function, it is principally rapidly dividing cells and not fully differentiated cells that are affected by Eg5 inhibition. In addition, Eg5 regulates exclusively the movement of mitotic microtubuli (spindle apparatus) and not that of the cytoskeleton. This is crucial for the side-effect profile since, for example, neuropathies, as observed in the case of Taxol, do not occur or only do so to a weakened extent. The inhibition of Eg5 by organic molecules is therefore a relevant therapy concept for the treatment of malignant tumours.
In general, all solid and non-solid tumours can be treated with the compounds of the formula I, such as, for example, monocytic leukaemia, brain, urogenital, lymphatic system, stomach, laryngeal and lung carcinoma, including lung adenocarcinoma and small-cell lung carcinoma. Further examples include prostate, pancreatic and breast carcinoma.
Surprisingly, it has been found that the compounds according to the invention effect specific inhibition of mitotic motor proteins, in particular Eg5. The compounds according to the invention preferably exhibit an advantageous biological activity which can easily be detected in the assays described herein, for example. In such assays, the compounds according to the invention preferably exhibit and cause an inhibiting effect, which is usually documented by IC50 values in a suitable range, preferably in the micromolar range and more preferably in the nanomolar range.
As discussed herein, effects of the compound according to the invention are relevant to various diseases. Accordingly, the compounds according to the invention are useful in the prophylaxis and/or treatment of diseases which are influenced by inhibition of one or more mitotic motor proteins, in particular Eg5.
The present invention therefore relates to compounds according to the invention as medicaments and/or medicament active ingredients in the treatment and/or prophylaxis of the said diseases and to the use of compounds according to the invention for the preparation of a pharmaceutical for the treatment and/or prophylaxis of the said diseases, and also to a method for the treatment of the said diseases comprising the administration of one or more compounds according to the invention to a patient in need of such an administration.
It can be shown that the compounds according to the invention have an advantageous effect in a xenotransplant tumour model.
The host or patient can belong to any mammal species, for example a primate species, particularly humans; rodents, including mice, rats and hamsters; rabbits; horses, cattle, dogs, cats, etc. Animal models are of interest for experimental investigations, providing a model for the treatment of a human disease.
The sensitivity of a certain cell to treatment with the compounds according to the invention can be determined by testing in vitro. Typically, a culture of the cell is combined with a compound according to the invention at various concentrations for a periodine which is sufficient to enable the active agents to induce cell death or inhibit migration, usually between approximately one hour and one week. For testing in vitro, cultivated cells from a biopsy sample can be used. The viable cells remaining after the treatment are then counted.
The dose varies depending on the specific compound used, the specific disease, the patient status, etc. Typically, a therapeutic dose is sufficient considerably to reduce the undesired cell population in the target tissue, while the viability of the patient is maintained. The treatment is generally continued until a considerable reduction has occurred, for example at least about a 50% reduction in the cell burden, and can be continued until essentially no undesired cells are detected in the body.
Similar compounds are described in U.S. Pat. No. 3,328,411, but are not mentioned in connection with cancer treatments and/or do not contain the features according to the invention.
The invention relates to compounds of the formula I:
where
The invention also relates to the optically active forms (stereoisomers), the enantiomers, the racemates, the diastereomers and the hydrates and solvates of these compounds. The term solvates of the compounds is taken to mean adductions of inert solvent molecules onto the compounds which form owing to their mutual attractive force. Solvate are, for example, mono- or dihydrates or alkoxides.
The term pharmaceutically usable derivatives is taken to mean, for example, the salts of the compounds according to the invention and also so-called prodrug compounds.
The term prodrug derivatives is taken to mean compounds of the formula I which have been modified by means of, for example, alkyl or acyl groups, sugars or oligopeptides and which are rapidly cleaved in the organism to form the effective compounds according to the invention.
These also include biodegradable polymer derivatives of the compounds according to the invention, as described, for example, in Int. J. Pharm. 115, 61-67 (1995).
The expression “effective amount” denotes the amount of a medicament or of a pharmaceutical active ingredient which causes in a tissue, system, animal or human a biological or medical response which is sought or desired, for example, by a researcher or physician.
In addition, the expression “therapeutically effective amount” denotes an amount which, compared with a corresponding subject who has not received this amount, results in the following:
improved healing treatment, healing, prevention or elimination of a disease, syndrome, condition, complaint, disorder or side-effects or also the reduction in the progress of a disease, condition or disorder.
The expression “therapeutically effective amount” also encompasses the amounts which are effective for increasing normal physiological function.
The invention also relates to the use of mixtures of the compounds according to the invention, for example mixtures of two diastereomers, for example in the ratio of about 1:1, 1:2, 1:3, 1:4, 1:5, 1:10, 1:100 or 1:1000. These are particularly preferably mixtures of stereoisomeric compounds.
The invention relates to the compounds of the formula I and salts thereof and to a process for the preparation of compounds of the formula I according to the patent claims and pharmaceutically usable derivatives, salts, solvates and stereoisomers thereof, characterised in that a compound of the formula II
in which R2, R3 and A are defined as indicated above, is reacted with a compound of type IV
in which R1, R2, R3, L, A and n are defined as indicated above. The resultant compound of the formula V
in which R1, R2, R3, A and q have the meanings indicated above, is preferably converted into the free acid Va by saponification.
in which R1, R2, R3, L, A and q are defined as indicated above.
The compound of the formula Va is subsequently converted into the compounds of the formula I in which R4 denotes O, called Ia below,
in which R1, R2, R3 and q are defined as indicated above, in the presence of a suitable catalyst, such as, for example, a Friedel-Crafts catalyst, in particular AlCl3.
Compounds of the formula Ia are optionally converted into the further compounds of the formula I, in which R4 has the meaning indicated above, by reaction with corresponding organometallic reagents, such as, for example, organolithium or Grignard compounds, and subsequent elimination.
The compounds of the formula Ia are preferably converted by reaction with a compound of the formula X-Z, in which X is Li, MgBr, Mgl or MgCl and Z denotes —CH2—(CH2)nN(R5)2 or
giving the compounds of the formula VIa.
Compound I can be prepared from the compounds of the formula VIa by elimination of water by known methods, such as, for example, acid-catalysed elimination.
Compounds of the formula I in which R2 and/or R3 denote H can be converted into the further compounds of the formula I in which R2 and/or R3 have a meaning other than H, for example by reaction with a base, such as, for example, sodium hydride, and an alkylating reagent.
Particularly preferred for this purpose are alkylating reagents such as, for example, iodoalkane, alkyl sulfate, benzyl halides, sulfates, mesylates or tosylates, in particular iodomethane, methyl sulfate or benzyl chloride.
The following formulae III1-16 are preferably employed for the formula III:
where preference is given to compounds which have, with the exception of F, no substituents on C-5, C-7 or C-8 (based on formula I).
The following groups are particularly preferred for R2 and/or R3:
where Q stands for F, Cl, Br, or A, in particular ethyl or methyl,
where Q and W stand for Cl, Br, A, in particular methyl and ethyl, or SA, and in particular Smethyl and Sethyl, and in which R3 preferably denotes H or alkyl. R2 is preferably p- or m-hydroxyphenyl.
Above and below, radicals R1, R2, R3, R4, R5, X, m, n, y, t, k, p and q have the meanings indicated for the formula I unless expressly stated otherwise. If individual radicals occur more than once within a compound, the radicals adopt, independently of one another, the meanings indicated.
Alkyl is preferably unbranched (linear) or branched, and has 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 C atoms. Alkyl preferably denotes methyl, furthermore ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl or tert-butyl, furthermore also pentyl, 1-, 2- or 3-methylbutyl, 1,1-, 1,2- or 2,2-dimethylpropyl, 1-ethyl-propyl, hexyl, 1-, 2-, 3- or 4-methylpentyl, 1,1-, 1,2-, 1,3-, 2,2-, 2,3- or 3,3-dimethylbutyl, 1- or 2-ethylbutyl, 1-ethyl-1-methylpropyl, 1-ethyl-2-methylpropyl, 1,1,2- or 1,2,2-trimethylpropyl, furthermore preferably, for example, trifluoromethyl.
Alkyl very particularly preferably denotes alkyl having 1, 2, 3, 4, 5 or 6 C atoms, preferably methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, trifluoromethyl, pentafluoroethyl or 1,1,1-trifluoroethyl. Alkyl also denotes cycloalkyl.
Cycloalkyl preferably denotes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl.
R1 preferably denotes A, SR5, OR5, Hal, CN, NO2, N(R5)2. In particular, R1 denotes methyl, ethyl, isopropyl, tert-butyl, F, Cl, CN, or OH.
R2 preferably denotes H, A, such as, for example, ethyl, phenyl, methyl, aryl or Het. In particular, R2 denotes A or Ar.
R3 preferably denotes H, A, Ar or —(C(R5)2)oAr. In particular, R3 denotes H.
R4 preferably denotes cyclo[-C(CH2)k (NY)—(CH2)p—], in particular
where Q is H, A; —CO(C(R5)2)o—W or —SO2(C(R5)2)o—W, where W is N(CH3)2, N(R5)2, piperidinyl or piperazinyl, where the two latter radicals may be un-substituted or mono-, di- or trisubstituted by Hal, A, —(CH2)o—Ar, —(CH2)o-cycloalkyl, —(CH2)o—OH, —(CH2)o—NR5, NO2, CN, —(CH2)o—COOR5, —(CH2)o—CONR5, —(CH2)o—NHCOA, NHCONR5, —(CH2)o—NHSO2A, CHO, COA, SO2NH2 and/or S(O)oA.
Ar preferably denotes phenyl, o-, m- or p-tolyl, o-, m- or p-ethylphenyl, o-, m- or p-propylphenyl, o-, m- or p-isopropylphenyl, o-, m- or p-tert-butyl-phenyl, o-, m- or p-hydroxyphenyl, o-, m- or p-methoxyphenyl, o-, m- or p-nitrophenyl, o-, m- or p-aminophenyl, o-, m- or p-(N-methylamino)phenyl, o-, m- or p-(N-methylaminocarbonyl)phenyl, o-, m- or p-acetamidophenyl, o-, m- or p-methoxyphenyl, o-, m- or p-ethoxyphenyl, o-, m- or p-ethoxy-carbonylphenyl, o-, m- or p-(N,N-dimethylamino)phenyl, o-, m- or p-(N,N-di-methylaminocarbonyl)phenyl, o-, m- or p-(N-ethylamino)phenyl, o-, m- or p-(N,N-diethylamino)phenyl, o-, m- or p-fluorophenyl, o-, m- or p-bromophenyl, o-, m- or p-chlorophenyl, o-, m- or p-(methylsulfonamido)phenyl, o-, m- or p-(methylsulfonyl)phenyl, furthermore preferably 2,3-, 2,4-, 2,5-, 2,6-, 3,4- or 3,5-difluoroophenyl, 2,3-, 2,4-, 2,5-, 2,6-, 3,4- or 3,5-dichlorophenyl, 2,3-, 2,4-, 2,5-, 2,6-, 3,4- or 3,5-dibromophenyl, 2,4- or 2,5-dinitrophenyl, 2,5- or 3,4-dimethoxyphenyl, 3-nitro-4-chlorophenyl, 3-amino-4-chloro-, 2-amino-3-chloro-, 2-amino-4-chloro-, 2-amino-5-chloro- or 2-amino-6-chlorophenyl, 2-nitro-4-N,N-dimethylamino- or 3-nitro-4-N,N-di-methylaminophenyl, 2,3-diaminophenyl, 2,3,4-, 2,3,5-, 2,3,6-, 2,4,6- or 3,4,5-trichlorophenyl, 2,4,6-trimethoxyphenyl, 2-hydroxy-3,5-dichlorophenyl, p-iodophenyl, 3,6-dichloro-4-aminophenyl, 4-fluoro-3-chlorophenyl, 2-fluoro-4-bromophenyl, 2,5-difluoro-4-bromophenyl, 3-bromo-6-methoxyphenyl, 3-chloro-6-methoxyphenyl, 3-chloro-4-acetamidophenyl, 3-fluoro-4-methoxyphenyl, 3-amino-6-methylphenyl, 3-chloro-4-acetamidophenyl or 2,5-dimethyl-4-chlorophenyl.
Het preferably denotes a mono- or bicyclic aromatic or saturated heterocycle having one or more N, O and/or S atoms which may be unsubstituted or mono-, di- or trisubstituted by Hal, methyl, NO2, NHA, NA2, OA, COOA or CN. Aromatic groups Het are preferred.
Irrespective of further substitutions, Het denotes unsubstituted heteroaryl. This is, for example, 2- or 3-furyl, 2- or 3-thienyl, 1-, 2- or 3-pyrrolyl, 1-, 2,4- or 5-imidazolyl, 1-, 3-, 4- or 5-pyrazolyl, 2-, 4- or 5-oxazolyl, 3-, 4- or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isothiazolyl, 2-, 3- or 4-pyridyl, 2-, 4-, 5- or 6-pyrimidinyl, furthermore preferably 1,2,3-triazol-1-, -4- or -5-yl, 1,2,4-triazol-1-, -3- or 5-yl, 1- or 5-tetrazolyl, 1,2,3-oxadiazol-4- or -5-yl, 1,2,4-oxadiazol-3- or -5-yl, 1,3,4-thiadiazol-2- or -5-yl, 1,2,4-thiadiazol-3- or -5-yl, 1,2,3-thiadiazol-4- or -5-yl, 3- or 4-pyridazinyl, pyrazinyl, 1-, 2-, 3-, 4-, 5-, 6- or 7-indolyl, 4- or 5-isoindolyl, 1-, 2-, 4- or 5-benzimidazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzopyrazolyl, 2-, 4-, 5-, 6- or 7-benzoxazolyl, 3-, 4-, 5-, 6- or 7-benzisoxazolyl, 2-, 4-, 5-, 6- or 7-benzothiazolyl, 2-, 4-, 5-, 6- or 7-benzisothiazolyl, 4-, 5-, 6- or 7-benz-2,1,3-oxadiazolyl, 2-, 3-, 4-, 5-, 6-, 7- or 8-quinolyl, 1-, 3-, 4-, 5-, 6-, 7- or 8-isoquinolyl, 3-, 4-, 5-, 6-, 7- or 8-cinnolinyl, 2-, 4-, 5-, 6-, 7- or 8-quinazolinyl, 5- or 6-quinoxalinyl, 2-, 3-, 5-, 6-, 7- or 8-2H-benzo-1,4-oxazinyl, furthermore preferably 1,3-benzodioxol-5-yl, 1,4-benzodioxan-6-yl, 2,1,3-benzothiadiazol-4- or -5-yl or 2,1,3-benzoxadiazol-5-yl.
Hal preferably denotes F, Cl or Br, but also 1, particularly preferably F or Cl.
Throughout the invention, all radicals which occur more than once may be identical or different, i.e. are independent of one another.
The compounds of the formula I may have one or more chiral centres and therefore exist in various stereoisomeric forms. The formula I encompasses all these forms.
Accordingly, the invention relates, in particular, to the compounds of the formula I in which at least one of the said radicals has one of the preferred meanings indicated above.
Some preferred groups of compounds may be expressed by the following sub-formulae I1 to I41:
The compounds of the formula I and also the starting materials for their preparation are, in addition, prepared by methods known per se, as described in the literature (for example in the standard works, such as Houben-Weyl, Methoden der organischen Chemie [Methods of Organic Chemistry], Georg-Thieme-Verlag, Stuttgart), to be precise under reaction conditions which are known and suitable for the said reactions. Use may also be made here of variants known per se which are not mentioned here in greater detail.
If desired, the starting materials may also be formed in situ so that they are not isolated from the reaction mixture, but instead are immediately converted further into the compounds of the formula I.
Suitable inert solvents are, for example, hydrocarbons, such as hexane, petroleum ether, benzene, toluene or xylene; chlorinated hydrocarbons, such as trichloroethylene, 1,2-dichloroethane, carbon tetrachloride, chloroform or dichloromethane; nitriles, such as acetonitrile; carbon disulfide; carboxylic acids, such as formic acid or acetic acid; nitro compounds, such as nitromethane or nitrobenzene, or mixtures of the said solvents.
If desired, a functionally modified amino and/or hydroxyl group in a compound of the formula I can be liberated by solvolysis or hydrogenolysis by conventional methods. This can be carried out, for example, using NaOH or KOH in water, water/THF or water/dioxane at temperatures between 0 and 100°.
The reduction of an ester to the aldehyde or alcohol or the reduction of a nitrile to the aldehyde or amine is carried out by methods as are known to the person skilled in the art and are described in standard works of organic chemistry.
The said compounds according to the invention can be used in their final non-salt form. On the other hand, the present invention also relates to the use of these compounds in the form of their pharmaceutically acceptable salts, which can be derived from various organic and inorganic acids and bases by procedures known in the art. Pharmaceutically acceptable salt forms of the compounds of the formula I are for the most part prepared by conventional methods. If the compound of the formula I contains a carboxyl group, one of its suitable salts can be formed by reacting the compound with a suitable base to give the corresponding base-addition salt. Such bases are, for example, alkali metal hydroxides, including potassium hydroxide, sodium hydroxide and lithium hydroxide; alkaline earth metal hydroxides, such as barium hydroxide and calcium hydroxide; alkali metal alkoxides, for example potassium ethoxide and sodium propoxide; and various organic bases, such as piperidine, diethanolamine and N-methyl-glutamine. The aluminium salts of the compounds of the formula I are like-wise included. In the case of certain compounds of the formula I, acid-addition salts can be formed by treating these compounds with pharmaceutically acceptable organic and inorganic acids, for example hydrogen halides, such as hydrogen chloride, hydrogen bromide or hydrogen iodide, other mineral acids and corresponding salts thereof, such as sulfate, nitrate or phosphate and the like, and alkyl- and monoarylsulfonates, such as ethanesulfonate, toluenesulfonate and benzenesulfonate, and other organic acids and corresponding salts thereof, such as acetate, trifluoro-acetate, tartrate, maleate, succinate, citrate, benzoate, salicylate, ascorbate and the like. Accordingly, pharmaceutically acceptable acid-addition salts of the compounds of the formula I include the following: acetate, adipate, alginate, arginate, aspartate, benzoate, benzenesulfonate (besylate), bisulfate, bisulfite, bromide, butyrate, camphorate, camphorsulfonate, caprylate, chloride, chlorobenzoate, citrate, cyclopentanepropionate, digluconate, dihydrogenphosphate, dinitrobenzoate, dodecylsulfate, ethanesulfonate, fumarate, galacterate (from mucic acid), galacturonate, glucoheptanoate, gluconate, glutamate, glycerophosphate, hemisuccinate, hemisulfate, heptanoate, hexanoate, hippurate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, iodide, isethionate, isobutyrate, lactate, lactobionate, malate, maleate, malonate, mandelate, metaphosphate, methanesulfonate, methylbenzoate, monohydrogenphosphate, 2-naphthalenesulfonate, nicotinate, nitrate, oxalate, oleate, palmoate, pectinate, persulfate, phenylacetate, 3-phenylpropionate, phosphate, phosphonate, phthalate, but this does not represent a restriction.
Furthermore, the base salts of the compounds according to the invention include aluminium, ammonium, calcium, copper, iron(III), iron(II), lithium, magnesium, manganese(III), manganese(II), potassium, sodium and zinc salts, but this is not intended to represent a restriction. Of the above-mentioned salts, preference is given to ammonium; the alkali metal salts sodium and potassium, and the alkaline earth metal salts calcium and magnesium. Salts of the compounds of the formula I which are derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary and tertiary amines, substituted amines, also including naturally occurring substituted amines, cyclic amines, and basic ion exchanger resins, for example arginine, betaine, caffeine, chloroprocaine, choline, N,N′-dibenzylethylenediamine (benzathine), dicyclohexylamine, diethanolamine, diethylamine, 2-diethylaminoethanol, 2-dimethylaminoethanol, ethanolamine, ethylenediamine, N-ethylmorpholine, N-ethylpiperidine, glucamine, glucosamine, histidine, hydrabamine, isopropylamine, lidocaine, lysine, meglumine, N-methyl-D-glucamine, morpholine, piperazine, piperidine, polyamine resins, procaine, purines, theobromine, triethanolamine, triethylamine, trimethylamine, tripropylamine and tris(hydroxymethyl)methylamine (tromethamine), but this is not intended to represent a restriction.
Compounds of the present invention which contain basic nitrogen-containing groups can be quaternised using agents such as (C1-C4)alkyl halides, for example methyl, ethyl, isopropyl and tert-butyl chloride, bromide and iodide; di(C1-C4)alkyl sulfates, for example dimethyl, diethyl and diamyl sulfate; (C10-C18)alkyl halides, for example decyl, dodecyl, lauryl, myristyl and stearyl chloride, bromide and iodide; and aryl(C1-C4)alkyl halides, for example benzyl chloride and phenethyl bromide. Both water- and oil-soluble compounds according to the invention can be prepared using such salts.
The above-mentioned pharmaceutical salts which are preferred include acetate, trifluoroacetate, besylate, citrate, fumarate, gluconate, hemisuccinate, hippurate, hydrochloride, hydrobromide, isethionate, mandelate, meglumine, nitrate, oleate, phosphonate, pivalate, sodium phosphate, stearate, sulfate, sulfosalicylate, tartrate, thiomalate, tosylate and tromethamine, but this is not intended to represent a restriction.
The acid-addition salts of basic compounds of the formula I are prepared by bringing the free base form into contact with a sufficient amount of the desired acid, causing the formation of the salt in a conventional manner. The free base can be regenerated by bringing the salt form into contact with a base and isolating the free base in a conventional manner. The free base forms differ in a certain respect from the corresponding salt forms thereof with respect to certain physical properties, such as solubility in polar solvents; for the purposes of the invention, however, the salts otherwise correspond to the respective free base forms thereof.
As mentioned, the pharmaceutically acceptable base-addition salts of the compounds of the formula I are formed with metals or amines, such as alkali metals and alkaline earth metals or organic amines. Preferred metals are sodium, potassium, magnesium and calcium. Preferred organic amines are N,N′-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, N-methyl-D-glucamine and procaine.
The base-addition salts of acidic compounds according to the invention are prepared by bringing the free acid form into contact with a sufficient amount of the desired base, causing the formation of the salt in a conventional manner. The free acid can be regenerated by bringing the salt form into contact with an acid and isolating the free acid in a conventional manner. The free acid forms differ in a certain respect from the corresponding salt forms thereof with respect to certain physical properties, such as solubility in polar solvents; for the purposes of the invention, however, the salts otherwise correspond to the respective free acid forms thereof.
If a compound according to the invention contains more than one group which is capable of forming pharmaceutically acceptable salts of this type, the invention also encompasses multiple salts. Typical multiple salt forms include, for example, bitartrate, diacetate, difumarate, dimeglumine, diphosphate, disodium and trihydrochloride, but this is not intended to represent a restriction.
With regard to that stated above, it can be seen that the term “pharmaceutically acceptable salt” in the present connection is taken to mean an active ingredient which comprises a compound of the formula I in the form of one of its salts, in particular if this salt form imparts improved pharmacokinetic properties on the active ingredient compared with the free form of the active ingredient or any other salt form of the active ingredient used earlier. The pharmaceutically acceptable salt form of the active ingredient can also provide this active ingredient for the first time with a desired pharmacokinetic property which it did not have earlier and can even have a positive influence on the pharmacodynamics of this active ingredient with respect to its therapeutic efficacy in the body.
The invention furthermore relates to medicaments comprising at least one compound of the formula I and/or pharmaceutically usable derivatives, solvates and stereoisomers thereof, including mixtures thereof in all ratios, and optionally excipients and/or adjuvants.
Pharmaceutical formulations can be administered in the form of dosage units which comprise a predetermined amount of active ingredient per dosage unit. Such a unit can comprise, for example, 0.5 mg to 1 g, preferably 1 mg to 700 mg, particularly preferably 5 mg to 100 mg, of a compound according to the invention, depending on the condition treated, the method of administration and the age, weight and condition of the patient, or pharmaceutical formulations can be administered in the form of dosage units which comprise a predetermined amount of active ingredient per dosage unit. Preferred dosage unit formulations are those which comprise a daily dose or part-dose, as indicated above, or a corresponding fraction thereof of an active ingredient. Furthermore, pharmaceutical formulations of this type can be prepared using a process which is generally known in the pharmaceutical art.
Pharmaceutical formulations can be adapted for administration via any desired suitable method, for example by oral (including buccal or sublingual), rectal, nasal, topical (including buccal, sublingual or transdermal), vaginal or parenteral (including subcutaneous, intramuscular, intravenous or intradermal) methods. Such formulations can be prepared using all processes known in the pharmaceutical art by, for example, combining the active ingredient with the excipient(s) or adjuvant(s).
Pharmaceutical formulations adapted for oral administration can be administered as separate units, such as, for example, capsules or tablets; powders or granules; solutions or suspensions in aqueous or non-aqueous liquids; edible foams or foam foods; or oil-in-water liquid emulsions or water-in-oil liquid emulsions.
Thus, for example, in the case of oral administration in the form of a tablet or capsule, the active-ingredient component can be combined with an oral, non-toxic and pharmaceutically acceptable inert excipient, such as, for example, ethanol, glycerol, water and the like. Powders are prepared by comminuting the compound to a suitable fine size and mixing it with a pharmaceutical excipient comminuted in a similar manner, such as, for example, an edible carbohydrate, such as, for example, starch or mannitol. A flavour, preservative, dispersant and dye may likewise be present.
Capsules are produced by preparing a powder mixture as described above and filling shaped gelatine shells therewith. Glidants and lubricants, such as, for example, highly disperse silicic acid, talc, magnesium stearate, calcium stearate or polyethylene glycol in solid form, can be added to the powder mixture before the filling operation. A disintegrant or solubiliser, such as, for example, agar-agar, calcium carbonate or sodium carbonate, may likewise be added in order to improve the availability of the medicament after the capsule has been taken.
In addition, if desired or necessary, suitable binders, lubricants and disintegrants as well as dyes can likewise be incorporated into the mixture. Suitable binders include starch, gelatine, natural sugars, such as, for example, glucose or beta-lactose, sweeteners made from maize, natural and synthetic rubber, such as, for example, acacia, tragacanth or sodium alginate, carboxymethylcellulose, polyethylene glycol, waxes, and the like. The lubricants used in these dosage forms include sodium oleate, sodium stearate, magnesium stearate, sodium benzoate, sodium acetate, sodium chloride and the like. The disintegrants include, without being restricted thereto, starch, methylcellulose, agar, bentonite, xanthan gum and the like. The tablets are formulated by, for example, preparing a powder mixture, granulating or dry-pressing the mixture, adding a lubricant and a disintegrant and pressing the entire mixture to give tablets. A powder mixture is prepared by mixing the compound comminuted in a suitable manner with a diluent or a base, as described above, and optionally with a binder, such as, for example, carboxymethylcellulose, an alginate, gelatine or polyvinylpyrrolidone, a dissolution retardant, such as, for example, paraffin, an absorption accelerator, such as, for example, a quaternary salt, and/or an absorbent, such as, for example, bentonite, kaolin or dicalcium phosphate. The powder mixture can be granulated by wetting it with a binder, such as, for example, syrup, starch paste, acadia mucilage or solutions of cellulose or polymer materials and pressing it through a sieve. As an alternative to granulation, the powder mixture can be run through a tabletting machine, giving lumps of non-uniform shape which are broken up to form granules. The granules can be lubricated by addition of stearic acid, a stearate salt, talc or mineral oil in order to prevent sticking to the tablet casting moulds. The lubricated mixture is then pressed to give tablets. The compounds according to the invention can also be combined with a free-flowing inert excipient and then pressed directly to give tablets without carrying out the granulation or dry-pressing steps. A transparent or opaque protective layer consisting of a shellac sealing layer, a layer of sugar or polymer material and a gloss layer of wax may be present. Dyes can be added to these coatings in order to be able to differentiate between different dosage units.
Oral liquids, such as, for example, solution, syrups and elixirs, can be pre-pared in the form of dosage units so that a given quantity comprises a pre-specified amount of the compound. Syrups can be prepared by dissolving the compound in an aqueous solution with a suitable flavour, while elixirs are prepared using a non-toxic alcoholic vehicle. Suspensions can be formulated by dispersion of the compound in a non-toxic vehicle. Solubilisers and emulsifiers, such as, for example, ethoxylated isostearyl alcohols and polyoxyethylene sorbitol ethers, preservatives, flavour additives, such as, for example, peppermint oil or natural sweeteners or saccharin, or other artificial sweeteners and the like, can likewise be added.
The dosage unit formulations for oral administration can, if desired, be encapsulated in microcapsules. The formulation can also be prepared in such a way that the release is extended or retarded, such as, for example, by coating or embedding of particulate material in polymers, wax and the like.
The compounds of the formula I and salts, solvates and physiologically functional derivatives thereof can also be administered in the form of liposome delivery systems, such as, for example, small unilamellar vesicles, large unilamellar vesicles and multilamellar vesicles. Liposomes can be formed from various phospholipids, such as, for example, cholesterol, stearylamine or phosphatidylcholines.
The compounds of the formula I and the salts, solvates and physiologically functional derivatives thereof can also be delivered using monoclonal anti-bodies as individual carriers to which the compound molecules are coupled.
The compounds can also be coupled to soluble polymers as targeted medicament carriers. Such polymers may encompass polyvinylpyrrolidone, pyran copolymer, polyhydroxypropylmethacrylamidophenol, polyhydroxyethylaspartamidophenol or polyethylene oxide polylysine, substituted by palmitoyl radicals. The compounds may furthermore be coupled to a class of biodegradable polymers which are suitable for achieving controlled release of a medicament, for example polylactic acid, poly-epsilon-caprolactone, polyhydroxybutyric acid, polyorthoesters, polyacetals, polydihydroxypyrans, polycyanoacrylates and crosslinked or amphipathic block copolymers of hydrogels.
Pharmaceutical formulations adapted for transdermal administration can be administered as independent plasters for extended, close contact with the epidermis of the recipient. Thus, for example, the active ingredient can be delivered from the plaster by iontophoresis, as described in general terms in Pharmaceutical Research, 3(6), 318 (1986).
Pharmaceutical compounds adapted for topical administration can be formulated as ointments, creams, suspensions, lotions, powders, solutions, pastes, gels, sprays, aerosols or oils.
For the treatment of the eye or other external tissue, for example mouth and skin, the formulations are preferably applied as topical ointment or cream. In the case of formulation to give an ointment, the active ingredient can be employed either with a paraffinic or a water-miscible cream base. Alternatively, the active ingredient can be formulated to give a cream with an oil-in-water cream base or a water-in-oil base.
Pharmaceutical formulations adapted for topical application to the eye include eye drops, in which the active ingredient is dissolved or suspended in a suitable carrier, in particular an aqueous solvent.
Pharmaceutical formulations adapted for topical application in the mouth encompass lozenges, pastilles and mouthwashes.
Pharmaceutical formulations adapted for rectal administration can be administered in the form of suppositories or enemas.
Pharmaceutical formulations adapted for nasal administration in which the carrier substance is a solid comprise a coarse powder having a particle size, for example, in the range 20-500 microns, which is administered in the manner in which snuff is taken, i.e. by rapid inhalation via the nasal passages from a container containing the powder held close to the nose. Suitable formulations for administration as nasal spray or nose drops with a liquid as carrier substance encompass active-ingredient solutions in water or oil.
Pharmaceutical formulations adapted for administration by inhalation encompass finely particulate dusts or mists, which can be generated by various types of pressurised dispensers with aerosols, nebulisers or insufflators.
Pharmaceutical formulations adapted for vaginal administration can be administered as pessaries, tampons, creams, gels, pastes, foams or spray formulations.
Pharmaceutical formulations adapted for parenteral administration include aqueous and non-aqueous sterile injection solutions comprising antioxidants, buffers, bacteriostatics and solutes, by means of which the formulation is rendered isotonic with the blood of the recipient to be treated; and aqueous and non-aqueous sterile suspensions, which may comprise suspension media and thickeners. The formulations can be administered in single-dose or multidose containers, for example sealed ampoules and vials, and stored in freeze-dried (lyophilised) state, so that only the addition of the sterile carrier liquid, for example water for injection purposes, immediately before use is necessary.
Injection solutions and suspensions prepared in accordance with the recipe can be prepared from sterile powders, granules and tablets.
It goes without saying that, in addition to the above particularly mentioned constituents, the formulations may also comprise other agents usual in the art with respect to the particular type of formulation; thus, for example, formulations which are suitable for oral administration may comprise flavours.
A therapeutically effective amount of a compound of the formula I depends on a number of factors, including, for example, the age and weight of the animal, the precise condition which requires treatment, and its severity, the nature of the formulation and the method of administration, and is ultimately determined by the treating doctor or vet. However, an effective amount of a compound according to the invention for the treatment of neoplastic growth, for example colon or breast carcinoma, is generally in the range from 0.1 to 100 mg/kg of body weight of the recipient (mammal) per day and particularly typically in the range from 1 to 10 mg/kg of body weight per day. Thus, the actual amount per day for an adult mammal weighing 70 kg is usually between 70 and 700 mg, where this amount can be administered as a single dose per day or usually in a series of part-doses (such as, for example, two, three, four, five or six) per day, so that the total daily dose is the same. An effective amount of a salt or solvate or of a physiologically functional derivative thereof can be determined as the fraction of the effective amount of the compound according to the invention per se. It can be assumed that similar doses are suitable for the treatment of other conditions mentioned above.
The invention furthermore relates to medicaments comprising at least one compound of the formula I and/or pharmaceutically usable derivatives, solvates and stereoisomers thereof, including mixtures thereof in all ratios, and at least one further medicament active ingredient.
The invention also relates to a set (kit) consisting of separate packs of
The set comprises suitable containers, such as boxes, individual bottles, bags or ampoules. The set may, for example, comprise separate ampoules, each containing an effective amount of a compound of the formula I and/or pharmaceutically usable derivatives, solvates and stereoisomers thereof, including mixtures thereof in all ratios, and an effective amount of a further medicament active ingredient in dissolved or lyophilised form.
The medicaments from Table 1 are preferably, but not exclusively, combined with the compounds of the formula I. A combination of the formula I and medicaments from Table 1 can also be combined with compounds of the formula VI.
The compounds of the formula I are preferably combined with known anti-cancer agents:
The present compounds are also suitable for combination with known anti-cancer agents. These known anti-cancer agents include the following: oestrogen receptor modulators, androgen receptor modulators, retinoid receptor modulators, cytotoxic agents, antiproliferative agents, prenyl-protein transferase inhibitors, HMG-COA reductase inhibitors, HIV protease inhibitors, reverse transcriptase inhibitors and other angiogenesis inhibitors. The present compounds are particularly suitable for administration at the same time as radiotherapy. The synergistic effects of inhibition of VEGF in combination with radiotherapy have been described by specialists (see WO 00/61186).
“Oestrogen receptor modulators” refers to compounds which interfere with or inhibit the binding of oestrogen to the receptor, regardless of mechanism. Examples of oestrogen receptor modulators include, but are not limited to, tamoxifen, raloxifene, idoxifene, LY353381, LY 117081, toremifene, fulvestrant, 4-[7-(2,2-dimethyl-1-oxopropoxy-4-methyl-2-[4-[2-(1-piperidinyl)ethoxy]phenyl]-2H-1-benzopyran-3-yl]phenyl 2,2-dimethylpropanoate, 4,4′-dihydroxybenzophenone-2,4-dinitrophenylhydrazone and SH646. “Androgen receptor modulators” refers to compounds which interfere with or inhibit the binding of androgens to the receptor, regardless of mechanism. Examples of androgen receptor modulators include finasteride and other 5α-reductase inhibitors, nilutamide, flutamide, bicalutamide, liarozole and abiraterone acetate.
“Retinoid receptor modulators” refers to compounds which interfere with or inhibit the binding of retinoids to the receptor, regardless of mechanism.
Examples of such retinoid receptor modulators include bexarotene, tretinoin, 13-cis-retinoic acid, 9-cis-retinoic acid, α-difluoromethylornithine, ILX23-7553, trans-N-(4′-hydroxyphenyl)retinamide and N-4-carboxyphenylretinamide.
“Cytotoxic agents” refers to compounds which result in cell death primarily through direct action on the cellular function or inhibit or interfere with cell myosis, including alkylating agents, tumour necrosis factors, intercalators, microtubulin inhibitors and topoisomerase inhibitors.
Examples of cytotoxic agents include, but are not limited to, tirapazimine, sertenef, cachectin, ifosfamide, tasonermin, lonidamine, carboplatin, altretamine, prednimustine, dibromodulcitol, ranimustine, fotemustine, nedaplatin, oxaliplatin, temozolomide, heptaplatin, estramustine, improsulfan tosylate, trofosfamide, nimustine, dibrospidium chloride, pumitepa, lobaplatin, satraplatin, profiromycin, cisplatin, irofulven, dexifosfamide, cisaminedichloro(2-methylpyridine)platinum, benzylguanine, glufosfamide, GPX100, (trans,trans,trans)bis-mu-(hexane-1,6-diamine)mu-[diamine-platinum(II)]bis[diamine(chloro)platinum(II)] tetrachloride, diarisidinylspermine, arsenic trioxide, 1-(11-dodecylamino-10-hydroxyundecyl)-3,7-dimethylxanthine, zorubicin, idarubicin, daunorubicin, bisantrene, mitoxantrone, pirarubicin, pinafide, valrubicin, amrubicin, antineoplastone, 3′-deamino-3′-morpholino-13-deoxo-10-hydroxycaminomycin, annamycin, galarubicin, elinafide, MEN10755 and 4-demethoxy-3-deamino-3-aziridinyl-4-methylsulfonyldaunorubicin (see WO 00/50032).
Examples of microtubulin inhibitors include paclitaxel, vindesine sulfate, 3′,4′-didehydro-4′-deoxy-8′-norvincaleukoblastine, docetaxol, rhizoxin, dolastatin, mivobulin isethionate, auristatin, cemadotin, RPR109881, BMS184476, vinflunine, cryptophycin, 2,3,4,5,6-pentafluoro-N-(3-fluoro-4-methoxyphenyl)benzenesulfonamide, anhydrovinblastine, N,N-dimethyl-L-valyl-L-valyl-N-methyl-L-valyl-L-prolyl-L-proline-t-butylamide, TDX258 and BMS188797.
Some examples of topoisomerase inhibitors are topotecan, hycaptamine, irinotecan, rubitecan, 6-ethoxypropionyl-3′,4′-O-exobenzylidenechartreusin, 9-methoxy-N,N-dimethyl-5-nitropyrazolo[3,4,5-kl]acridine-2-(6H)propanamine, 1-amino-9-ethyl-5-fluoro-2,3-dihydro-9-hydroxy-4-methyl-1H,12H-benzo[de]pyrano[3′,4′:b,7]indolizino[1,2b]quinoline-10,13(9H, 15H)dione, lurtotecan, 7-[2-(N-isopropylamino)ethyl]-(20S)camptothecin, BNP1350, BNPI1100, BN80915, BN80942, etoposide phosphate, teniposide, sobuzoxane, 2′-dimethylamino-2′-deoxyetoposide, GL331, N-[2-(dimethylamino)-ethyl]-9-hydroxy-5,6-dimethyl-6H-pyrido[4,3-b]carbazole-1-carboxamide, asulacrine, (5a,5aB,8aa,9b)-9-[2-[N-[2-(dimethylamino)ethyl]-N-methylamino]ethyl]-5-[4-hydroxy-3,5-dimethoxyphenyl]-5,5a,6,8,8a,9-hexohydrofuro(3′,4′:6,7)naphtho(2,3-d)-1,3-dioxol-6-one, 2,3-(methylenedioxy)-5-methyl-7-hydroxy-8-methoxybenzo[c]phenanthradinium, 6,9-bis[(2-aminoethyl)amino]benzo[g]isoquinoline-5,10-dione, 5-(3-aminopropylamino)-7,10-dihydroxy-2-(2-hydroxyethylaminomethyl)-6H-pyrazolo[4,5,1-de]acridine-6-one, N-[1-[2(diethylamino)ethylamino]-7-methoxy-9-oxo-9H-thioxanthen-4-ylmethyl]formamide, N-(2-(dimethylamino)ethyl)acridine-4-carboxamide, 6-[[2-(dimethylamino)ethyl]amino]-3-hydroxy-7H-indeno[2,1-c]quinolin-7-one and dimesna.
“Antiproliferative agents” include antisense RNA and DNA oligonucleotides such as G3139, ODN698, RVASKRAS, GEM231 and INX3001 and anti-metabolites such as enocitabine, carmofur, tegafur, pentostatin, doxifluridine, trimetrexate, fludarabine, capecitabine, galocitabine, cytarabine ocfosfate, fosteabine sodium hydrate, raltitrexed, paltitrexid, emitefur, tiazofurin, decitabine, nolatrexed, pemetrexed, nelzarabine, 2′-deoxy-2′-methylidenecytidine, 2′-fluoromethylene-2′-deoxycytidine, N-[5-(2,3-dihydrobenzofuryl)sulfonyl]-N′-(3,4-dichlorophenyl)urea, N6-[4-deoxy-4-[N2-[2(E),4(E)-tetradecadienoyl]glycylamino]-L-glycero-B-L-mannoheptopyranosyl]adenine, aplidine, ecteinascidin, troxacitabine, 4-[2-amino-4-oxo-4,6,7,8-tetrahydro-3H-pyrimidino[5,4-b]-1,4-thiazin-6-yl-(S)-ethyl]-2,5-thienoyl-L-glutamic acid, aminopterin, 5-fluorouracil, alanosine, 11-acetyl-8-(carbamoyloxymethyl)-4-formyl-6-methoxy-14-oxa-1,11-diazatetracyclo(7.4.1.0.0)-tetradeca-2,4,6-trien-9-ylacetic acid ester, swainsonine, lometrexol, dexrazoxane, methioninase, 2′-cyano-2′-deoxy-N4-palmitoyl-B-D-arabino-furanosyl cytosine and 3-aminopyridine-2-carboxaldehyde thiosemicarbazone. “Antiproliferative agents” also include monoclonal antibodies to growth factors other than those listed under “angiogenesis inhibitors”, such as trastuzumab, and tumour suppressor genes, such as p53, which can be delivered via recombinant virus-mediated gene transfer (see U.S. Pat. No. 6,069,134, for example).
Particular preference is given to the use of the compound according to the invention for the treatment and prophylaxis of tumour diseases.
The tumour is preferably selected from the group of tumours of the squamous epithelium, of the bladder, of the stomach, of the kidneys, of head and neck, of the oesophagus, of the cervix, of the thyroid, of the intestine, of the liver, of the brain, of the prostate, of the urogenital tract, of the lymphatic system, of the stomach, of the larynx and/or of the lung.
The tumour is furthermore preferably selected from the group lung adenocarcinoma, small-cell lung carcinomas, pancreatic cancer, glioblastomas, colon carcinoma and breast carcinoma.
Preference is furthermore given to the use for the treatment of a tumour of the blood and immune system, preferably for the treatment of a tumour selected from the group of acute myelotic leukaemia, chronic myelotic leukaemia, acute lymphatic leukaemia and/or chronic lymphatic leukaemia.
The invention also encompasses a method for the treatment of a patient who has a neoplasm, such as a cancer, by administration of
in which Y and Z each, independently of one another, denote O or N, R6 and R7 each, independently of one another, denote H, OH, halogen, OC1-10-alkyl, OCF3, NO2 or NH2, n denotes an integer between 2 and 6 inclusive, and R8 and R9 are each, independently of one another, in the meta- or para-position and are selected from the group:
where the first and second compound are administered simultaneously or within 14 days of one another in amounts which are sufficient to inhibit the growth of the neoplasm.
Other suitable pentamidine analogues include stilbamidine (G-1) and hydroxystilbamidine (G-2) and indole analogues thereof (for example G-3):
Each amidine unit may be replaced, independently of one another, by one of the units shown above as D-2, D-3, D-4, D-5 or D-6. As in the case of benzimidazoles and pentamidines, salts of stilbamidine, hydroxystilbamidine and indole derivatives thereof are also suitable in the process according to the invention. Preferred salts include, for example, dihydrochloride and methanesulfonate salts.
Still other analogues are those which fall under a formula which are provided in one of the U.S. Pat. Nos. 5,428,051, 5,521,189, 5,602,172, 5,643,935, 5,723,495, 5,843,980, 6,172,104 and 6,326,395 or the US patent application with the publication No. US 2002/0019437 A1, each of which is incorporated in its entirety by way of reference. Illustrative analogues include 1,5-bis(4′-(N-hydroxyamidino)phenoxy)pentane, 1,3-bis(4′-(N-hydroxyamidino)phenoxy)propane, 1,3-bis(2′-methoxy-4′-(N-hydroxyamidino)phenoxy)propane, 1,4-bis(4′-(N-hydroxyamidino)phenoxy)butane, 1,5-bis(4′-(N-hydroxyamidino)phenoxy)pentane, 1,4-bis(4′-(N-hydroxyamidino)phenoxy)butane, 1,3-bis(4′-(4-hydroxyamidino)phenoxy)propane, 1,3-bis(2′-methoxy-4′-(N-hydroxyamidino)phenoxy)propane, 2,5-bis[4-amidinophenyl]furan, 2,5-bis[4-amidinophenyl]furan bisamide oxime, 2,5-bis[4-amidinophenyl]furan bis-O-methylamide oxime, 2,5-bis[4-amidinophenyl]furan bis-O-ethylamide oxime, 2,8-diamidinodibenzothiophene, 2,8-bis(N-isopropylamidino)carbazole, 2,8-bis(N-hydroxyamidino)carbazole, 2,8-bis(2-imidazolinyl)dibenzothiophene, 2,8-bis(2-imidazolinyl)-5,5-dioxo-dibenzothiophene, 3,7-diamidinodibenzothiophene, 3,7-bis(N-isopropylamidino)dibenzothiophene, 3,7-bis(N-hydroxyamidino)dibenzothiophene, 3,7-diaminodibenzothiophene, 3,7-dibromodibenzothiophene, 3,7-dicyanodibenzothiophene, 2,8-diamidinodibenzofuran, 2,8-di-(2-imidazolinyl)dibenzofuran, 2,8-di-(N-isopropylamidino)dibenzofuran, 2,8-di-(N-hydroxylamidino)dibenzofuran, 3,7-di-(2-imidazolinyl)dibenzofuran, 3,7-di-(isopropylamidino)dibenzofuran, 3,7-di-(A-hydroxylamidino)dibenzofuran, 2,8-dicyanodibenzofuran, 4,4′-dibromo-2,2′-dinitrobiphenyl, 2-methoxy-2′-nitro-4,4′-dibromobiphenyl, 2-methoxy-2′-amino-4,4′-dibromobiphenyl, 3,7-dibromodibenzofuran, 3,7-dicyanodibenzofuran, 2,5-bis(5-amidino-2-benzimidazolyl)pyrrole, 2,5-bis[5-(2-imidazolinyl)-2-benzimidazolyl]pyrrole, 2,6-bis[5-(2-imidazolinyl)-2-benzimidazolyl]pyridine, 1-methyl-2,5-bis(5-amidino-2-benzimidazolyl)pyrrole, 1-methyl-2,5-bis[5-(2-imidazolyl)-2-benzimidazolyl]pyrrole, 1-methyl-2,5-bis[5-(1,4,5,6-tetrahydro-2-pyrimidinyl)-2-benzimidazolyl]pyrrole, 2,6-bis(5-amidino-2-benzimidazoyl)pyridine, 2,6-bis[5-(1,4,5,6-tetrahydro-2-pyrimidinyl)-2-benzimidazolyl]pyridine, 2,5-bis(5-amidino-2-benzimidazolyl)furan, 2,5-bis[5-(2-imidazolinyl)-2-benzimidazolyl]furan, 2,5-bis(5-N-isopropylamidino-2-benzimidazolyl)furan, 2,5-bis(4-guanylphenyl)furan, 2,5-bis(4-guanylphenyl)-3,4-dimethylfuran, 2,5-di-p-[2-(3,4,5,6-tetrahydropyrimidyl)phenyl]furan, 2,5-bis[4-(2-imidazolinyl)phenyl]-furan, 2,5-[bis{4-(2-tetrahydropyrimidinyl)}phenyl]p-(tolyloxy)furan, 2,5-[bis-{4-(2-imidazolinyl)}phenyl]-3-p-(tolyloxy)furan, 2,5-bis{4-[5-(N2-aminoethylamido)benzimidazol-2-yl]phenyl}furan, 2,5-bis[4-(3a,4,5,6,7,7a-hexahydro-1H-benzimidazol-2-yl)phenyl]furan, 2,5-bis[4-(4,5,6,7-tetrahydro-1H-1,3-diazepin-2-yl)phenyl]furan, 2,5-bis(4-N,N-dimethylcarboxhydrazidophenyl)-furan, 2,5-bis{4-[2-(N-2-hydroxyethyl)imidazolinyl]phenyl}furan, 2,5-bis[4-(N-isopropylamidino)phenyl]furan, 2,5-bis{4-[3-(dimethylaminopropyl)amidino]phenyl}furan, 2,5-bis{4-[N-(3-aminopropyl)amidino]phenyl}furan, 2,5-bis[2-(imidzaolinyl)phenyl]-3,4-bis(methoxymethyl)furan, 2,5-bis[4-N-(dimethylaminoethyl)guanyl]phenylfuran, 2,5-bis{4-[(N-2-hydroxyethyl)guanyl]-phenyl}furan, 2,5-bis[4-N-(cyclopropylguanyl)phenyl]furan, 2,5-bis[4-(N,N-diethylaminopropyl)guanyl]phenylfuran, 2,5-bis{4-[2-(N-ethylimidazolinyl)]-phenyl}furan, 2,5-bis{4-[N-(3-pentylguanyl)]}phenylfuran, 2,5-bis[4-(2-imidazolinyl)phenyl]-3-methoxyfuran, 2,5-bis[4-(N-isopropylamidino)phenyl]-3-methylfuran, bis[5-amidino-2-benzimidazolyl]methane, bis[5-(2-imidazolyl)-2-benzimidazolyl]methane, 1,2-bis[5-amidino-2-benzimidazolyl]-ethane, 1,2-bis[5-(2-imidazolyl)-2-benzimidazolyl]ethane, 1,3-bis[5-amidino-2-benzimidazolyl]propane, 1,3-bis[5-(2-imidazolyl)-2-benzimidazolyl]propane, 1,4-bis[5-amidino-2-benzimidazolyl]propane, 1,4-bis[5-(2-imidazolyl)-2-benzimidazolyl]butane, 1,8-bis[5-amidino-2-benzimidazolyl]octane, trans-1,2-bis[5-amidino-2-benzimidazolyl]ethene, 1,4-bis[5-(2-imidazolyl)-2-benzimidazolyl]-1-butene, 1,4-bis[5-(2-imidazolyl)-2-benzimidazolyl]-2-butene, 1,4-bis[5-(2-imidazolyl)-2-benzimidazolyl]-1-methylbutane, 1,4-bis-[5-(2-imidazolyl)-2-benzimidazolyl]-2-ethylbutane, 1,4-bis[5-(2-imidazolyl)-2-benzimidazolyl]-1-methyl-1-butene, 1,4-bis[5-(2-imidazolyl)-2-benzimidazolyl]-2,3-diethyl-2-butene, 1,4-bis[5-(2-imidazolyl)-2-benzimidazolyl]-1,3-butadiene, 1,4-bis[5-(2-imidazolyl)-2-benzimidazolyl]-2-methyl-1,3-butadiene, bis[5-(2-pyrimidyl)-2-benzimidazolyl]methane, 1,2-bis[5-(2-pyrimidyl)-2-benzimidazolyl]ethane, 1,3-bis[5-amidino-2-benzimidazolyl]propane, 1,3-bis[5-(2-pyrimidyl)-2-benzimidazolyl]propane, 1,4-bis[5-(2-pyrimidyl)-2-benzimidazolyl]butane, 1,4-bis[5-(2-pyrimidyl)-2-benzimidazolyl]-1-butene, 1,4-bis[5-(2-pyrimidyl)-2-benzimidazolyl]-2-butene, 1,4-bis[5-(2-pyrimidyl)-2-benzimidazolyl]-1-methylbutane, 1,4-bis[5-(2-pyrimidyl)-2-benzimidazolyl]-2-ethylbutane, 1,4-bis[5-(2-pyrimidyl)-2-benzimidazolyl]-1-methyl-1-butene, 1,4-bis[5-(2-pyrimidyl)-2-benzimidazolyl]-2,3-diethyl-2-butene, 1,4-bis[5-(2-pyrimidyl)-2-benzimidazolyl]-1,3-butadiene and 1,4-bis[5-(2-pyrimidyl)-2-benzimidazolyl]-2-methyl-1,3-butadiene, 2,4-bis(4-guanylphenyl)pyrimidine, 2,4-bis(4-imidazolin-2-yl)pyrimidine, 2,4-bis[(tetrahydropyrimidinyl-2-yl)-phenyl]pyrimidine, 2-(4-[N-i-propylguanyl]phenyl)-4-(2-methoxy-4-[N-i propylguanyl]phenyl)pyrimidine, 4-(N-cyclopentylamidino)-1,2-phenylenediamine, 2,5-bis[2-(5-amidino)benzimidazoyl]furan, 2,5-bis[2-{5-(2-imidazolino)}benzimidazoyl]furan, 2,5-bis[2-(5-N-isopropylamidino)benzimidazoyl]-furan, 2,5-bis[2-(5-N-cyclopentylamidino)benzimidazoyl]furan, 2,5-bis[2-(5-amidino)benzimidazoyl]pyrrole, 2,5-bis[2-{5-(2-imidazolino)}benzimidazoyl]-pyrrole, 2,5-bis[2-(5-N-isopropylamidino)benzimidazoyl]pyrrole, 2,5-bis[2-(5-N-cyclopentylamidino)benzimidazoyl]pyrrole, 1-methyl-2,5-bis[2-(5-amidino)benzimidazoyl]pyrrole, 2,5-bis[2-{5-(2-imidazolino)}benzimidazoyl]-1-methylpyrrole, 2,5-bis[2-(5-N-cyclopentylamidino)benzimidazoyl]-1-methylpyrrole, 2,5-bis[2-(5-N-isopropylamidino)benzimidazoyl]thiophene, 2,6-bis-[2-{5-(2-imidazolino)}benzimidazoyl]pyridine, 2,6-bis[2-(5-amidino)benzimidazoyl]pyridine, 4,4′-bis[2-(5-N-isopropylamidino)benzimidazoyl]-1,2-diphenylethane, 4,4′-bis[2-(5-N-cyclopentylamidino)benzimidazoyl]-2,5-diphenylfuran, 2,5-bis[2-(5-amidino)benzimidazoyl]benzo[b]furan, 2,5-bis[2-(5-N-cyclopentylamidino)benzimidazoyl]benzo[b]furan, 2,7-bis[2-(5-N-isopropylamidino)benzimidazoyl]fluorine, 2,5-bis[4-(3-(N-morpholinopropyl)-carbamoyl)phenyl]furan, 2,5-bis[4-(2-N,N-dimethylaminoethylcarbamoyl)-phenyl]furan, 2,5-bis[4-(3-N,N-dimethylaminopropylcarbamoyl)phenyl]-furan, 2,5-bis[4-(3-N-methyl-3-N-phenylaminopropylcarbamoyl)phenyl]-furan, 2,5-bis[4-(3-N,N8,N11-trimethylaminopropylcarbamoyl)phenyl]furan, 2,5-bis[3-amidinophenyl]furan, 2,5-bis[3-(N-isopropylamidino)amidinophenyl]furan, 2,5-bis[3-[(N-(2-dimethylaminoethyl)amidino]phenylfuran, 2,5-bis[4-(N-2,2,2-trichloroethoxycarbonyl)amidinophenyl]furan, 2,5-bis[4-(N-thioethylcarbonyl)amidinophenyl]furan, 2,5-bis[4-(N-benzyloxycarbonyl)-amidinophenyl]furan, 2,5-bis[4-(N-phenoxycarbonyl)amidinophenyl]furan, 2,5-bis[4-(N-(4-fluoro)phenoxycarbonyl)amidinophenyl]furan, 2,5-bis[4-(N-(4-methoxy)phenoxycarbonyl)amidinophenyl]furan, 2,5-bis[4-(1-acetoxy-ethoxycarbonyl)amidinophenyl]furan and 2,5-bis[4-(N-(3-fluoro)phenoxycarbonyl)amidinophenyl]furan. Processes for the preparation of one of the above compounds are described in U.S. Pat. Nos. 5,428,051, 5,521,189, 5,602,172, 5,643,935, 5,723,495, 5,843,980, 6,172,104 and 6,326,395 or the US patent application with the publication No. US 2002/0019437 A1.
Pentamidine metabolites are likewise suitable in the antiproliferative combination according to the invention. Pentamidine is rapidly metabolised in the body to at least seven primary metabolites. Some of these metabolites have one or more actions in common with pentamidine. It is probable that some pentamidine metabolites exhibit an antiproliferative action when combined with a benzimidazole or an analogue thereof.
Seven pentamidine analogues are shown below.
The combinations according to the invention of compounds of the formula I and formula VI and metabolites thereof are suitable for the treatment of neoplasms. Combination therapy can be carried out alone or in combination with another therapy (for example operation, irradiation, chemotherapy, biological therapy). In addition, a person whose risk of developing a neoplasm is greater (for example someone who is genetically predisposed or someone who previously had a neoplasm) can be given prophylactic treatment in order to inhibit or delay neoplasm formation.
The dosage and frequency of administration of each compound in the combination can be controlled independently. For example, one compound may be administered orally three times daily, while the second compound may be administered intramuscularly once per day. The compounds may also be formulated together, leading to administration of both compounds.
The antiproliferative combinations according to the invention can also be provided as components of a pharmaceutical package. The two medicaments can be formulated together or separately and in individual dosage amounts.
In another aspect, the invention encompasses a method for the treatment of a patient who has a neoplasm, such as a cancer, by administration of a compound of the formula (I) and (VI) in combination with an antiproliferative agent. Suitable antiproliferative agents encompass those provided in Table 1.
Above and below, all temperatures are indicated in ° C. In the following examples, “conventional work-up” means: if necessary, water is added, the pH is adjusted, if necessary, to values between 2 and 10, depending on the constitution of the end product, the mixture is extracted with ethyl acetate or dichloromethane, the phases are separated, the organic phase is dried over sodium sulfate and evaporated, and the product is purified by chromatography on silica gel and/or by crystallisation. Rf values on silica gel; eluent: ethyl acetate/methanol 9:1.
Mass spectrometry (MS): EI (electron impact ionisation) M+
The mandelic acid derivatives employed below are accessible by syntheses described in the literature, for example from aromatic aldehydes.
The following example are intended to illustrate the invention without representing a restriction of the scope of protection defined in the Claims. Advantages of the invention that are evident from the examples, the indicated ranges of parameters according to the invention and the indicated procedures according to the invention are intended in general form to be taken to be part of the invention and can therefore have general validity for the purposes of the present invention, in particular in relation to the understanding of the person skilled in the art both when studying the description of the present invention (the disclosure of the invention) and also when interpreting the scope of protection defined in the Claims.
10 ml of ethyl 2-m-tolylacetate (56 mmol) in 20 ml of THF are added dropwise at −65° C. to a solution of 67.2 ml of a 1 M lithium bis(trimethylsilyl)amide solution (67.2 mmol) in 80 ml of THF. After slow addition of 4.2 ml (67.2 mmol; 1 equiv.) of iodomethane, the mixture is stirred with cooling for 30 min. and subsequently warmed to room temperature. After stirring for 3 hours, the reaction is complete.
2 N HCl is added, and the mixture is extracted 3 times with ethyl acetate. The combined organic phases are washed with NaCl solution and water, dried using Na2SO4, and the solvent is subsequently removed by distillation.
10 g (46.8 mmol) of 1 are initially introduced in 200 ml of DMF, 1.9 g of sodium hydride (46.8 mmol; 1 equiv.) are added, and, after the mixture has been stirred at room temperature for one hour, 5.56 ml (46.8 mmol; 1 equiv.) of benzyl bromide are added. After the mixture has been stirred overnight, water is added, the solvent is removed by distillation, and the residue is taken up in ethyl acetate. The mixture is extracted 3 times with water, and the organic phase is dried over Na2SO4. The product is obtained after removal of the solvent by distillation.
13.5 g (47.8 mmol) of 2 are dissolved in 200 ml of 1,4-dioxane, 35.8 ml of 2 M NaOH solution are added, and the mixture is stirred under reflux overnight. After the dioxane has been removed by distillation, the aqueous phase is adjusted to pH 5-6 using 1 N HCl solution and extracted 3 times with ethyl acetate. The organic phase is washed with water and dried over Na2SO4. The crude product is obtained after removal of the solvent by distillation and is purified by normal-phase chromatography (eluent toluene ethyl acetate=10:1).
2 g (7.8 mmol) of 3 are heated under reflux in 20 ml of phosphoryl chloride. After 30 min., the reaction mixture is added to ice-water and extracted with ethyl acetate. The organic phase is washed with NaHCO3 solution until the formation of gas is no longer observed. The organic phase is dried over Na2SO4, and the solvent is removed by distillation. The crude product obtained is purified by normal-phase chromatography (gradient petroleum ether to petroleum ether:ethyl acetate=20:1).
A Grignard solution is prepared using 1 ml (7.4 mmol) of N-methyl-4-chloropiperidine in 2 ml of THF using elemental iodine and bromoethane. A solution of 250 mg (1.0 mmol) of 4 in 3 ml of THF is added dropwise to this Grignard solution, and the mixture is warmed under reflux overnight. After cooling to room temperature, the mixture is acidified using 2 N HCl and washed 3 times with diethyl ether. The aqueous phase is then adjusted to pH 12 using NaOH and extracted 3 times with diethyl ether. After drying over Na2SO4, the crude product is obtained after removal of the solvent by distillation and is further reacted directly.
400 mg (1.2 mmol) of 5 are stirred at 60° C. for 1 hour in 3 ml of 5 M HCL in dioxane solution. The crude product is obtained by removal of the solvent by distillation and is purified by means of reversed-phase chromatography.
The efficacy of the compounds of the formula I according to the invention can be determined, for example, via the Eg5 ATPase activity, which is measured via an enzymatic regeneration of the product ADP to ATP by means of pyruvate kinase (PK) and subsequent coupling to an NADH-dependent lactate dehydrogenase (LDH) reaction. The reaction can be monitored via the change in absorbance at 340 nm by coupling to the NADH-dependent LDH. The regeneration of the ATP simultaneously ensures that the substrate concentration remains constant. The change in absorbance per time unit are analysed graphically and a linear regression carried out in the visually linear region of the reaction.
The determination of the efficacy of the compounds of the formula I according to the invention in combination with compounds of the formula VI and/or medicaments from Table I can be demonstrated as follows in combination assays:
103 to 104 cells of a defined cell line (HCT116, Colo 205, MDA-MB 231, etc.) are sown into each well of a 96-well microtitre plate and cultivated overnight under standard conditions. For the substances of the combination to be tested, 10-50 mM stock solutions in DMSO were prepared. Dilution series (generally 3-fold dilution steps) of the individual substances were combined with one another in the form of a pipetting scheme (see scheme below), while maintaining a DMSO final concentration of 0.5% (v/v). Next morning, the substance mixtures were added to the cells, which were incubated under culture conditions for a further 48 hours. At the end of the cultivation, Crystal Violet staining of the cells was carried out. After extraction of the Crystal Violet from the fixed cells, the absorption at 550 nm was measured spectrophotometrically. It can be used as a quantitative measure of the adherent cells present.
The following examples relate to medicaments:
A solution of 100 g of an active ingredient of the formula I and 5 g of disodium hydrogenphosphate in 3 l of bidistilled water is adjusted to pH 6.5 using 2 N hydrochloric acid, sterile filtered, transferred into injection vials, lyophilised under sterile conditions and sealed under sterile conditions. Each injection vial contains 5 mg of active ingredient.
A mixture of 20 g of an active ingredient of the formula I with 100 g of soya lecithin and 1400 g of cocoa butter is melted, poured into moulds and allowed to cool. Each suppository contains 20 mg of active ingredient.
A solution is prepared from 1 g of an active ingredient of the formula I, 9.38 g of NaH2PO4.2H2O, 28.48 g of Na2HPO4.12H2O and 0.1 g of benzalkonium chloride in 940 ml of bidistilled water. The pH is adjusted to 6.8, and the solution is made up to 1 l and sterilised by irradiation. This solution can be used in the form of eye drops.
500 mg of an active ingredient of the formula I are mixed with 99.5 g of Vaseline under aseptic conditions.
A mixture of 1 kg of active ingredient of the formula I, 4 kg of lactose, 1.2 kg of potato starch, 0.2 kg of talc and 0.1 kg of magnesium stearate is pressed in a conventional manner to give tablets in such a way that each tablet contains 10 mg of active ingredient.
Tablets are pressed analogously to Example E and subsequently coated in a conventional manner with a coating of sucrose, potato starch, talc, tragacanth and dye.
2 kg of active ingredient of the formula I are introduced into hard gelatine capsules in a conventional manner in such a way that each capsule contains 20 mg of the active ingredient.
A solution of 1 kg of active ingredient of the formula I in 60 l of bidistilled water is sterile filtered, transferred into ampoules, lyophilised under sterile conditions and sealed under sterile conditions. Each ampoule contains 10 mg of active ingredient.
Number | Date | Country | Kind |
---|---|---|---|
10 2005 010 000.7 | Mar 2005 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2006/001283 | 2/13/2006 | WO | 00 | 9/4/2007 |