The present indented female blow-molded connector and male connector relate generally to the field of molded plastic parts, and specifically relate to blow-molding a thermoplastic material into the shape of an indented female connector and the shape of a male connector such that the male connector can be joined to the indented female blow-molded connector.
Blow molding of plastics to form hollow shapes such as bottles, containers and the like is well known to those having ordinary skill in the art. Some shapes, however, are difficult to mold into a hollow container with a blow molding process. An example of a shape that is difficult to mold is an indented female connector having a set of internal ribs for engaging with a male connector. Accordingly, there is a need for an improved device for molding an indented female connector as part of a hollow object.
Additionally, there is a need for hollow molded objects that can be assembled into sturdy durable structures, such as chairs, tables, stools, walls, and the like, without the need for extra components. There is a need for these structures to be sturdy, so that they can withstand loads imposed on them without breaking or collapsing. There is also a need for the hollow molded objects to be formed such that they can be repeatedly manually joined and released from one another without the use of tools, wrenches, additional components, hammers, screw drivers, and/or power equipment.
A male mold component is provided and is inserted into a first hollow molded object mold, to thus forming the indented female blow-molded connector in the first hollow molded object. The male mold component can be removed from the first hollow molded object without damaging ribs formed in the indented female blow-molded connector.
After removal of the male mold component, the first hollow molded object has the indented female blow-molded connector formed in a side thereof. There is also a second hollow molded object that has a male side with a male connector extending from the male side. A structure is made from the first hollow molded object and the second hollow molded object when the male connector is moved into and joined to the indented female blow-molded connector.
The indented female blow-molded connector (hereinafter female blow molded connector) has an upper or first wall having a top surface and a thickness, the first wall surrounds an opening. There is at least one inner wall that extends substantially perpendicular to the first wall and that borders the opening. There is also at least one rib formed in the inner wall, and a bottom wall is joined to the inner wall. The bottom wall can be curved. The rib, in an embodiment, can be formed from a pair of rib walls that converge at an approximately forty-five degree angle relative to the inner wall. The distance from the rib to the top surface is greater than the thickness of the first wall.
When the male connector is moved into and positioned internal to the indented female connector, the male connector becomes robustly joined to the indented female connector. This is possible, because the male connector has a contact edge that makes an interference type fit with the at least one rib of the indented female connector. The indented female connector and male connector can be repeatedly manually joined and separated.
The indented female connector and male connector can be used to create of plurality of sturdy, stable structures. The structures can be manually assembled and disassembled without the need for tools, other parts and components, or equipment. The structures that can be formed include stools, tables, chairs, walls, and the like.
The indented female blow-molded connector and male connector are illustrated in the figures. Like reference characters designate the same or similar parts throughout the figures.
Referring generally to
As shown in
Referring to
The rib 28 may extend from the inner wall inward at an angle of approximately forty-five degrees. As shown in
Between the top of surface 19 and the rib 28 is a flex section 36 having a dimension 37, as shown in
Turning to
Returning to
A second hollow molded object 11 is provided as shown in
As shown in
A curved wall 35 is joined with and extends between the first and second contact walls 33a, 33b, respectively. The curved wall 35 and first contact wall 33a meet at a first edge 38a, and the curved wall 35 and the second contact wall 33b meet at a second edge 38b. The curved wall 35 is also joined with the first and second angled walls, 32a, 32b, respectively. The male connector 30 has a width designated W in
The above-described indented female connector 16 and the male connector 30 can be manually releasably joined to one another.
The male connector 30 is thus joined to the indented female connector 16. In particular, the first and second contact edges 38a, 38b, respectively, of the male connector 30 contact the ribs 28, thus joining or interlocking the male connector 30 to the indented female connector 16 with an interference-type fit. In this manner, the male connector 30 and indented female connector 16 are robustly joined to one another, such that there is a minimal amount of play or space for movement between them when they are so joined together. This advantageously allows for structures 46 that are sturdy and stable to be built from a plurality of first and second hollow molded objects, 10, 11, respectively, that have the above-described indented female connectors 16 and male connectors 30. As will be described presently, there are virtually a limitless number of useful structures 46 may be made from the indented female connector 16 and male connector 30.
Also, the male connector 30 and indented female connector 16 can be manually taken apart or disassembled without the use of tools, equipment, or other parts, pieces, or components. To separate or disassemble, manual force is applied to the male connector 30 and indented female connector 16 in opposite directions. During the separation process, the ribs 28 expand to allow the male component 30 to pass through the ribs 28, and the ribs 28 are not destroyed during the removal process. Advantageously, the male connector 30 and indented female connector 16 can be repeatedly joined and subsequently separated, such that structures 46 that employ the indented female connector 16 and male connector 30 can repeatedly assembled and disassembled.
Another advantage of the releasably joinable indented female connector 16 and male connector 30 is that one person can manually assemble and disassemble structures 46 without the need for other parts and components, without the need for any tools, and without the need for any separate fasteners. Advantageously, there is no possibility of small parts and pieces being lost or misplaced when the present male connector 30 and indented female connector 16 are used to form structures 46. It is noted that the male connector 30 and indented female connector 16 are durable and study. Thus, if a person uses a mallet or hammer made of, for example, rubber, plastic, wood, metal, and combinations thereof to pound the male connector 30 and indented female connector 16 together and/or apart, then the likelihood of the male connector 30 or indented female connector being damaged is low.
The horizontal support member 72 has a support side 80 and a connector receiving side 82. Formed in the connector receiving side 82 of the horizontal support member 72 are a plurality of spaced apart indented female connectors 16, as shown in
The vertical support members 74 each have a male connector side 84 and a base side 86. Spaced apart male connectors 30 extend from the male connector side 84 as shown in
The first and second beams, 76a, 76b, respectively, are shown in
The table 70 can be constructed by one person in a matter of minutes from the above-described components without the use of tools, hammers, equipment, and/or other parts or pieces. The first step is to align the first and second beams 76a, 76b, respectively, with the openings 92 defined in the vertical supports 74. Then, the first beam 76a is moved into the openings 92, such that the guides 94 are received in the grooves 70. The first beam 76a and vertical support 74 are held together by a friction fit. The same process is used to join the second beam 76b to the vertical supports 74.
Then, the horizontal support 72 is aligned with the vertical supports 74, such that the indented female connectors 16 formed in the connector receiving side 82 side of the horizontal support 72 are aligned with the male connectors 30 extending from the male connector side 84 of the vertical supports 74. Then, pressure or force is applied to the support side 80 of the horizontal support 72, and the male connectors 30 move into the indented female connectors 16. The male connectors 30 and indented female connectors 16 are joined to one another and a sturdy table 70 is thus formed. Some of the advantages of the table 70 are that no tools were required to assemble the table 70, the completed table 70 is rigid and strong, and that the table 70 can be repeatedly disassembled and reassembled. Disassembly of the table 70 is desirable if the table 70 needs to be stored.
In another embodiment, the structure 46 comprises a stool 120 that is held together with male connectors 30 and indented female connectors 16, as shown in
The legs 130 are each provided with a male connector 30, as shown in
Thus, a virtually limitless number of structures 46 can be made that make use of the indented female connector 16 and male connector 30. Advantageously, these structures can be manually assembled and disassembled in a short amount of time with the use of tools or other components. More advantages are that these structures 46 are lightweight and can be mass produced at low production costs. Also, these structures 46 are strong and stable, because there is little play or room for movement between the male connector 30 and indented female connector 16 when they are joined together.
There is also a method of making a structure using first and second hollow molded objects, 10, 11, respectively. The method comprises providing the first hollow object 10 with an indented female blow-molded connector comprising 16 having at least one rib 28. Providing the second hollow molded unit with a male connector 30 having first and second contact walls 33a, 33b, respectively, that meet with a curved wall 35 at first and second contact edges 38a, 38b, respectively. The method includes moving the male connector 30 into the indented female connector 16 until the first and second contact edges 38a, 38b, respectively move past the at least one rib 28, thus joining the first and second hollow molded objects, 10, 11, respectively.
While the indented female blow-molded connector and male connector have been described in connection with certain embodiments, it is not intended to limit the scope of the indented female blow-molded connector and male connector to the particular forms set forth, but, on the contrary, it is intended to cover such alternatives, modifications, and equivalents as may be included within the spirit and scope of the indented female blow-molded connector and male connector as defined by the appended claims.
This application is a divisional application of U.S. patent application Ser. No. 10/996,950 filed on Nov. 24, 2004 now U.S. Pat. No. 7,275,289 which claims priority to a continuation-in-part patent application of patent application Ser. No. 10/314,672, filed Dec. 9, 2002 now abandoned to Lipniarski for an Indented Female Blow-Molded Connector.
Number | Name | Date | Kind |
---|---|---|---|
2116444 | Maier | May 1938 | A |
2946612 | Ahlgren | Jul 1960 | A |
3395642 | Foster et al. | Aug 1968 | A |
3674295 | Padivani | Jul 1972 | A |
4312614 | Palmer et al. | Jan 1982 | A |
4611964 | Schlein | Sep 1986 | A |
4715095 | Takahashi | Dec 1987 | A |
4716633 | Rizo | Jan 1988 | A |
4726722 | Wollar | Feb 1988 | A |
4803036 | Maruhashi et al. | Feb 1989 | A |
4811855 | Bergstrom et al. | Mar 1989 | A |
5193961 | Hoyle et al. | Mar 1993 | A |
5222852 | Snyder | Jun 1993 | A |
5533237 | Higgins | Jul 1996 | A |
5718549 | Noda et al. | Feb 1998 | A |
5775860 | Meyer | Jul 1998 | A |
6132154 | Easter | Oct 2000 | A |
6145173 | Suzuki et al. | Nov 2000 | A |
6412153 | Khachadourian et al. | Jul 2002 | B1 |
6481943 | Coudrais et al. | Nov 2002 | B2 |
6601271 | Sommerfeld et al. | Aug 2003 | B1 |
Number | Date | Country |
---|---|---|
2002-337837 | Nov 2002 | JP |
Number | Date | Country | |
---|---|---|---|
20080047113 A1 | Feb 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10996950 | Nov 2004 | US |
Child | 11893272 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10314672 | Dec 2002 | US |
Child | 10996950 | US |