Independent cushion extension with optimized leg-splay angle

Information

  • Patent Grant
  • 9902293
  • Patent Number
    9,902,293
  • Date Filed
    Tuesday, December 8, 2015
    9 years ago
  • Date Issued
    Tuesday, February 27, 2018
    6 years ago
Abstract
A vehicle seating assembly includes a seat frame seat frame having a longitudinal centerline and a seat H-point along the centerline. A first extendable member is disposed on a forward portion of the seat frame along a first side of the centerline and is operable between extended and retracted positions. A second extendable member adjacent to and independent of the first extendable member is disposed on the forward portion of the seat frame along a second, opposite side of centerline and is operable between extended and retracted positions. The first and the second extendable members extend forwardly from the seat H-point at a lateral angle of between 5 to 10 degrees relative the centerline, respectively.
Description
FIELD OF THE INVENTION

The present invention generally relates to a vehicle seating assembly, and more particularly to a vehicle seating assembly that includes independent cushion extension with an optimized leg-splay angle.


BACKGROUND OF THE INVENTION

Modern vehicle seats are becoming more and more comfortable as designers develop a greater understanding of human ergonomics, posture, and comfortability. Vehicle seating assemblies that include comfort components in the vehicle seat back and the vehicle seat can provide the driver and passengers with improved comfort and increased endurance for extensive vehicle rides. Additionally, various sizes and shapes of drivers and passengers can prove challenging when providing vehicle seating assemblies. Accordingly, vehicle seating assemblies that include components optimized to accommodate the different sizes and shapes of drivers and passengers, as well as the desired posture and sitting positions of those drivers and passengers, has become increasingly important.


SUMMARY OF THE INVENTION

According to one aspect of the present invention, a vehicle seating assembly includes a vehicle seating assembly including a seat frame having a longitudinal centerline and a seat H-point along the centerline. A first extendable member is disposed on a forward portion of the seat frame along a first side of the centerline and is operable between extended and retracted positions. A second extendable member adjacent to and independent of the first extendable member is disposed on the forward portion of the seat frame along a second, opposite side of centerline and is operable between extended and retracted positions. The first and the second extendable members extend forwardly from the seat H-point at a lateral angle of between 5 to 10 degrees relative the centerline, respectively.


According to another aspect of the present invention, a vehicle seating assembly includes a vehicle seating assembly comprising a seat frame having a longitudinal centerline and a seat H-point along the centerline. A first leg support is pivotally coupled with a forward portion of the seat frame, the first leg support including a first extendable member extending forwardly from the seat H-point along a first side of the centerline at a lateral angle of between 5 to 10 degrees relative the centerline. A second leg support is independent of the first leg support and is pivotally coupled with the forward portion of the seat frame. The second leg support includes a second extendable member extending forwardly from the seat H-point along a second opposite side of the centerline at a lateral angle of between 5 to 10 degrees relative the centerline.


According to yet another aspect of the present invention, a vehicle seating assembly includes a vehicle seating assembly comprising a seat frame having a longitudinal centerline and a seat H-point along the centerline. First and second adjacent and independently extendable members extend forwardly from the seat H-point at a lateral angle of between 5 to 10 degrees relative to and on opposing sides of the centerline.


These and other aspects, objects, and features of the present invention will be understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:



FIG. 1 is a top perspective view of one embodiment of a vehicle seating assembly of the present invention disposed in a vehicle;



FIG. 2 is a top perspective view of the vehicle seating assembly of FIG. 1;



FIG. 3 is a side elevational view of a vehicle seating assembly of the present invention;



FIG. 4 is a top plan view of the vehicle seating assembly of FIG. 3;



FIG. 5 is a top perspective exploded view of the seat of the vehicle seating assembly of FIG. 3;



FIG. 6 is a top perspective exploded view of a portion of the seat of the vehicle seating assembly of FIG. 3;



FIG. 7 is a bottom perspective exploded view of a portion of the seat of the vehicle seating assembly of FIG. 3;



FIG. 8 is a top perspective view of the vehicle seating assembly of FIG. 3 with first and second leg supports in the retracted and lowered positions;



FIG. 8A is a top perspective view of the leg supports of FIG. 8;



FIG. 9 is a partial side cross-sectional elevational view taken at line IX-IX illustrating the leg supports of FIG. 8 in a retracted position;



FIG. 10 is a top perspective view of the vehicle seating assembly of the present invention with one of the leg supports in a lowered position;



FIG. 10A is a top perspective view of the leg supports of FIG. 10 with one of the leg supports in a lowered position;



FIG. 11 is a partial side elevational cross-sectional view taken at line XI-XI of FIG. 10A illustrating one of the leg supports in an extended position;



FIG. 12 is a top perspective view of one embodiment of the vehicle seating assembly of the present invention with one of the leg supports in a raised position;



FIG. 12A is a top perspective view of the leg supports of FIG. 12 with one of the leg supports in the raised position;



FIG. 13A is a partial side elevational cross-sectional view taken at XIIIA-XIIIA of the leg support of FIG. 12A in the raised position;



FIG. 13B is a partial side elevational cross-sectional view of the leg support of FIG. 13A after movement from the raised position to the lowered position; and



FIG. 13C is a partial side elevational cross-sectional view of the leg support of FIG. 13B after movement to the raised position and the retracted position.





DETAILED DESCRIPTION OF THE EMBODIMENTS

For purposes of description herein, the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the invention as oriented in FIG. 1. However, it is to be understood that the invention may assume various alternative orientations, except where expressly specified to the contrary. It is also to be understood that the specific devices and processes illustrated in the attached drawings, and described in the following specification are simply exemplary embodiments of the inventive concepts defined in the appended claims. Hence, specific dimensions and other physical characteristics relating to the embodiments disclosed herein are not to be considered as limiting, unless the claims expressly state otherwise.


Referring to FIGS. 1 and 2, reference numeral 10 generally designates a vehicle seating assembly having a seat frame 12. A first leg support 14 is pivotally coupled with a forward portion 16 of the seat frame 12. The first leg support 14 is operable between raised and lowered positions. A first extendable member 20 is disposed on the first leg support 14 and is operable between extended and retracted positions. A second leg support 22 is adjacent to and independent of the first leg support 14 and is pivotally coupled with the forward portion 16 of the seat frame 12. The second leg support 22 is operable between raised and lowered positions. A second extendable member 24 is disposed on the second leg support 22 and is operable between extended and retracted positions.


Referring again to FIGS. 1 and 2, the vehicle seating assembly 10 generally includes a seat 30 and a seat back 32 that supports a headrest 34 thereon. The seat back 32 is pivotally coupled with the seat 30, such that the seat back 32 can be moved between upright and inclined positions. The headrest 34 is operably coupled with the seat back 32 and also positioned in a variety of positions relative to the seat back 32 to support the head and neck of a driver or a passenger. The seat frame 12 includes first and second side members 40, 42 (FIG. 4) supported on legs 44 (FIG. 5). Laterally extending frame members 43 (FIG. 5) extend between the first and second side members 40, 42. The legs 44 are operably coupled with seat track slide assemblies 46 that are secured to a floor 45 of a vehicle 49.


Referring now to FIGS. 3 and 4, the vehicle seating assembly 10 is generally configured to apply selective support to the underside of the legs of the driver or passenger. Specifically, as shown in FIG. 3, each leg of the driver or passenger can be independently supported by the first and second leg supports 14, 22. The first and second leg supports 14, 22 are moveable between raised and lowered positions, as well as between extended and retracted positions to modify an effective seating area 48 of the seat 30 and optimize accommodation of the size, shape, posture, and sitting positions of the driver or passenger.


As further shown in FIG. 4, a longitudinal centerline, designated as C, of the seat frame 12 functionally defines a split between the first extendable member 20 and the second extendable member 24. The first extendable member 20 and the second extendable member 24 each extend forwardly from the seat H-point, designated as H, at a lateral angle α relative the centerline C. The first extendable member 20 and the second extendable member 24 preferably extend forward at an angle α laterally from the centerline C and forwardly from the H-point to provide better leg support and comfort on the outside of the occupant's thighs in a position that naturally conforms to the natural leg-splay of a human occupant. This leg-splay angle is maintained in both the stowed and deployed position for optimized comfort in all use position. The inventors of the present disclosure have determined that the angle α should be between 5 and 10 degrees, and preferably about 5 degrees, from the seat H-point along the centerline C of the seat frame 12. The split between the first extendable member 20 and the second extendable member 24 at such an angle α has been unexpectedly found to provide improved comfort that reduces muscle strain and improves leg and thigh support. Thus, an extendable leg support 14, 22, where the splayed angle α is precisely set at about 5 to 10 degrees (optimally at about 5 degrees) laterally from the centerline C and forward of the H-point of the seat frame 12 on each side of the centerline C, provides better leg support and comfort.


Referring now to FIG. 5, the vehicle seating assembly 10 includes a seat base 50 that is supported over the seat frame 12. An interface member 52 is positioned between the seat frame 12 and the seat base 50. The seat base 50 is disposed behind the first and second leg supports 14, 22, and in front of the seat back 32. The interface member 52 includes a pivot rod 54 that extends between first and second sides 56, 58 of the interface member 52. Additionally, a rear portion of the interface member 52 includes a frame engagement component 59 that secures the interface member 52 to the seat frame 12. The pivot rod 54 also includes first and second support bases 60, 62 that support the first and second leg supports 14, 22, respectively. The first and second support bases 60, 62 are operably coupled with first and second motors 64, 66. The first motor 64 is operably coupled with a slide 70 and a drive shaft 72. The drive shaft 72 is capable of laterally translating a support body 74 between extended and retracted positions. The first support base 60 is configured to rotate the first leg support 14 about the pivot rod 54 between the raised and lowered positions, as discussed in further detail herein. Similarly, the second motor 66 is operably coupled with a slide 80 and a drive shaft 82. The drive shaft 82 is capable of laterally translating a support body 84 of the second leg support 22 between extended and retracted positions. The second support base 62 is configured to rotate the second leg support 22 between the raised and lowered positions.


Referring again to FIG. 5, the interface member 52 includes a suspension frame 90 disposed thereon. The suspension frame 90 is configured to provide sufficient support to a suspension member 92 and a seat cushion 94. Accordingly, the suspension frame 90 includes a shape that largely complements the shape of the seat cushion 94. Specifically, the suspension frame 90 includes a body 96 defining an aperture 98 configured to receive the suspension member 92, which supports the seat cushion 94. At the same time, first and second wings 100, 102 extend from the body 96 and are configured to support first and second side cushions 104, 106 of the seat cushion 94. The seat cushion 94 is supported above the suspension frame 90 and is protected by a coverstock 110. It is anticipated that the coverstock 110 could be any of a variety of materials, including traditional fabrics, as well as leathers, vinyls, etc. A lateral seat brace 112 is positioned below the first and second leg supports 14, 22 and is coupled to the seat frame 12. The lateral seat brace 112 assists in guiding the first and second leg supports 14, 22 between the various positions, and, at the same time, provides additional rigidity to the seat frame 12 of the vehicle seating assembly 10. The lateral seat brace 112 also includes a shroud that protects a forward portion 16 of the vehicle seating assembly 10 and is aesthetically pleasing to view.


Referring now to FIGS. 6 and 7, the first and second leg supports 14, 22 will be discussed in further detail. The first and second leg supports 14, 22 are configured to engage the interface member 52 of the vehicle seating assembly 10. Specifically, the first and second support bases 60, 62 are pivotally coupled with the pivot rod 54 that is rotatably or fixedly coupled with the interface member 52 of the vehicle seating assembly 10. The first and second support bases 60, 62 are operable between the raised and lowered positions about the pivot rod 54. The first and second motors 64, 66 of the first and second leg supports 14, 22, respectively, are positioned on the first and second support bases 60, 62. The first and second motors 64, 66 are operably coupled with the drive shafts 72, 82, respectively. Each drive shaft 72, 82 includes a screw gear 120 (FIG. 9) disposed thereon. The screw gear 120 allows for linear translation of the first and second leg supports 14, 22 between the extended and retracted positions, as discussed below.


Referring again to FIGS. 6 and 7, each of the first and second leg supports 14, 22 includes a slide assembly 122. The support bodies 74, 84 are configured to engage the slide assembly 122. The support bodies 74, 84 of the first and second leg supports 14, 22 include a receiving slot 124 configured to receive a portion of the slide assembly 122. Each receiving slot 124 includes an enlarged recess 126 that is configured to receive a slide block 130 on the slide assembly 122. The slide block 130 is linearly translatable via the screw gear 120 between fore and aft positions. The slide block 130 is configured to engage the enlarged recess 126, thereby coupling the support body 74 or 84 with the slide assembly 122. As described in further detail below, when the slide block 130 is in the aft position, the relevant leg support 14 or 22 is in the retracted position. Similarly, when the slide block 130 is in the fore position, the relevant leg support 14 or 22 is in the extended position.


Referring again to FIGS. 6 and 7, each support body 74, 84 is generally configured to be coupled with a flex member 140 disposed thereon. The flex member 140 includes an open matrix 142 of flex apertures 144 that provide additional comfort and flexibility for the driver or passenger. At the same time, the flex apertures 144 provide some breathability in the first and second leg supports 14, 22 of the vehicle seating assembly 10. The flex member 140 is positioned on top of the support body 74 or 84 and is covered by a protective wrap 146. The protective wrap 146 is covered by a leg support coverstock 148 and a cushion layer 150. The leg support coverstock 148 and the cushion layer 150 protect the protective wrap 146 and the flex member 140. As shown in FIG. 7, each support body 74, 84 includes a number of engagement pins 154 that secure the flex member 140 to the support bodies 74, 84. Each of the first and second support bases 60, 62 of the first and second leg supports 14, 22, respectively, includes a rearwardly extending flange 160 that extends on an opposite side from a body 162 of the first and second support bases 60, 62. The rearwardly extending flange 160 is coupled with tension springs 164 that are coupled to a mounting bracket 166. The tension springs 164 bias the relevant support base 60 or 62 to the raised position. It is generally contemplated that the support body 74 of the first leg support 14 and the support body 84 of the second leg support 22 may be moveable to the raised position and the lowered position via an actuation assembly operably coupled with a motor. Alternatively, adjustment of the first and second leg supports 14, 22 may be made manually via a gear system, as understood by one having ordinary skill in the art.


Referring now to FIGS. 8 and 8A, the vehicle seating assembly 10 is illustrated with the first and second leg supports 14, 22 moved to an initial position. In the initial position, the first and second leg supports 14, 22 are in the retracted position and also in the lowered position. In this initial position, the seating area 48 of the seat 30 has not been enlarged. Accordingly, the seating area 48 is generally configured to support a driver or passenger that is smaller in stature. In the event the driver or passenger has a larger stature and wishes to change the effective seating area 48 of the vehicle seating assembly 10, then the first and second leg supports 14, 22 can be raised independently and also extended independently, preferably at an optimized lateral angle α of between 5 to 10 degrees relative the centerline C.


Referring now to FIGS. 10 and 10A, in the illustrated embodiment, the second leg support 22 has been translated to the extended position. To move the second leg support 22 to the extended position, the driver or passenger would simply engage a toggle switch on the seat 30 that is operably coupled to the second motor 66. The second motor 66 then activates, which turns the drive shaft 82 that is coupled with the screw gear 120. As the screw gear 120 rotates, the support body 84 of the second leg support 22 is pushed outwardly away from the seat base 50. At the same time, the first leg support 14 maintains position and does not move. In the event the driver or passenger also wanted the first leg support 14 to be moved to the extended position, the driver or passenger could engage in the same behavior to actuate the first motor 64, which would then force the support body 74 of the first leg support 14 outward in a similar fashion to that described above with reference to the second leg support 22.


As shown in FIG. 11, as the screw gear 120 rotates, the slide block 130 begins to move relative to the screw gear 120. Specifically, when the second motor 66 operates in a first direction, the screw gear 120 rotates such that threads of the screw gear 120 push internal threads of the slide block 130, which translates the slide block 130 and the second leg support 22 away from the seat base 50 (corresponding to the extended position of the second leg support 22). When the second motor 66 operates in a second direction, the screw gear 120 turns in a second direction opposite the first direction, such that the slide block 130 is drawn toward the seat base 50 (corresponding with the retracted position of the second leg support 22).


Referring now to FIGS. 12 and 12A, the vehicle seating assembly 10 is illustrated with the second leg support 22 in a raised position. In the raised position, the second leg support 22 is better situated to hold or support the underside of a leg of the driver or passenger when the leg is not extended. The second leg support 22 is moved to the raised position under the force of the tension springs 164 alone, or under the force of the tension springs 164 and a motor operably coupled to the second support base 62 that urges the second leg support 22 to the raised position. The first leg support 14 operates in much the same way. Notably, the first and second leg supports 14, 22 may be at the lowered position, the raised position, or any position therebetween simultaneously. However, the first and second leg supports 14, 22 may also be placed at different positions. For example, the first leg support 14 may be at the lowered position, while the second leg support 22 may be at the raised position, as shown in FIG. 12A. Moreover, at the same time, regardless of the raised or lowered positions of the first and second leg supports 14, 22, the first and second leg supports 14, 22 may also be at the extended or retracted positions. Again, the first and second leg supports 14, 22 may be placed at the retracted position or the extended position simultaneously. Alternatively, the first and second leg supports 14, 22 may be positioned differently. For example, the first leg support 14 may be at the lowered position and the retracted position, while the second leg support 22 may be at the extended position and the raised position.


As shown in the illustrated embodiment of FIGS. 13A and 13B, the second support base 62 of the second leg support 22 upon which the second motor 66 is positioned is rotated upwardly (clockwise). As generally noted above, movement of the second leg support 22 by way of the second support base 62 can occur by the force of the tension springs 164 coupling the rearwardly extending flange 160 to the mounting bracket 166 in the seat 30, by a motor 66 that is operably coupled with the second support base 62 to rotate the second support base 62 between the raised and lowered positions, or can be by way of a motor 66 that is supplemented by the tension springs 164 that extend between the rearwardly extending flange 160 and the mounting bracket 166. As shown in FIG. 13C, it will be understood that the first and second leg supports 14, 22 can be in the raised or lowered position, or any position therebetween, and at the same time, be in the extended or retracted position. FIG. 13C illustrates the second leg support 22 in the raised position and the retracted position. Movement of the first and second leg supports 14, 22 between the raised and lowered positions is independent of movement of the first and second leg supports 14, 22 between the extended and retracted positions.


The vehicle seating assembly as disclosed herein includes first and second independently moveable leg supports configured to provide independent support to the legs of a driver or passenger. For example, for a driver, frequently, the right leg of the driver is in an extended position to actuate the pedals. At the same time, particularly in vehicles equipped with an automatic transmission that does not require the manipulation of a clutch pedal, the left leg of the driver may be retracted to provide comfort to the driver. The vehicle seating assembly 10 as disclosed herein can allow for additional support under the right leg of the driver, thereby minimizing the likelihood that the endurance of the driver will wane over long trips. The vehicle seating 10 assembly as disclosed herein also provides additional comfort as the leg supports can be specifically moved and adjusted to conform to the preferred seating style of a particular driver or passenger.


It will be understood by one having ordinary skill in the art that construction of the described invention and other components is not limited to any specific material. Other exemplary embodiments of the invention disclosed herein may be formed from a wide variety of materials, unless described otherwise herein.


For purposes of this disclosure, the term “coupled” (in all of its forms, couple, coupling, coupled, etc.) generally means the joining of two components (electrical or mechanical) directly or indirectly to one another. Such joining may be stationary in nature or movable in nature. Such joining may be achieved with the two components (electrical or mechanical) and any additional intermediate members being integrally formed as a single unitary body with one another or with the two components. Such joining may be permanent in nature or may be removable or releasable in nature unless otherwise stated.


It is also important to note that the construction and arrangement of the elements of the invention as shown in the exemplary embodiments is illustrative only. Although only a few embodiments of the present innovations have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that, unless otherwise described, many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements shown as multiple parts may be integrally formed, the operation of the interfaces may be reversed or otherwise varied, the length or width of the structures and/or members or connector or other elements of the system may be varied, the nature or number of adjustment positions provided between the elements may be varied. It should be noted that the elements and/or assemblies of the system may be constructed from any of a wide variety of materials that provide sufficient strength or durability, in any of a wide variety of colors, textures, and combinations. Accordingly, all such modifications are intended to be included within the scope of the present innovations. Other substitutions, modifications, changes, and omissions may be made in the design, operating positions, and arrangement of the desired and other exemplary embodiments without departing from the spirit of the present innovations.


It will be understood that any described processes or steps within described processes may be combined with other disclosed processes or steps to form structures within the scope of the present invention. The exemplary structures and processes disclosed herein are for illustrative purposes and are not to be construed as limiting.


It is also to be understood that variations and modifications can be made on the aforementioned structures and methods without departing from the concepts of the present invention, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.

Claims
  • 1. A vehicle seating assembly comprising: a seat frame having a longitudinal centerline and a seat H-point along the centerline;a first extendable member disposed on a forward portion of the seat frame along a first side of the centerline and operable between an extended position and a retracted position; anda second extendable member adjacent to and independent of the first extendable member, the second extendable member disposed on the forward portion of the seat frame along a second, opposite side of centerline and operable between extended and retracted positions;the first extendable member and the second extendable member each extending forwardly from the seat H-point at a lateral angle of between 5 to 10 degrees relative the centerline.
  • 2. The vehicle seating assembly of claim 1, wherein the first extendable member and the second extendable member each extend forwardly from the seat H-point at a lateral angle of about 5 degrees relative the centerline.
  • 3. The vehicle seating assembly of claim 1, wherein the first extendable member is disposed on a top portion of a first leg support operably coupled to a first rotatable support base by a first slide assembly, and wherein the second extendable member is disposed on a top portion of a second leg support operably coupled to a second rotatable support base by a second slide assembly.
  • 4. The vehicle seating assembly of claim 3, further comprising: a pivot rod that pivotally couples each of the first and second leg supports to the seat frame.
  • 5. The vehicle seating assembly of claim 4, further comprising: a motor disposed proximate the first leg support and configured to pivot the first leg support about the pivot rod between a raised position and a lowered position.
  • 6. The vehicle seating assembly of claim 4, wherein the first and second leg supports are spring-biased to the raised position.
  • 7. The vehicle seating assembly of claim 6, wherein the first leg support includes a rearwardly extending flange coupled with a tension spring that biases the first leg support to the raised position.
  • 8. The vehicle seating assembly of claim 1, further comprising: first and second flex members that extend over the first and second extendable members, respectively.
  • 9. The vehicle seating assembly of claim 1, further comprising: a seat base disposed behind the first and second extendable members.
  • 10. A vehicle seating assembly comprising: a seat frame having a longitudinal centerline and a seat H-point along the centerline;a first leg support pivotally coupled with a forward portion of the seat frame, the first leg support including a first extendable member extending forwardly from the seat H-point along a first side of the centerline at a lateral angle of between 5 to 10 degrees relative the centerline; anda second leg support independent of the first leg support and pivotally coupled with the forward portion of the seat frame, the second leg support including a second extendable member extending forwardly from the seat H-point along a second opposite side of the centerline at a lateral angle of between 5 to 10 degrees relative the centerline.
  • 11. The vehicle seating assembly of claim 10, wherein the first extendable member and the second extendable member each extend forwardly from the seat H-point at a lateral angle of about 5 degrees relative the centerline.
  • 12. The vehicle seating assembly of claim 10, further comprising: a flex member disposed on each of the first and second leg supports and a pivot rod extending behind the first and second leg supports, the pivot rod pivotally coupling each of the first and second leg supports to the seat frame.
  • 13. The vehicle seating assembly of claim 10, further comprising: a first slide assembly that couples the first leg support to a first rotatable support base and a second slide assembly that couples the second leg support to a second rotatable support base.
  • 14. The vehicle seating assembly of claim 13, further comprising: first and second motors disposed proximate the seat frame and configured to translate the first and second leg supports, respectively, between an extended position and a retracted position.
  • 15. The vehicle seating assembly of claim 10, wherein the first and second leg supports are spring-biased to a raised position.
  • 16. The vehicle seating assembly of claim 10, wherein each of the first and second leg supports includes a rearwardly extending flange coupled with a tension spring that biases the first and second leg supports to a raised position.
  • 17. A vehicle seating assembly comprising: a seat frame having a longitudinal centerline and a seat H-point along the centerline; andfirst and second adjacent and independent extendable members extending forwardly from the seat H-point at a lateral angle of between 5 to 10 degrees relative to and on opposing sides of the centerline.
  • 18. The vehicle seating assembly of claim 17, wherein the first and second extendable members extend forwardly from the seat H-point at a lateral angle of about 5 degrees relative the centerline.
  • 19. The vehicle seating assembly of claim 17, wherein the extendable members include a flex member disposed thereon.
  • 20. The vehicle seating assembly of claim 19, wherein the flex member includes an open matrix of flex apertures and a rounded forward portion.
CROSS-REFERENCE TO RELATED APPLICATION AND CLAIM OF PRIORITY

This application is a continuation-in-part of and claims priority under 35 U.S.C. §120 to commonly assigned, and related U.S. patent application Ser. No. 13/748,862, now U.S. Pat. No. 9,399,418, filed Jan. 24, 2013, the entire disclosure of which is incorporated herein by reference.

US Referenced Citations (234)
Number Name Date Kind
2272505 Biggs Feb 1942 A
2725921 Markin Dec 1955 A
2958369 Pitts et al. Nov 1960 A
3403938 Cramer et al. Oct 1968 A
3550953 Neale Dec 1970 A
3880462 Mednick Apr 1975 A
3929374 Hogan et al. Dec 1975 A
4058342 Ettridge Nov 1977 A
4205877 Ettridge Jun 1980 A
4324431 Murphy et al. Apr 1982 A
4334709 Akiyama et al. Jun 1982 A
4353595 Kaneko et al. Oct 1982 A
4518201 Wahlmann et al. May 1985 A
4541669 Goldner Sep 1985 A
2609221 Bottcher Sep 1986 A
4616874 Pietsch et al. Oct 1986 A
4629248 Mawbey Dec 1986 A
4720141 Sakamoto et al. Jan 1988 A
4915447 Shovar Apr 1990 A
5104189 Hanai et al. Apr 1992 A
5112018 Wahls May 1992 A
5145232 Dal Monte Sep 1992 A
5171062 Courtois Dec 1992 A
5174526 Kanigowski Dec 1992 A
5203608 Tame Apr 1993 A
5370443 Maruyama Dec 1994 A
5518294 Ligon, Sr. et al. May 1996 A
5560681 Dixon et al. Oct 1996 A
5597203 Hubbard Jan 1997 A
5647635 Aumond et al. Jul 1997 A
5658050 Lorbiecki Aug 1997 A
5692802 Aufrere et al. Dec 1997 A
5713632 Su Feb 1998 A
5755493 Kodaverdian May 1998 A
5758924 Vishey Jun 1998 A
5769489 Dellanno Jun 1998 A
5823620 Le Caz Oct 1998 A
5826938 Yanase et al. Oct 1998 A
5836648 Karschin et al. Nov 1998 A
5868450 Hashimoto Feb 1999 A
5902014 Dinkel et al. May 1999 A
5913568 Brightbill et al. Jun 1999 A
5951039 Severinski et al. Sep 1999 A
5979985 Bauer et al. Nov 1999 A
6024406 Charras et al. Feb 2000 A
6062642 Sinnhuber et al. May 2000 A
6079781 Tilley Jun 2000 A
6109690 Wu et al. Aug 2000 A
6145925 Eksin et al. Nov 2000 A
6155593 Kimura et al. Dec 2000 A
6179379 Andersson Jan 2001 B1
6189966 Faust et al. Feb 2001 B1
6196627 Faust et al. Mar 2001 B1
6206466 Komatsu Mar 2001 B1
6217062 Breyvogel et al. Apr 2001 B1
6220661 Peterson Apr 2001 B1
6224150 Eksin et al. May 2001 B1
6296308 Cosentino et al. Oct 2001 B1
6312050 Eklind Nov 2001 B1
6364414 Specht Apr 2002 B1
6375269 Maeda et al. Apr 2002 B1
6394546 Knoblock et al. May 2002 B1
6454353 Knaus Sep 2002 B1
6523892 Kage et al. Feb 2003 B1
6550856 Ganser et al. Apr 2003 B1
6565150 Fischer et al. May 2003 B2
6619605 Lambert Sep 2003 B2
6682140 Minuth et al. Jan 2004 B2
6695406 Plant Feb 2004 B2
6698832 Boudinot Mar 2004 B2
6736452 Aoki et al. May 2004 B2
6758522 Ligon, Sr. et al. Jul 2004 B2
6808230 Buss et al. Oct 2004 B2
6824212 Malsch et al. Nov 2004 B2
6848742 Aoki et al. Feb 2005 B1
6860559 Schuster, Sr. et al. Mar 2005 B2
6860564 Reed et al. Mar 2005 B2
6866339 Itoh Mar 2005 B2
6869140 White et al. Mar 2005 B2
6890029 Svantesson May 2005 B2
6938953 Haland et al. Sep 2005 B2
6955399 Hong Oct 2005 B2
6962392 O'Connor Nov 2005 B2
6988770 Witchie Jan 2006 B2
6997473 Tanase et al. Feb 2006 B2
7040699 Curran et al. May 2006 B2
7100992 Bargheer et al. Sep 2006 B2
7131694 Buffa Nov 2006 B1
7140682 Jaeger et al. Nov 2006 B2
7159934 Farquhar et al. Jan 2007 B2
7185950 Pettersson et al. Mar 2007 B2
7213876 Stoewe May 2007 B2
7216915 Kammerer et al. May 2007 B2
7229118 Saberan et al. Jun 2007 B2
7261371 Thunissen et al. Aug 2007 B2
7344189 Reed et al. Mar 2008 B2
7350859 Klukowski Apr 2008 B2
7350865 Pearse Apr 2008 B2
7393005 Inazu et al. Jul 2008 B2
7425034 Bajic et al. Sep 2008 B2
7441838 Patwardhan Oct 2008 B2
7467823 Hartwich Dec 2008 B2
7478869 Lazanja et al. Jan 2009 B2
7481489 Demick Jan 2009 B2
7506924 Bargheer et al. Mar 2009 B2
7506938 Brennan et al. Mar 2009 B2
7523888 Ferry et al. Apr 2009 B2
7530633 Yokota et al. May 2009 B2
7543888 Kuno Jun 2009 B2
7578552 Bajic et al. Aug 2009 B2
7578554 Lee et al. Aug 2009 B2
7597398 Lindsay Oct 2009 B2
7614693 Ito Nov 2009 B2
7641281 Grimm Jan 2010 B2
7669925 Beck et al. Mar 2010 B2
7669928 Snyder Mar 2010 B2
7712833 Ueda May 2010 B2
7717459 Bostrom et al. May 2010 B2
7726733 Balser et al. Jun 2010 B2
7735932 Lazanja et al. Jun 2010 B2
7752720 Smith Jul 2010 B2
7753451 Maebert et al. Jul 2010 B2
7775602 Lazanja et al. Aug 2010 B2
7784863 Fallen Aug 2010 B2
7802843 Andersson et al. Sep 2010 B2
7819470 Humer et al. Oct 2010 B2
7823971 Humer et al. Nov 2010 B2
7845729 Yamada et al. Dec 2010 B2
7857381 Humer et al. Dec 2010 B2
7871126 Becker et al. Jan 2011 B2
7891701 Tracht et al. Feb 2011 B2
7909360 Marriott et al. Mar 2011 B2
7931294 Okada et al. Apr 2011 B2
7931330 Ito et al. Apr 2011 B2
7946649 Galbreath et al. May 2011 B2
7963553 Huynh et al. Jun 2011 B2
7963595 Ito et al. Jun 2011 B2
7963600 Alexander et al. Jun 2011 B2
7966835 Petrovski Jun 2011 B2
7967379 Walters et al. Jun 2011 B2
7971931 Lazanja et al. Jul 2011 B2
7971937 Ishii et al. Jul 2011 B2
8011726 Omori et al. Sep 2011 B2
8016355 Ito et al. Sep 2011 B2
8029055 Hartlaub Oct 2011 B2
8038222 Lein et al. Oct 2011 B2
8075053 Tracht et al. Dec 2011 B2
8109569 Mitchell Feb 2012 B2
8123246 Gilbert et al. Feb 2012 B2
8128167 Zhong et al. Mar 2012 B2
8162391 Lazanja et al. Apr 2012 B2
8162397 Booth et al. Apr 2012 B2
8167370 Arakawa et al. May 2012 B2
8210568 Ryden et al. Jul 2012 B2
8210605 Hough et al. Jul 2012 B2
8210611 Aldrich et al. Jul 2012 B2
8226165 Mizoi Jul 2012 B2
8297708 Mizobata et al. Oct 2012 B2
8342607 Hofmann et al. Jan 2013 B2
8408646 Harper et al. Apr 2013 B2
8516842 Petrovski Aug 2013 B2
8939514 Baig Jan 2015 B2
9126508 Line et al. Sep 2015 B2
9399418 Line Jul 2016 B2
20040195870 Bohlender et al. Oct 2004 A1
20050200166 Noh Sep 2005 A1
20060043777 Friedman et al. Mar 2006 A1
20070120401 Minuth et al. May 2007 A1
20070200398 Wolas et al. Aug 2007 A1
20080174159 Kojima et al. Jul 2008 A1
20080231099 Szczepkowski et al. Sep 2008 A1
20090039690 Simon et al. Feb 2009 A1
20090066122 Minuth et al. Mar 2009 A1
20090165263 Smith Jul 2009 A1
20090322124 Barkow et al. Dec 2009 A1
20100026066 Graber et al. Feb 2010 A1
20100038937 Andersson et al. Feb 2010 A1
20100140986 Sawada Jun 2010 A1
20100171346 Laframboise et al. Jul 2010 A1
20100187881 Fujita et al. Jul 2010 A1
20100201167 Wieclawski Aug 2010 A1
20100231013 Schlenker Sep 2010 A1
20100259081 Kuno Oct 2010 A1
20100270840 Tanaka et al. Oct 2010 A1
20100301650 Hong Dec 2010 A1
20100320816 Michalek Dec 2010 A1
20110018498 Soar Jan 2011 A1
20110074185 Nakaya et al. Mar 2011 A1
20110095513 Tracht et al. Apr 2011 A1
20110095578 Festag Apr 2011 A1
20110109127 Park et al. May 2011 A1
20110109128 Axakov et al. May 2011 A1
20110121624 Brncick et al. May 2011 A1
20110133525 Oota Jun 2011 A1
20110163574 Tame et al. Jul 2011 A1
20110163583 Zhong et al. Jul 2011 A1
20110186560 Kennedy et al. Aug 2011 A1
20110187174 Tscherbner Aug 2011 A1
20110254335 Pradier et al. Oct 2011 A1
20110260506 Kuno Oct 2011 A1
20110272548 Rudkowski et al. Nov 2011 A1
20110272978 Nitsuma Nov 2011 A1
20110278885 Procter et al. Nov 2011 A1
20110278886 Nitsuma Nov 2011 A1
20110298261 Holt et al. Dec 2011 A1
20120032486 Baker et al. Feb 2012 A1
20120037754 Kladde Feb 2012 A1
20120063081 Grunwald Mar 2012 A1
20120080914 Wang Apr 2012 A1
20120091695 Richez et al. Apr 2012 A1
20120091766 Yamaki et al. Apr 2012 A1
20120091779 Chang et al. Apr 2012 A1
20120109468 Baumann et al. May 2012 A1
20120119551 Brncick et al. May 2012 A1
20120125959 Kucera May 2012 A1
20120127643 Mitchell May 2012 A1
20120129440 Kitaguchi et al. May 2012 A1
20120162891 Tranchina et al. Jun 2012 A1
20120175924 Festag et al. Jul 2012 A1
20120187729 Fukawatase et al. Jul 2012 A1
20120248833 Hontz et al. Oct 2012 A1
20120261974 Yoshizawa et al. Oct 2012 A1
20130076092 Kulkarni et al. Mar 2013 A1
20130285426 Arant et al. Oct 2013 A1
20140203606 Line et al. Jul 2014 A1
20140203610 Line et al. Jul 2014 A1
20140203617 Line et al. Jul 2014 A1
20150165935 Sachs et al. Jun 2015 A1
20150245716 Hwang Sep 2015 A1
20150258914 Lee Sep 2015 A1
20150283931 Line Oct 2015 A1
20160135602 Smith May 2016 A1
20160207433 Kondrad Jul 2016 A1
20160302577 Mullen Oct 2016 A1
Foreign Referenced Citations (32)
Number Date Country
102006061226 Jun 2008 DE
102012006074 Nov 2012 DE
627339 Dec 1994 EP
0670240 Feb 1995 EP
754590 Jan 1997 EP
0594526 Mar 1997 EP
0 962 170 Dec 1999 EP
926969 Jan 2002 EP
1266794 Mar 2004 EP
1123834 Oct 2004 EP
1050429 Oct 2005 EP
1084901 Jun 2006 EP
1674333 Aug 2007 EP
1950085 Dec 2008 EP
1329356 Nov 2009 EP
2565070 Mar 2013 EP
2008189176 Aug 2008 JP
201178557 Apr 2011 JP
2011093588 May 2011 JP
2011251573 Dec 2011 JP
1020080066428 Jul 2008 KR
1020110051692 May 2011 KR
101180702 Sep 2012 KR
9511818 May 1995 WO
9958022 Nov 1999 WO
2006131189 Dec 2006 WO
2007028015 Aug 2007 WO
2008019981 Feb 2008 WO
2008073285 Jun 2008 WO
2010096307 Aug 2010 WO
2011021952 Feb 2011 WO
2012008904 Jan 2012 WO
Non-Patent Literature Citations (9)
Entry
M. Grujicic et al., “Seat-cushion and soft-tissue material modeling and a finite element investigation of the seating comfort for passenger-vehicle occupants,” Materials and Design 30 (2009) 4273-4285.
“Thigh Support for Tall Drivers,” http://cars.about.com/od/infiniti/ig/2009-inifiniti-G37-Coupe-pics/2008-G37-cpe-thigh-support.htm (1 page).
Mladenov, “Opel Insignia Receives Seal of Approval for Ergonomic Seats,” published Aug. 27, 2008, http://www.automobilesreview.com/auto-news/opel-insignia-receives-seal-of-approval-for-ergonomic-seats/4169/ (2 pages).
Brose India Automotive Systems, “Adaptive Sensor Controlled Headrest,” http://www.indiamart.com/broseindiaautomotivesystems/products.html, Oct. 9, 2012 (12 pages).
ecoustics.com, “Cineak Motorized Articulating Headrest Preview,” http://www.ecoustics.com/ah/reviews/furniture/accessories/cineak-motorized-headres, Oct. 9, 2012 (3 pages).
“‘Performance’ Car Seat Eliminates Steel,” published in Plastics News—Indian Edition Plastics & Polymer News, http://www.plasticsinformart.com/performance-car-seat-eliminates-steel/ Jan. 2012 (3 pages).
“Frankfurt 2009 Trend—Light and Layered,” by Hannah Macmurray, published in GreeenCarDesign, http://www.greencarddesign.com/site/trends/00138-frankfurt-2009-trend-light-and-layered, Sep. 2009 (9 pages).
General Motors LLC, “2013 Chevrolet Spark Owner Manual,” copyright 2012, 356 pages.
“Imola Pro-Fit,” Cobra (http://cobra.subseports.com/products/cat/seats/brand/Cobra/prodID/656), date uknown, 2 pages.
Related Publications (1)
Number Date Country
20160090010 A1 Mar 2016 US
Continuation in Parts (1)
Number Date Country
Parent 13748862 Jan 2013 US
Child 14962574 US