A portion of the disclosure of this patent document contains material, which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
A computer program listing appendix on one compact disc (labeled “Computer Program Listing Appendix—Disc 1/Copy 1”) includes the following files:
and an identical copy (labeled “Computer Program Listing Appendix—Disc 1/Copy 2”) of the compact disc (labeled “Computer Program Listing Appendix—Disc 1/Copy 1”) are attached hereto. The files included on Disc 1/Copy 1 on CD-R are in ASCII file format. The above-referenced computer program listing provided on the compact disc labeled “Computer Program Listing Appendix—Disc 1/Copy 1” is hereby incorporated herein by reference in its entirety.
The present invention is generally directed to a test system and, more specifically, to an indentation hardness test system.
Hardness testing has been found to be useful for material evaluation and quality control of manufacturing processes and research and development endeavors. The hardness of an object, although empirical in nature, can be correlated to tensile strength for many metals and provides an indicator of wear-resistance and ductility of a material. A typical indentation hardness tester utilizes a calibrated machine to force a diamond indenter (of a desired geometry) into the surface of a material being evaluated. The indentation dimension (dimensions) is (are) then measured with a light microscope after load removal. A determination of the hardness of the material under test may then be obtained by dividing the force applied to the indenter by the projected area of the permanent impression made by the indenter.
In a typical situation, an operator of an indentation hardness tester is required to position indents into a part at precise distances from various part geometries. With reference to
In such a tester, a 5× magnification only allows an operator to see about ⅕th of the top surface of a tooth and a 50× magnification only allows the operator to see about 1/50th of the top surface of a tooth. It should be appreciated that such a view does not allow an operator to precisely know if a stage that is used to position the test assembly 22 is positioned in the center of the top surface of the tooth. Thus, to ensure that indentations are perpendicular to the top of the tooth 102A and a specified distance from the top surface of the tooth 102A, traditional software packages have allowed an operator to position a “T” bar along a displayed image. In this manner, an operator would position the top portion of the “T” bar along the top edge of the tooth 102A through a combination of moving the stage and rotating the “T” bar. As briefly described above, at 5× magnification the operator has a relatively good idea of the required orientation of the “T” bar, but not enough resolution to position it within 5 microns of the edge. Further, at 50× magnification, locating the top edge of the tooth within 5 microns is possible, but the orientation is difficult because the edge is not straight at this magnification.
What is needed is a technique that more readily allows an operator of an indentation hardness tester to properly position an indenter with respect to a test assembly.
The present invention is generally directed to an indentation hardness test system that includes a frame having a movable turret, a movable stage for receiving a part, a camera, a display, a processor and a memory subsystem. The turret includes a first objective lens of a microscope and an indenter and the movable stage is configured for receiving a part to be tested. The camera captures images of the part through the microscope, which can then be provided on the display. The processor is electrically coupled to the turret, the movable stage, the camera and the display, as well as the memory subsystem. The memory subsystem stores code that, when executed, instructs the processor to perform a number of steps. That is, the code instructs the processor to capture and store a series of real-time images of the part using the camera. The code also instructs the processor to store stage coordinates, associated with each of the images, and to display a composite image of the part, which includes the series of real-time images assembled according to the associated stage coordinates, on the display.
According to another embodiment of the present invention, the images are stored at a lower resolution than the captured images. According to still another embodiment of the present invention, the code instructs the processor to perform the additional step of displaying a background pattern in the composite image for the portions of the part that have not been captured. According to yet another embodiment of the present invention, the code instructs the processor to perform the additional step of normalizing the series of real-time images when at least one of the images was captured by a second objective lens, with a different focal length than the first objective lens, before displaying the composite image of the part.
In another embodiment, the code instructs the processor to perform the additional step of displaying an outline of the part in a composite image. The step of displaying an outline of the part in the composite image may also include the steps of: examining a frame of an image stream of the part to locate an edge of the part and moving the part in a direction parallel to the edge of the part such that the edge remains in the field of view for a next frame until the outline of the part is complete. The code may also cause the processor to perform the additional steps of overlaying a current position image of the part in the composite image and indicating a location of the current positioned image. Further, the code may allow the processor to perform the additional steps of overlaying an indent position diagram on the composite image and displaying a proposed indent location within an indentation outline that represents a geometry and size (based upon an expected indenter), an expected orientation of the indenter, an expected indenter load and an expected hardness of the part.
These and other features, advantages and objects of the present invention will be further understood and appreciated by those skilled in the art by reference to the following specification, claims and appended drawings.
In the drawings:
A system according to various embodiments of the present invention can be implemented using an indentation hardness tester that includes: a light microscope, a digital camera positioned to collect images through the microscope, an electrically controlled stage capable of moving a test assembly, i.e., an associated part to be tested or a portion of a part mounted in a plastic, in at least two dimensions in a plane perpendicular to the lens of the light microscope, and a processor (or computer system) connected to both the camera and the stage such that the processor can display images acquired by the camera while monitoring and controlling the movements of the stage and its associated part.
With reference again to
According to one embodiment of the present invention, the processor 40 collects a series of real-time images and stage coordinates as an operator manually traverses the part. In doing so, the processor 40 executes a routine that assembles the data into, i.e., renders, a composite (or panoptic) image that shows the portions of the part that have passed under an objective lens of the microscope, whose objective lens is mounted to the turret of the test system. It should be appreciated that irrespective of the magnification of the image provided, a composite image may be stored at a lower resolution, e.g., a resolution of approximately 5 microns per pixel, if memory limitations are of concern.
With reference to
With reference to
A composite image created according to the present invention is well suited for high-speed modification and retrieval while using a minimal amount of computer memory, in comparison to that required for a single large dimension image. This is achieved by storing the composite image in a series of discrete sized two-dimensional tiles, organized in a binary tree by stage position (see FIG. 6). Next, in decision step 714, the processor 40 determines whether the operator has completed the image gathering process. If so, control transfers to step 716, where the routine 700 terminates. Otherwise, control transfers to step 704, where the processor 40 continues to receive and store stage positions and time-stamped images.
According to one embodiment of the present invention, portions of the part that have not been explored are indicated in a contrasting color or pattern, e.g., a lightly shaded non-gray color, with the position of the lens, i.e., a current live view, embedded in the composite image and positioned with respect to its current position on the part. The live view may be indicated by, for example, a thin-lined rectangle overlaid on the composite image. According to another embodiment of the present invention, in order to speed up the capturing of the image of the part, a routine is provided that allows automatic traversal of the contours of the entire part during the image capture process.
According to the present invention, as the operator zooms in on any portion of the composite image, the stage is automatically moved to that location and a live view is embedded in the composite image. In one embodiment, when the objective is set at 50× magnification, the resolution of the live view inside the thin-lined rectangle is about 0.3 microns per pixel and outside of the rectangle the resolution is about 5 microns per pixel. As mentioned above, the system may be advantageously configured such that an operator may manually move the stage with a joystick or other input device. When the system is set up such that a routine is controlling the movement of the stage, the movement of the stage may be indicated in multiple ways. For example, a live view may be fixed, allowing the part to move past the objective lens or, alternatively, the composite image may be fixed and a location of the live view may move.
As previously discussed, traditional indentation hardness test systems have allowed an operator to position a “T” bar along a surface of the part to be tested to ensure that the indentations are perpendicular to the top surface of the gear tooth and at a specified distance from the top surface. However, as previously discussed, at 5× magnification the operator has a relatively good idea of the required orientation of the “T” bar, but not enough resolution to position it within 5 microns of the edge. Further, at 50× magnification, locating the edge within 5 microns is possible but the orientation of the “T” bar is difficult because the edge is not straight at this magnification level. One solution to this problem is to rotate the “T” bar at 5× magnification and position it on the edge at 50× magnification. Another solution that yields a more accurate rotation angle involves allowing the “T” bar to be larger than the field of view for any objective and uses a composite image to accurately position the “T” bar. As previously mentioned, this allows an operator to zoom in on any location of the part and a live view of that portion of the part may be provided at a required resolution.
Traditional indentation hardness test systems have displayed a pattern of desired indents in a separate window. In these systems, an operator has manipulated the indent locations in the pattern window and then instructed the system to make the indents in the part. However, as previously discussed, it is difficult for an operator to correlate the proposed indent locations in a pattern window with the exact position on the part as seen in a live view. Advantageously, embodiments of the present invention allow a pattern window to be overlaid on top of a composite image. Thus, an operator may position indents with respect to large scale features of the part and with respect to the low resolution composite image. In this manner, an operator can then fine tune the indent locations by zooming in and viewing the indent positions through an embedded live view. Further, in a system so configured, screen display area is conserved as only one window is required. That is, multiple windows, each showing a different layer of data, are not required as a composite image of a part may be shown in one window on an indentation test system configured according to the present invention. However, it should be appreciated that an indentation test system configured according to the present invention may implement multiple windows, each showing the composite image and being separately sizeable, zoomable and panable, if desired. According to one embodiment, the present invention allows the conventional “T” bar to be dispensed with and replaced with an improved similar “T” shape, whose top is elongated and can easily be aligned with the part and whose base consists of the proposed indent locations. However, it should be appreciated that shapes, e.g., a line segment and a circle of a known radius, other than the “T” shape may be desirable depending upon the application.
Accordingly, a number of techniques have been described herein that advantageously allow an operator of an indentation hardness test system to readily position indent locations in a part that is to be hardness tested.
The above description is considered that of the preferred embodiments only. Modifications of the invention will occur to those skilled in the art and to those who make or use the invention. Therefore, it is understood that the embodiments shown in the drawings and described above are merely for illustrative purposes and not intended to limit the scope of the invention, which is defined by the following claims as interpreted according to the principles of patent law, including the doctrine of equivalents.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/419,475, entitled “MICRO HARDNESS TEST SYSTEM,” which was filed Oct. 18, 2002, and which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4589140 | Bishop et al. | May 1986 | A |
4618938 | Sandland et al. | Oct 1986 | A |
4757550 | Uga | Jul 1988 | A |
4764969 | Ohtombe et al. | Aug 1988 | A |
4825388 | Dailey et al. | Apr 1989 | A |
4945490 | Biddle et al. | Jul 1990 | A |
5022089 | Wilson | Jun 1991 | A |
5146779 | Sugimoto et al. | Sep 1992 | A |
5264919 | tsukada | Nov 1993 | A |
5486924 | Lacey | Jan 1996 | A |
5513275 | Khalaj et al. | Apr 1996 | A |
5517235 | Wasserman | May 1996 | A |
5586058 | Aloni et al. | Dec 1996 | A |
5592563 | Zahavi | Jan 1997 | A |
5619429 | Aloni et al. | Apr 1997 | A |
5717780 | Mitsumune et al. | Feb 1998 | A |
5768401 | Csipkes et al. | Jun 1998 | A |
5796861 | Vogt et al. | Aug 1998 | A |
5949389 | Brown | Sep 1999 | A |
5987189 | Schmucker et al. | Nov 1999 | A |
5991461 | Schmucker et al. | Nov 1999 | A |
5999262 | Dobschal et al. | Dec 1999 | A |
6031930 | Bacus et al. | Feb 2000 | A |
6078681 | Silver | Jun 2000 | A |
6101265 | Bacus et al. | Aug 2000 | A |
6144028 | Kley | Nov 2000 | A |
6201899 | Bergen | Mar 2001 | B1 |
6219437 | Baldur | Apr 2001 | B1 |
6226392 | Bacus et al. | May 2001 | B1 |
6268611 | Pettersson et al. | Jul 2001 | B1 |
6272235 | Bacus et al. | Aug 2001 | B1 |
6345129 | Aharon | Feb 2002 | B1 |
6347150 | Hiroi et al. | Feb 2002 | B1 |
6360005 | Aloni et al. | Mar 2002 | B1 |
6362832 | Stephan et al. | Mar 2002 | B1 |
6587597 | Nakao et al. | Jul 2003 | B1 |
6731390 | Schoeppe | May 2004 | B2 |
20010030654 | Ikl | Oct 2001 | A1 |
20020036775 | Wolleschensky et al. | Mar 2002 | A1 |
20030231408 | Wolleschensky | Dec 2003 | A1 |
20040095576 | Wolleschensky | May 2004 | A1 |
20040159797 | Wolleschensky | Aug 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20040096093 A1 | May 2004 | US |
Number | Date | Country | |
---|---|---|---|
60419475 | Oct 2002 | US |