Some boots worn by users can include an inner liner or inner boot that fits between an outer boot and the user's foot. In general, the inner boot may generally conform to the shape of the user's foot to at least provide some flexible support. Furthermore, an inner boot can assist in keeping a user's foot warm, provide padding, and absorb moisture in the boot. In addition, the inner boot can include a lacing or securing system that allows a user to customize the fit of the inner boot against the user's foot. The securing system of the inner boot can be separate and distinct from any securing mechanisms used to secure the outer boot. Furthermore, the securing system of the inner boot may be covered and protected by the outer boot, particularly when the outer boot securing system is tightened.
In sporting activities, for example snowboarding, skiing, hiking, skating, and the like, the one or more securing mechanisms of the boot can change over time with repeated flexion of the inner and outer boots during use. This can result in the boot feeling looser than the original fitting set by the user. Alternatively, a user can determine during use that the original fitting of the boot was secured too tight and would prefer the fit to be looser. In addition, the user may determine that only the inner boot fitting is in need of adjustment and not the outer boot. In this particular circumstance, some currently available boots generally require the outer boot to be loosened in order to access and adjust the securing mechanism of the inner boot to adjust the inner boot fitting. However, loosening the outer boot to adjust the fitting of the inner boot can be inconvenient and/or unfavorable for the user, particularly in harsh weather conditions.
For example, a snowboarder who wants to tighten the securing mechanism of the inner boot may have to sit down and remove one or more gloves in order to loosen the outer boot to expose and adjust the inner boot securing mechanism. This can undesirably allow heat to escape from inside the boot and from the user's hands. In addition, these additional steps just to access the inner boot securing mechanism can unnecessarily prolong the time a user is exposed to harsh conditions in a less protected and stationary state. Therefore, it would be beneficial to have a boot that allows a user to customize the fit of the inner boot without requiring the outer boot to be loosened and/or the user's gloves to be removed.
Described herein are boot systems that can generally provide at least compression and stability to the foot, ankle and lower leg of a user. The boot system can have boot layers that can each be independently adjusted in order to increase or decrease the compression and stability provided to the user by the boot system to achieve a desired fit. The boot systems described herein include features that allow a user to independently adjust one or more securing mechanisms of the boot system to provide the user with a customized fit, as will be described in detail below.
In one aspect, there is disclosed a boot system having an outer boot including a securing system and a superior end that includes a cuff; an inner boot sized to fit between the outer boot and a foot area of a user inserted in the boot system, and a harness system having a flexible panel and a lace slidably engaged with the panel. The inner boot includes a tension capture element coupled adjacent to a superior end of the inner boot. The harness system is removably secured to the outer boot.
The harness system can be removably secured to at least a part of the inner boot. The panel of the harness system can wrap about at least a part of the inner boot. The harness system can provide variable amounts of compression around the at least a part of the inner boot upon sliding engagement of the lace with the panel. The panel can discontinuously wrap about the at least a part of the inner boot and forms at least one gap in the panel. The harness system can include a first lacing element disposed on a first side of the at least one gap and a second lacing element disposed on a second, opposite side of the at least one gap. The first and second lacing elements can have an alignment that is horizontally off-set. The lace can extend sequentially through the first and second lacing elements and form a zigzag configuration relative to the panel. Application of tension to the lace can force the at least one gap to narrow.
The harness system further can include a third lacing element disposed on the first side of the at least one gap and a fourth lacing element disposed on the second, opposite side of the at least one gap. The third and fourth lacing elements can have an alignment that is horizontally off-set from one another and from the first and second lacing elements. The lace can extend sequentially through the third and fourth lacing elements and form a zigzag configuration relative to the panel. Application of tension to the lace can force the at least one gap to narrow. The lace can include a single looped lace anchored to the panel at a first end and anchored to the panel at a second, opposite end forming a first lace portion and a second lace portion. The first lace portion can force an upper portion of the at least one gap to narrow and the second lace portion can force a lower portion of the at least one gap to narrow. The single looped lace can loop through a handle at a superior end of the harness system. Distal regions of the first and second lace portions can extend through and can be releasably secured to a portion of the tension capture element. The tension capture element can include a first and a second tightening track. The first tightening track can capture the first lace portion and the second tightening track can capture the second lace portion. The first and second tightening tracks can be molded into a single tension capture element. The single tension capture element can be coupled to the inner boot by at least one fixation element extending through a corresponding aperture. The tension capture element coupled adjacent to a superior end of the inner boot can be positioned on at least one of a medial side and a lateral side of the inner boot. The tension capture element can be accessible external to the outer boot without adjusting the securing system of the outer boot. Other features and advantages should be apparent from the following description of various embodiments, which illustrate, by way of example, the principles of the disclosed systems.
Described herein is a boot system that includes more than one boot layer that can, independently and in combination, generally provide at least compression and stability to the foot, ankle and lower leg of a user. In addition, each boot layer can at least be capable of being independently adjusted in order to increase or decrease the compression and stability provided to the user by the boot system to achieve a desired fit. The boot systems described herein include features that allow a user to independently adjust one or more securing mechanisms of the boot system to provide the user with a customized fit, as will be described in detail below. The boot systems described herein can include a sports boot that allows a user's foot to be inserted and secured in the boot system. In addition, some embodiments of the boot system can be used with an external appliance, such as a snowboard, wakeboard, snowshoe, roller or ice skating appliance, or any other appliance that can couple to the boot system described herein. In addition, the boot system can include features that further assist the boot system to be used with at least the external appliances listed herein. It should also be appreciated that the boot system described herein can be used for other activities such as hiking.
Turning now to the figures,
The outer boot 105 can include an outsole 120 and an outer boot upper 125 securely mounted above the outsole 120. The outsole 120 generally functions to provide comfort and protection along the bottom of the outer boot 105. In addition the outsole 120 can include features that assist in coupling the outer boot 105 to an external appliance. Furthermore, the outsole 120 can be made out of a material that can provide for comfortable walking and protects a user from harsh environments and conditions. For example, the outsole 120 can be made out of a type of rubber that can withstand extreme temperatures, repel moisture, and is advantageous for walking. However, the outsole 120 material is not limited to being made out of a rubber and can be made from any material or combination of materials without departing from the scope of this disclosure. In addition, the outsole 120 can include surface features that can provide at least some traction for the user while walking on potentially slippery surfaces.
Some embodiments of the outer boot upper 125 can include a pair of closure flaps surrounding a space that generally extends from adjacent the toe 127 area to the cuff 510 of the outer boot upper 125. In addition, the closure flaps can at least partially cover a tongue 130 that generally extends at least partially along and within the space. More specifically, the tongue 130 can generally extend from adjacent the toe 127 area of the outer boot upper 125 to the superior end of the outer boot upper 125. In addition, the tongue 130 can be made from generally the same material as the outer boot upper 125, or the tongue 130 can be made from any number of various other materials without departing from the scope of this disclosure. For example, the outer boot upper 125 can be made out of one or more of a nylon, polyester polyurethane, Polyvinyl chloride (PVC), leather, textile, mesh, and synthetic leathers. By way of further example, the tongue 130 can be made out of one or more of a nylon, polyester polyurethane, PVC, textile, and mesh.
In some embodiments of the outer boot upper 125, the toe 127 can be molded during manufacturing in order to achieve a desired look and feel of the toe 127 that would otherwise be difficult to achieve by other manufacturing processes. In particular, molding the toe 127 of the outer boot upper 125 during manufacturing allows the toe 127 to have a generally rounded shape. A rounded toe 127 allows for additional room in the toe area for the user's toes and any surrounding material (i.e., socks, inner boot, etc.). The rounded toe area can provide added comfort for the user and relieve any undesired pressure. In addition, molding the toe 127 during manufacturing also provides for a lighter weight outer boot upper 125. Alternatively, a rounded toe 127 can be achieved by placing additional support material (i.e., metal, molded plastic, etc.) and forming the outer boot upper 125 material around the support material. In addition, molding the toe 127 of the outer boot upper 125 allows the toe 127 to be stiff and durable, which can allow the shape and integrity of the toe 127 to be generally maintained.
In some embodiments of the boot system 100, the outer boot upper 125 can include at least one securing system 135. The securing system 135 can function to at least increase or decrease the support provided by the outer boot upper 125 to a user. As shown in
As described above, the outer boot 105 can generally provide the structural support and protection of the boot system 100, and the inner boot 110 can generally provide the contoured support around a user's foot area. In addition, the inner boot 110 can also provide at least some insulation, moisture absorption, and shock absorption. The inner boot 110 can include a middle panel 215 that can be flexible and/or movable that allows the inner boot 110 to expand and accept at least a user's foot. In addition, the inner boot 110 can include an adjustable strap 220 that surrounds at least a part of the generally superior end or cuff of the inner boot 110. As shown in
In addition, and as shown in
In general the harness system 305 can be a separate entity from the inner boot 110 and/or outer boot 105 that can be removably secured to either or both of the inner boot and the outer boot. The harness system 305 can be removably secured to one or more parts of the boot system 100 in order to at least assist in generally securing the position of the harness system 305 within the boot system 100. For example, the harness system 305 can include one or more reversible attachment features, such as Velcro® (hook and loop fasteners), that can mate with one or more complementary attachment features on the inner boot 110 to removably secure positioning of the harness system 305 relative to the inner boot 110. Similarly, the harness system 305 can include one or more attachment features that can mate with one or more complementary attachment features of the outer boot 105 to generally secure positioning of the harness system 305 relative to the outer boot 105.
In an embodiment, the harness system 305 can include one or more Velcro® panels along the inner back side of the harness system 305 that can mate with one or more complementary Velcro® panels located along the outer back side of the inner boot 110. In another embodiment, the harness system 305 can include one or more Velcro® panels along an inner surface of the bottom side that can mate with one or more complementary Velcro® panels located along the underside of the inner boot 110. In an embodiment, the harness system 305 can include one or more Velcro® panels along the outer back side of the harness system 305 in order to mate with one or more complementary Velcro® panels located along the inner back side of the outer boot 105. In another embodiment, the harness system 305 can include one or more Velcro® panels along an outer surface of the bottom side that can mate with one or more complementary Velcro® panels located along the inner bottom surface of the outer boot 105. However, any number of attachment features can be positioned along any part of the harness system 305 that can attach to any number of complementary attachment features located within the boot system 100 without departing from the scope of this disclosure. It should be appreciated also that the attachment features can vary and is not limited to Velcro® panels.
Some embodiments of the harness system 305 can include a panel 310, a plurality of lacing elements 315, and one or more laces 320. As shown in
Some embodiments of the panel 310 of the harness system 305 can include an inner surface covered at least in part with one or more gel-reinforced inner cushion features 355. For example, the gel-reinforced inner cushion features 355 can include an array of gel-like cushions that can be made out of a material such as SEBS (styrene ethylene butadiene styrene) polymers, TPU (thermoplastic polyurethane), and polyurethane heat treated gels and injected bladders. However, any variety of materials that provide a cushioning effect can be used without departing from the scope of the disclosure. The cushion features 355 can be molded onto the fabric in discrete locations of the panel 310 to provide generalized dampening and pressure reduction. For instance, the lacing system 135 of the outer boot 105 can cause pressure points against the side of the foot. The cushions 355 can be molded onto the fabric of the panel 310 such that they protect the foot from these pressure points. The cushions 355 can also provide some degree of grip to the underlying portion of the inner boot 110 as the harness system 305 is tightened around the inner boot 110.
The panel 310 material can be generally lightweight, breathable and inelastic. Additionally, the material of the lace 320 can be made out a variety of materials including various metals (i.e., stainless steel cord), leather, cloth, plastic, braided fibers, and the like. The lacing elements 315 are shown as o-rings, but need not be any particular size and/or shape. The lacing elements 315 can be configured such that they slidably receive the lace 320 therethrough such that the lace 320 can be in sliding engagement with the lacing elements 315 of the panel 310 to provide variable amounts of compression around at least a part of the inner boot. The lacing elements 315 can be manufactured out of a material, such as a metal, that can minimize friction between the lace 320 and the panel 310 such that the lace 320 can easily slide therethrough.
As illustrated in
In an embodiment, the harness system 305 includes a single lace 320 having a zigzag lacing configuration that allows an even closing or narrowing of the gap between the opposing sides of the panel 310 as the lace 320 is placed under tension, or increasing tension. The single-lace embodiment of the harness system 305 can prevent lace cross-over points that can create pressure points and can increase the friction along each lace such that loosening and tightening the lace to the desired tension is more difficult, if not impossible, without first loosening one or more cross-over points. It should be appreciated, however, that any number of laces 320 can be used with the harness systems described herein without departing from the scope of the disclosure.
As mentioned above,
A user can apply tension to the lace 320 which can force the lace 320 to pull the lacing elements 315 on either side of the gap towards each other. The lacing elements 315 can be securely attached along the opposing sides of the panel 310 (either directly opposite or in an off-set arrangement) and the gap can narrow or close as the lacing elements 315 are forced towards each other. As the gap narrows or closes, the harness system 305 can increasingly apply compression to the inner boot 110. Therefore, a user can adjust the fit of the inner boot 110 to the user's foot area by pulling on the lace 320, or increasing the tension of the lace 320 of the harness system 305. Additionally, the lace 320 can include a pull tab 340 coupled to at least a portion of the lace 320 that can assist a user in releasing tension on the lace 320. The pull tab 340 can be sized and shaped such that a user can easily grasp and pull the pull tab 340 without needing to remove one or more gloves.
A reinforcement feature 347 (see
The lace 320 can be captured by one or more tension capture elements 230, such as a lace cleat. The tension capture elements 230 can be used to secure tension of the lace 320 or other securing features of the harness system 305. The tension capture elements 230 can be positioned generally on the inner boot 110. The tension capture element 230 can be attached to the reinforcement panel 225 positioned along one or more sides of the inner boot 110. Positioning the tension capture element 230 along the inner boot 110 generally can prevent the lace 320 tension from being affected by at least the movement and positioning of other parts of the boot system 100, such as the outer boot 105. It should be appreciated, however, that at least a part of the tension capture element 230 can be secured to the outer boot 105 without departing from the scope of the present disclosure.
In order to at least assist in aligning the lace 320 with the channel 620 of the tension capture element 230, an alignment feature such as a rivet 345 can be positioned adjacent the top end of at least one side of the panel 310 (see
The proximal end of the lace 320 can be provided with a gripping feature or handle 335 that can assist the user in at least locating and pulling on the lace 320 to exert tension and close the harness system 305 to the desired degree around the inner boot 110 and foot. The handle 335 can be sized and shaped such that a user can easily grasp and manipulate the handle 335 (i.e., pull the handle, store the handle after use, etc.) without needing to remove one or more gloves. Further, excess length of the lace 320 outside of the tension capture element 230 and/or the lace handle 335 can be stored within a feature, such as a pocket 350 (see
As discussed above, the boot system 100 described herein is a generally flexible boot that allows the foot area of a user some flexion during use. As described above, a user may adjust the fit of the inner boot 110 by varying the lace 320 tension of the harness system 305 to provide a desired compression and support on the inner boot 110. Due, at least in part, to some of the boot system's flexion during use, the compression and support of the inner boot 110 may be reduced over time. When this occurs, a user may want to further tighten the harness system 305 in order to at least regain a desired fit. Alternatively, a user may be experiencing too much compression and/or support from the inner boot 110 and may want to alter the compression and support of the inner boot 110 in order to achieve a desired fit. The harness system 305 described herein allows a user to adjust the compression and fit of the inner boot 110 without requiring the outer boot 105 to be loosened or untied. As will be described in more detail below, the upper 125 of the outer boot 105 can include one or more features that provide a user with external access to the one or more tension capture elements 230 positioned on the inner boot 110 in order to adjust the tension on the harness system 305 and customize the fit of the inner boot 110 without needing to loosen the one or more securing systems 135 of the outer boot 105 or remove one's gloves.
As best shown in
The looped lace 920 can be affixed at a first end 901 to one of the lacing elements 915 and affixed at a second, opposite end 902 to a different lacing element 915 and extend through at least one lacing element 915 on an opposite side of the gap (see
One set of lacing elements 915 can be positioned near an upper portion of the panel 910 to slidably receive lace portion 920a such that the upper portion of the harness system 905 can be tightened by lace portion 920a. A second set of lacing elements 915 can be positioned near a lower portion of the panel 910 to slidably receive lace portion 920b such that the lower portion of the harness system 905 can be tightened by lace portion 920b. Upon applying tension to the loop 922 (such as by pulling the handle 937 if one is present), a user can apply tension to lace portion 920b, which can force lace portion 920b to pull the first set of lacing elements 915 on either side of the gap towards each other and tension the lower portion of the harness 905 and apply tension to lace portion 920a, which can force lace portion 920a to pull the second set of lacing elements 915 on either side of the gap towards each other and tension the upper portion of the harness 905. The gap G then narrows or closes and the harness system 905 increasingly applies compression to the inner boot 110 (see
As shown in
As best shown in
Lace portion 920a can extend from the harness system 905 and thread up through the first tightening track 940a in the tension capture element 930 from an inferior end and out a superior end. The first tightening track 940a can have a gripping surface 950a near a superior end of the tension capture element 930 that can secure lace portion 920a within the tension capture element 930. Lace portion 920b can extend from the harness system 905 and thread up through the second tightening track 940b in the tension capture element 930 from an inferior end and out a superior end. The second tightening track 940b can have a gripping surface 950b near a superior end of the tension capture element 930 that can secure lace portion 920b within the tension capture element 930. In use, the user can pull proximally on one or both of the lace portions 920a, 920b until the desired closure force is achieved. The lace portions 920a, 920b can be attached to a handle 937. In some implementations, the loop 922 can extend through the handle 937 (see
The user can then rotate a portion of one or both of the lace portions 920a, 920b into the gripping surfaces 950a, 950b of the tension capture element 930. The gripping surfaces 950a, 950b can be angled downward to generally assist in preventing the lace portions 920a, 920b from loosening. The lace portions 920a, 920b can be freed from the gripping surfaces 950a, 950b of the tension capture element 930 with a combined upward pull and forward rotation of the lace portions 920a, 920b freeing them from the gripping surfaces 950a, 950b within the tracks 940a, 940b. Once the lace portions 920a, 920b are free from the tension capture element 930, the compression achieved by the panel 910 on the inner boot 110 can be adjusted. It should be appreciated that one or both of the lace portions 920a, 920b need not be freed from the gripping surfaces 950a, 950b in order to be tightened. Adding further tension to the lace portions 920a, 920b extending through the tracks 940a, 940b is sufficient for additional compression to be applied.
While this specification contains many specifics, these should not be construed as limitations on the scope of an invention that is claimed or of what may be claimed, but rather as descriptions of features specific to particular embodiments. Certain features that are described in this specification in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a sub-combination or a variation of a sub-combination. Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. Only a few examples and implementations are disclosed. Variations, modifications and enhancements to the described examples and implementations and other implementations may be made based on what is disclosed.
This application is related to and claims the benefit of priority under 35 U.S.C. 119(e) of U.S. Provisional Application Ser. No. 61/421,590, titled, “Independent Harness System for a Soft Boot,” filed Dec. 9, 2010 and U.S. Provisional Application Ser. No. 61/529,763, titled, “Independent Harness System for a Soft Boot,” filed Aug. 31, 2011. Priority of the filing date of Dec. 9, 2010 is hereby claimed, and the disclosure of the provisional patent application is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61421590 | Dec 2010 | US | |
61529763 | Aug 2011 | US |