Not Applicable
Not Applicable
1. Field
This application relates to an electric and flywheel drive system with gyroscopic stabilization in an electric vehicle.
2. Prior Art
Electric vehicle propulsion systems with flywheel energy storage are well known in prior art. Many differently integrated designs have been proposed. Several discuss isolating the flywheel gyroscopic affect from the vehicle.
One example of an electric vehicle using a flywheel is shown in U.S. Pat. No. 5,427,194 Miller (1995) Electrohydraulic Vehicle with Battery Flywheel. It uses a magnetically suspended flywheel to store mechanical energy. The majority of the flywheel weight is the galvanic cells or batteries driving the vehicle. An electric drive motor powers the flywheel. It is also connected to a hydraulic pump and a generator. Flywheel energy is used to supply peak electrical demand power. When stopped this energy is used to charge the batteries. The vehicle is powered by a hydraulic motor through a conventional automotive differential gear and axle assembly.
During vehicle slowdown and braking kinetic energy can be stored in the flywheel. It could also be used to charge the batteries. As needed a hydraulic accumulator can also store energy.
The volume of batteries needed to drive an electric vehicle will create a large flywheel. Balancing this flywheel containing gimbaled wet cell batteries would be difficult. The onboard balancing system shown is complex and battery maintenance would be problematic.
Another example of an electric vehicle using a flywheel for energy storage is U.S. Pat. No. 4,233,858 Rowlett (1980) Flywheel drive system having a split path electromechanical transmission using a flywheel as a power source. One path is a mechanical drive train connecting flywheel energy to vehicle drive wheels. The other path is an electromechanical drive train of which the mechanical portion is shared with the mechanical drive train by virtue of a common planetary gear arrangement for dividing or combining the power transmitted to or from the flywheel. A battery may be included in the system to make up certain losses from operation and to provide the initial start up power. A simplified control system is provided to regulate the transmission of power over the separate parallel paths. Energy is recaptured during braking. It can recharge the flywheel and, or, battery.
This is a complicated system. The flywheel power rating of less than 1 kilowatt hour is low. Most electric vehicles are in the 10 to 40 kilowatt hour range. A large battery pack is needed for a reasonable driving range. Drive power goes through a conventional automotive differential gear and axle assembly.
My final example of an electric vehicle using a flywheel is U.S. Pat. No. 4,629,947 Hammerslag et al (1986), Electric Vehicle Drive System. In this electric drive vehicle the flywheel supplies additional electric energy during peak loads. Like starting from a stop or at high speeds. It is also used to recoup energy during braking to extend vehicle range. It is a sophisticated flywheel system in a vacuum sealed housing. The flywheel assembly is gimbaled to minimizing gyroscopic effects to the vehicle chassis. This design may also have the flywheel as part of the generator.
This design states that all mechanical drive and resultant friction is eliminated. Because it has direct drive electric motors at each drive wheel. Direct drive 1:1 ratio wheel motors require a large amount of starting energy. They also provide high un-sprung weight for the suspension arms. Electric motors within or near wheel assemblies attract magnetic debris.
Additional Prior Art shows many designs proposing a combination of flywheel drive with electric and different propulsion systems. Such as U.S. Pat. No. 3,939,935 Gill (1976) Electric Power Means for Vehicles, U.S. Pat. No. 4,532,769 Vestermark (1985) Energy Storing Flywheel Assembly, U.S. Pat. No. 3,672,244 Nasvytis (1972) Flywheel Automotive Vehicle and many others.
All these designs and many others presented are complicated. They rely on computer interface of energy storage, control and distribution systems. All flywheel energy systems described are independent of the vehicle requiring integration.
3. Objects and Advantages
The objects and advantages of the present patent application are:
The present invention is an efficient drive system assembly with two large parallel gears. The mass of these main drive components when rotating can store mechanical energy. This spinning shape also produces a gyroscopic effect that stabilizes the vehicle by resisting body roll. Both effects are byproducts of this efficient simple mechanical drive design.
Drawings are not to scale.
A Constant Velocity Joint (28) is a mechanical fitting placed in a drive shaft or axle that allows the drive shaft or axle to bend at the Constant Velocity Joint to a non straight alignment while transmitting power. Earlier versions of this type of fitting on drive shafts were called Universal Joints.
Un-sprung Weight (concerning vehicles) describes the suspension members that move beneath the suspension springs. These moving suspension members (34) directly hold the vehicle drive wheels. In the drawings these are item 34. The top end of the spring rests against the vehicle chassis. The vehicle chassis is “sprung weight” supported by springs. The moving suspension members at the bottom of the spring are described as the “un-sprung weight”, below the spring. These suspension members move up and down with the wheels when encountering irregularities in the road surface.
To understand the non-obvious and unique characteristics of the Independent Axle Drive system the moving parts of a Typical Drive System must be reviewed. We will discuss the kinetic energy and frictional losses occurring within a Typical Drive System as compared to the Independent Axle Drive.
See
Kinetic energy increases linearly with the mass of the rotating object and as a square with an increase in rotational speed of the object. For these reasons the small mass and diameters of the rotating drive parts in a Typical Drive System create a small amount of usable kinetic energy.
Gears transmitting mechanical power generate friction and heat where the faces of the gear mesh. This heat is lost energy. They must also move through a viscous lubricant. The Typical Drive System has meshed gear sets in the transmission and the differential assembly who's movement has friction, creating heat and wasting energy.
See
When driving the vehicle and shutting off motor power it coasts very, very well. The improved kinetic energy storage ability of the drive cluster assembly (35) explains this unforeseen attribute and unexpected result.
From the previous descriptions the operation of the Typical Drive System creates:
1) Less kinetic energy than the Independent Drive System. Although is moves greater mass it creates a smaller amount of useful kinetic energy.
2) More friction and more energy loss through heat by the use of meshed gear sets whereas the Independent Axle Drive has no meshed gear sets.
See
See
The large diameter gears spinning within the drive cluster assembly (35) in addition to enhancing the creation of kinetic energy have a gyroscopic effect. The flywheel energy storage systems used in other vehicles are specifically not attached and free floating in relation to the vehicle chassis (33). Many have gimbals placement.
The drive cluster assembly (35) of Independent Axle Drive system acts as a large gyroscope directly attached to the vehicle chassis (33). When the vehicle body rolls during cornering the gyroscopic action of the spinning flywheels resists this movement and adds stability to the chassis (33). This improves the handing of the vehicle. During high speed cornering, with higher gyroscope speed, this is a particular asset. The car is encouraged to remain very flat through cornering.
Thus the reader will see that this drive system is a more efficient way to transmit vehicle drive energy by capturing and using a greater amount of the kinetic energy created as a byproduct of this new drive system.
It also makes use of gyroscopic energy to enhance vehicle stability.
My descriptions contain many specificities, these should not be construed as limitations on the scope, but rather as an exemplification of one [or several] preferred embodiments thereof. Many other variations are possible.
Accordingly, the scope should be determined not necessarily by the embodiment(s) illustrated, but by the amended claims and their legal equivalents.
This application and all accompanying documents constitute a Continuation in Part of application Ser. No. 12/658,687 by the present inventor.
Number | Date | Country | |
---|---|---|---|
Parent | 12658687 | Feb 2010 | US |
Child | 13134246 | US |