The Invention relates to memory systems with multiple links and multiple memory banks.
Current consumer electronic devices use memory devices. For example, mobile electronic devices such as digital cameras, portable digital assistants, portable audio/video players and mobile terminals continue to require mass storage memories, preferably non-volatile memory with ever increasing capacities and speed capabilities. Non-volatile memory and hard-disk drives are preferred since data is retained in the absence of power, thus extending battery life.
While existing memory devices operate at speeds sufficient for many current consumer electronic devices, such memory devices may not be adequate for use in future electronic devices and other devices where high data rates are desired. For example, a mobile multimedia device that records high definition moving pictures is likely to require a memory module with a greater programming throughput than one with current memory technology. Unfortunately, there is a problem with signal quality at such high frequencies, which sets a practical limitation on the operating frequency of the memory. The memory communicates with other components using a set of parallel input/output (I/O) pins, the number of which is implementation specific. The I/O pins receive command instructions and input data and provide output data. This is commonly known as a parallel interface. High speed operation may cause communication degrading effects such as cross-talk, signal skew and signal attenuation, for example, which degrades signal quality.
In order to incorporate higher density and faster operation on system boards, there are two design techniques: serial interconnection configurations and parallel interconnection configurations such as multi-drops. These design techniques may be used to overcome the density issue that determines the cost and operating efficiency of memory swapping between a hard disk and a memory system. However, multi-drop configurations have a shortcoming relative to the serial interconnection configurations. For example, if the number of drops in a multi-drop memory system increases, then as a result of loading effect of each pin, delay time also increases so that the total performance of the multi-drop memory system is degraded. This is due to the wire resistor-capacitor loading and the pin capacitance of the memory device. A serial link in a device such as a memory device may utilize a single pin input that receives all address, command, and data serially. The serial link may provide a serial interconnection configuration to control command bits, address bits, and data bits effectively through the configuration. The devices in the configuration may be memory devices, for example, dynamic random access memories (DRAMs), static random access memories (SRAMs) and Flash memories.
Methods and systems are provided for use in a memory system with multiple memory banks and multiple links. The systems allow read and write access from any of the links to any of the banks, but circuitry is provided to prevent invalid access attempts. There is an invalid access attempt when there is simultaneous or overlapping read or write access to the same bank from multiple links. There is an invalid access attempt when there is simultaneous or overlapping read or write access to multiple banks from the same link. Some implementations feature a common circuitry that is used to perform switching for every link, thereby simplifying manufacture. With such implementations, each instance of the switching circuitry is configured to function in a particular manner that reflects its position within the overall system.
According to one broad aspect, the invention provides a memory system comprising: a plurality of memory banks; a plurality of link controllers each link controller having at least one input for receiving control and data and having at least one output for outputting the data; for each memory bank, first switching logic for receiving the at least one output for each link controller, and for passing on the at least one output of only one of the link controllers to the memory bank; for each link controller, second switching logic for receiving an output of each memory bank, and for passing on the output of only one of the memory banks to the link controller; and switch controller logic for controlling operation of both the first switching logic and the second switching logic to prevent simultaneous or overlapping access by multiple link controllers to the same memory bank, and for preventing simultaneous or overlapping access to multiple banks by the same link controller.
In some embodiments, the first switching logic comprises a plurality of switching elements for a corresponding plurality of outputs of each of the link controllers.
In some embodiments, the second switching logic comprises a single switching element for receiving a serial output from each of the memory banks.
In some embodiments, the plurality of memory banks consist of two memory banks and the plurality of link controllers consist of two link controllers.
In some embodiments, the switch controller logic comprises: a respective switch controller for each memory bank.
In some embodiments, the switch controllers have substantially identical circuit implementations, wherein each switch controller comprises: link recognition logic for receiving an instruction that the switch controller is to operate according to a selected one of a plurality of possible positions for the switch controller in the system.
In some embodiments, the plurality of memory banks consist of a first memory bank and a second memory bank and the switch controller logic consists of a first link controller and a second link controller, and wherein the plurality of possible positions for the switch controller in the system comprises: a first position in which the switch controller controls the first switching logic for the first bank and controls the second switching logic for the first link controller; and a second position in which the switch controller controls the first switching logic for the second bank and controls the second switching logic for the second link controller.
In some embodiments, the memory system further comprises: an input for selecting single link operation; wherein upon assertion a single link operation through said input, the memory system operates as if there is only one link controller.
In some embodiments, the memory system further comprises: invalid check logic for receiving bank selection outputs from each of the link controllers and for determining if there is simultaneous or overlapping access to multiple banks by the same link controller, and if so generating an invalidity signal.
In some embodiments, each switch controller further comprises: a hold circuit for holding previous control outputs in the event of simultaneous or overlapping access to multiple banks by the same link controller and in the event of simultaneous or overlapping access by multiple links to the same bank.
In some embodiments, each switch controller is operable to generate outputs comprising: link bank select signals for selecting which link outputs that are to be passed on to the bank; and bank select signals for selecting which bank outputs are to be passed on to the link controller.
In some embodiments, each link controller comprises: an input buffer for receiving incoming command and data; serial to parallel register for converting incoming command and data to parallel form; and command interpreter control logic for interpreting incoming commands.
In some embodiments, each link controller is operable to output bank select signals for the switch controller logic.
According to another broad aspect, the invention provides a method comprising: receiving a plurality of inputs; outputting a plurality of outputs; selectably passing signals received on the plurality of inputs to memory bank inputs of a plurality of memory banks; selectably passing signals received from memory bank outputs to the plurality of outputs; and controlling the selectably passing signals received on the plurality of inputs to memory bank inputs and the selectably passing signals received from memory bank outputs to the plurality of outputs to prevent simultaneous or overlapping access from multiple inputs to the same memory bank, and to prevent simultaneous or overlapping output from multiple banks to the same output.
In some embodiments, selectably passing signals received on the plurality of inputs to memory bank inputs of a plurality of memory banks comprises: for a given access from a given input of the plurality of inputs to a given memory bank of the plurality of memory banks, connecting the given memory bank to receive signals from the given input.
In some embodiments, the method selectably passing signals received from memory bank outputs to the plurality of outputs comprises: for a given memory bank and a given bank, connecting the output of given memory bank to send signals towards the given output.
In some embodiments, the controlling is performed by a plurality of identical switch controllers, the method further comprising: configuring each of the plurality of identical switch controllers to behave in a manner specific to their position within an overall memory system.
In some embodiments, the method further comprises: upon occurrence of an invalid access attempt, either simultaneous or overlapping access from multiple inputs to the same memory bank or simultaneous or overlapping output from multiple banks to the same output comprises, maintaining a previous access state.
In some embodiments, the method further comprises: detecting invalid access attempts by examining bank select signals forming part of each of the plurality of inputs.
In some embodiments, the plurality of inputs and the plurality of outputs comprise a respective at least one input and a respective at least one output for each of a plurality of link controllers.
Embodiments of the present invention will now be described, by way of example only, with reference to the attached Figures, wherein:
An MISL (Multiple Independent Serial Link) memory system has a set of links and a set of memory banks, and has a feature that enables accessing any bank from any link port. Referring to
To deal with the case of the dual link configuration of MISL described above, circuits are provided that ensure that the two link ports can access the two banks for read and write operations so as to prevent invalid access conditions, such as simultaneous access to one bank from both links. Control signals and data use a path determined by a bank address and the accessed link port for the accessed bank.
In the illustrated example, there are two links 10,12 and two banks 18,20. Subsequent examples also assume that there are two banks and two links. However, more generally, there may be any plural number of links and any plural number of banks. It is to be appreciated that variations and modifications of the features disclosed herein may be contemplated for implementations employing any appropriate number of links and any appropriate number of banks.
Embodiments of the invention described below support the following features:
The connections illustrated in
For the purpose of this description, each bank has an “inside” link and an “outside” link. For this implementation, the inside link of a given bank is the link having a corresponding position to the bank, and the outside link is the remaining link. Thus, the inside link for Bank0 is Link0, and the outside link for Bank0 is Link1. The inside link for Bank1 is Link1, and the outside link for Bank1 is Link0. In the above labelling scheme, “Lnk_is” refers to a so-called “inside link”, and “Lnk_os” refers to the so-called “outside link”.
The switch controllers 48,50 receive the control inputs 49,51, and produce the control outputs Lnk_is_Bnk0_ctrl_enable 53, Lnk_os_Bnk0_ctrl_enable 60, Lnk0_Bnk_slct<1:0> 64, Lnk_is_Bnk1_ctrl_enable 63, Lnk_os_Bnk1_ctrl_enable 65, Lnk1_Bnk_slct<1:0> 66 in such a manner as to prevent prohibited combinations of link/bank accesses. Specifically, the two links are not permitted to access the same bank during overlapping time intervals, and the switch controllers 48, 50 operate to prevent this.
The data connections illustrated in
The connections illustrated in
In operation, commands are received at Link0 10 and Link1 12, and each command will be associated with one of the banks. For Link0 10, the selected bank is indicated at Bnk0<1:0> 49 and this is propagated to switch controllers 48,50 while for Link1 12, the selected bank is indicated at Bnk1<1:0> 51 and this also is propagated to switch controllers 48,50. The switch controllers 48,50 operate to prevent contention for the same bank by multiple links. An access attempt that is does not result in contention for the same bank by multiple links is referred to as a valid access attempt. A detailed circuit for preventing invalid attempts is described further below.
In some embodiments, to switch the two links between the two banks effectively without performance degradation due to the additional logic paths, data transferring is carried out after serial data to parallel conversion through designated registers in each link 10,12 to produce the sets of outputs 70,72. An example of a detailed implementation showing the serial to parallel conversion will be described later with reference to
With reference to
During a valid access attempt by Link0 10, if Bank0 18 is selected, then the switch controller 48 will control switches 40 such that outputs 70 of Link0 are propagated to Bank0 18 thereby establishing write data path and control path. Switch controller 48 will control switch 42 such that the output 60 from Bank0 18 is propagated along output 67 to Link0 10 thereby establishing read data path.
During a valid access attempt by Link0 10, if Bank1 20 is selected, then the switch controller 50 will control switches 44 such that outputs 70 of Link0 10 are propagated to Bank1 thereby establishing write data path and control path. Switch controller 50 will control switch 42 such that the output 62 from Bank1 20 is propagated along output 67 to Link0 10 thereby establishing read data path.
During a valid access attempt by Link1 12, if Bank1 20 is selected, then the switch controller 50 will control switches 44 such that outputs 72 of Link1 12 are propagated to Bank1 20 thereby establishing write data path and control path. Switch controller 50 will control switch 46 such that the output 62 from Bank1 20 is propagated along output 68 to Link1 12 thereby establishing read data path.
During a valid access attempt by Link1 12, if Bank0 18 is selected, then the switch controller 48 will control switches 40 such that outputs 72 of Link1 12 are propagated to Bank0 thereby establishing write data path and control path. Switch controller 50 will control switch 46 such that the output 60 from Bank0 18 is propagated along output 68 to Link1 12 thereby establishing read data path.
The various access scenarios described above are specific to the implementation shown in
With reference to
With reference to
With reference to
With reference to
For the output result of a read operation, global data lines <7:0> are used to send data from the Page buffer to Link1. Lnk_os_Bnk0_ctrl_enable transitions to high to enable data and control inputs from Link1 to be passed on to Bank0, and Lnk_bnk_slct<0> transitions to high to select Bank0 for read access.
Referring now to
In order to catch the bank address from a SIP (Serial Input Port) (not shown) and generate the switch control signals described above, prior to the command assertion, a bank address is input first with a DN (device Number) to select which device (assuming a serial interconnected memory system). Based on the bank address, each link transfers data bits to a selected bank address bit. Switch logic delay is not negligible in the 2 banks and 2 links system. However, due to the timing margin between serial to parallel conversion at registers 82, the delay is hidden while input data is being latched consecutively. The command decoding in the command interpreter control logic 84 is performed after latching a bank address and making relevant control signals of switch logic so that any race timing issue between switch control signals and input data of switches does not occur. The switch logic can be varied according to the logic implementation. In the specific circuits described herein, 2-input NANDs are used to perform a multiplexing function.
The different links should have valid different bank access when two links are used without timing difference. This is shown by way of example in
Banks are physically separated with dedicated logic blocks that activate the word line and bit line paths. Independent operations are achieved with flexible link and bank connections. Valid and invalid determination is made as a function of timing difference at the two links as shown in
In summary, when there is a sequential access to the same bank from two links, the first access is valid, and the second is invalid.
In
In
The switching elements 101,103 are shown with specific logic components. In other implementations, the switching elements 101,103 have alternative logic components that in combination achieve similar functionality. The switching elements 101,103 need not have any NAND gates. Other implementations are possible.
In some embodiments, the system has an additional input, for example an extra input pin, that enables identical switch controller circuitry to be implemented for the switch control logic for all of the links. Such an input can be used to identify the link the switch control logic is functioning for.
A summary of the logic for the purpose of illustrating link_id functionality is indicated at 400 in
In some embodiments, the system has an additional input, for example an extra input pin, that allows a selection between single link configuration and multiple link configuration. In a specific example included in
An example of the logic for the purpose of illustrating bank select interconnections is indicated at 401 in
A detailed diagram of an example implementation of the switch controllers is shown in
Link recognition logic 305 receives a link_id input. For example, if this logic system is included in link0 block, it is ‘zero’, otherwise, it is ‘one’. This logic allows the circuit 300 to recognize which link control block contains itself when switch control operation starts. The link recognition logic has an inverter 402 that is connected to receive the link_id input. The output of inverter 402 is input to one input of a three input NAND gate 400. The other inputs of NAND gate 400 include the single link output slink_b, and Bkb<0>.
In operation, when the circuit 300 is configured to operate as switch controller 48 of
The circuit includes a first Invalid check logic 301. This logic is provided to prevent two bank access through one link at the same time. The circuit has first NAND gate 370 that has inputs Bka<0> AND Bka<1>, and a second NAND gate 372 that has inputs Bkb<0> AND Bkb<1>. The outputs of the two NAND gates 370,372 are input to a third NAND gate 374 the output of which is inverted with an inverter to produce an invalid_b output.
In operation, the Invalid check logic 301 produces an Invalid_b output that is high if both banks are selected by one link. Specifically, if Bka<0> AND Bka<1> are both high meaning both banks are selected by the same link, then the Invalid_b output is high indicating an invalid condition; if Bkb<0> AND Bkb<1> are both high meaning both banks are selected by the same link, then the Invalid_b output is high indicating an invalid condition.
If two inputs (Bka<0> and Bka<1>) or (Bkb<0> or Bkb<1>) have zero states, this means there is no operation since there is no selection of banks for the given link.
Single Link configuration circuit 302 is provided to allow the previously discussed selection of single link operation. Even though two links are more efficient for a two-bank memory system, single link also is supported as an available configuration of the memory system with the circuit described. If single link configuration is used, ‘single_link’ signal becomes high and ‘slink_b’ will have a low state. When ‘slink_b’ has a low state, ‘Ink_os’ becomes low and only ‘Ink_is’ has a valid state according to the bank address. For the two link configuration, ‘single_link’ has a low state such that both outputs ‘Ink_is’ and ‘Ink_os’ are valid. In the illustrated example, single link configuration circuit 302 is simply an inverter 403.
The circuit 300 has a second Invalid check logic that includes functionality indicated at 303A and 303B. Circuit 303A has a NAND gate 350 that receives Bka<0> and Bkb<0>. The output of the NAND gate 350 is connected to an input of another NAND gate 352 that also receives the previously referenced Invalid_b. The output hld0 of the NAND gate 352 is inverted by inverter 354 to produce output hld0_b. Circuit 303B has a NAND gate 356 that receives Bka<1> and Bkb<1>. The output of the NAND gate 356 is connected to an input of another NAND gate 358 that also receives the previously referenced Invalid_b. The output hld1 of the NAND gate 358 is inverted by inverter 360 to produced output hld1_b.
In operation, these circuits 303A,303B provide a data holding function to keep the previous state of Ink_is and Ink_os respectively when two links access the same bank at the same time, accidentally and when a single link attempts to access both banks simultaneously (as signalled by Invalid_b). For circuit 303A, if both of the inputs Bka<0> and Bkb<0> have ‘zero’ states or one of inputs has ‘zero’ state, the outputs hld0 and hld0_b have high and low state, respectively. If both of the inputs Bka<0> and Bkb<0> have ‘one’ states, the outputs hld0 and hld0_b have low and high state, respectively. This occurs if both links are trying to access Bank0. This is a hold state that also occurs if the same link is attempting to access both banks as indicated by the Invalid_b input. The hld0 and hld0_b outputs are used by hold logic 306A to hold Ink_is to a previous value as described in further detail below.
In circuit 303B, if Bka<1> and Bkb<1> both have ‘zero’ states or one of inputs has ‘zero’ state, the outputs hld1 and hld1_b have high and low state, respectively. Similarly, if both Bka<1> and Bkb<1> both have ‘one’ states, the outputs hld1 and hld1_b have low and high state, respectively. This occurs if both links are trying to access Bank1. This is a hold state that also occurs if the same link is attempting to access both banks as indicated by the Invalid_b input. The hld0 and hld0_b outputs are used by hold logic 306B to hold Ink_os to a previous value as described in further detail below.
Switch logic 304A, 304B functions to control the logic as a function of the link_id. In case of Link0, link_id is zero so that the output of inverter 402 is high and enables NAND gate 380. When this is the case, then Bka<0>, actually, BK0<0>, becomes the input source of Ink_is. On the other hand, in the case of Link1, link_id is high and this enables NAND gate 388 such that Bka<1>, actually BK1<1>, becomes the input source of Ink_is. The operation of switching logic 304A, 304B can be summarized as follows:
Switch logic 304A has a first NAND gate 380 that receives Bka<0> and the inverted link_id. The output of NAND gate 380 is connected as an input to NAND gate 382. The second input of NAND gate 382 comes from the output of a NAND gate 388 forming part of switch logic 304B described below. The overall output of switch logic 304A is labelled aa0.
Switch logic 304B has a first NAND gate 388 that receives Bka<1> and the link_id. The output of NAND gate 388 is connected as an input to NAND gate 382 forming part of switch logic 304A described above. Logic 304B also includes a second NAND gate 390 that has three inputs: Bkb<1>, slink_b and link_id. The output of NAND gate 390 is input to a third NAND gate 392 having a second input received from the output of NAND gate 400 forming part of link recognition logic 305. The overall output of switch logic 304B is labelled aa1.
Switch logic 304A,304B functions according to the truth table in
Hold circuit 306A functions to receive the output aa0 of switch logic 304A and to pass this on to the output Ink_is unless the hld0 is low and hld0_b are high in which case Ink_is holds its previous state. Similarly, Hold circuit 306B functions to receive the output aa1 of switch logic 304B and to pass this on to the output Ink_os unless the hld0 is low and hld0_b are high in which case Ink_os holds its previous state.
Finally, there is bank selection logic 307A,307B for the read data path. This logic is used to select which bank is now connected to the accessed link control block. Logic 307A has a NAND gate 404 that receives Bka<0> and Invalid_b as inputs. The output of NAND gate 404 is inverted by inverter 406 to produce bk_slct0. Logic 307B has a NAND gate 408 that receives Bka<1> and Invalid_b as inputs. The output of NAND gate 408 is inverted by inverter 410 to produce bk_slct1.
In operation, other when there is an invalid state signalled by Invalid check logic 301, Bka<0> and Bka<1> logic values are passed by the circuit to ‘bk_slct0’ and ‘bk_slct1’ output ports. The outputs bk_slct0 and bk_slct1 are the Lnk_Bnk_slct<1:0> signals of one of the switch controllers 48,50.
In the embodiments described above, the device elements and circuits are connected to each other as shown in the figures, for the sake of simplicity. In practical applications of the present invention, elements, circuits, etc. may be connected directly to each other. As well, elements, circuits etc. may be connected indirectly to each other through other elements, circuits, etc., necessary for operation of devices and apparatus. Thus, in actual configuration, the circuit elements and circuits are directly or indirectly coupled with or connected to each other.
The above-described embodiments of the present invention are intended to be examples only. Alterations, modifications and variations may be effected to the particular embodiments by those of skill in the art without departing from the scope of the invention, which is defined solely by the claims appended hereto.
This application is a continuation of U.S. patent application Ser. No. 13/077,122, filed Mar. 31, 2011, which is a continuation of U.S. patent application Ser. No. 12/757,406 filed on Apr. 9, 2010, now U.S. Pat. No. 7,945,755 which issued on May 17, 2011, which is a continuation of U.S. patent application Ser. No. 11/643,850 filed Dec. 22, 2006, now U.S. Pat. No. 7,747,833 which issued on Jun. 29, 2010, which is a continuation-in-part of U.S. patent application Ser. No. 11/324,023 filed Dec. 30, 2005 entitled “Multiple Independent Link Serial Memory”, which claims the benefit of U.S. Provisional Application No. 60/722,368 filed Sep. 30, 2005, the contents of each of which is entirely incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4174536 | Misunas et al. | Nov 1979 | A |
4617566 | Diamond | Oct 1986 | A |
4714536 | Freeman et al. | Dec 1987 | A |
4733376 | Ogawa | Mar 1988 | A |
4796231 | Pinkham | Jan 1989 | A |
4899316 | Nagami | Feb 1990 | A |
4930066 | Yokota | May 1990 | A |
5038299 | Maeda | Aug 1991 | A |
5126808 | Montalvo et al. | Jun 1992 | A |
5132635 | Kennedy | Jul 1992 | A |
5136292 | Ishida | Aug 1992 | A |
5175819 | Le Ngoc et al. | Dec 1992 | A |
5204669 | Dorfe et al. | Apr 1993 | A |
5243703 | Farmwald et al. | Sep 1993 | A |
5280539 | Yeom et al. | Jan 1994 | A |
5319598 | Aralis et al. | Jun 1994 | A |
5365484 | Cleveland et al. | Nov 1994 | A |
5386511 | Murata et al. | Jan 1995 | A |
5404460 | Thomsen et al. | Apr 1995 | A |
5430859 | Norman et al. | Jul 1995 | A |
5440694 | Nakajima | Aug 1995 | A |
5452259 | McLaury | Sep 1995 | A |
5473563 | Suh et al. | Dec 1995 | A |
5473566 | Rao | Dec 1995 | A |
5473577 | Miyake et al. | Dec 1995 | A |
5475854 | Thomsen et al. | Dec 1995 | A |
5596724 | Mullins et al. | Jan 1997 | A |
5602780 | Diem et al. | Feb 1997 | A |
5636342 | Jeffries | Jun 1997 | A |
5659711 | Sugita | Aug 1997 | A |
5671178 | Park et al. | Sep 1997 | A |
5721840 | Soga | Feb 1998 | A |
5729683 | Le et al. | Mar 1998 | A |
5740379 | Hartwig | Apr 1998 | A |
5761146 | Yoo et al. | Jun 1998 | A |
5771199 | Lee | Jun 1998 | A |
5778419 | Hansen et al. | Jul 1998 | A |
5802006 | Ohta | Sep 1998 | A |
5802399 | Yumoto et al. | Sep 1998 | A |
5806070 | Norman et al. | Sep 1998 | A |
5818785 | Ohshima | Oct 1998 | A |
5828899 | Richard et al. | Oct 1998 | A |
5835935 | Estakhri et al. | Nov 1998 | A |
5859809 | Kim | Jan 1999 | A |
5872994 | Akiyama et al. | Feb 1999 | A |
5896400 | Roohparvar et al. | Apr 1999 | A |
5900021 | Tiede et al. | May 1999 | A |
5937425 | Ban | Aug 1999 | A |
5941974 | Babin | Aug 1999 | A |
5959930 | Sakurai | Sep 1999 | A |
5995417 | Chen et al. | Nov 1999 | A |
6002638 | John | Dec 1999 | A |
6016270 | Thummalapally et al. | Jan 2000 | A |
6075743 | Barth et al. | Jun 2000 | A |
6085290 | Smith et al. | Jul 2000 | A |
6091660 | Sasaki et al. | Jul 2000 | A |
6107658 | Itoh et al. | Aug 2000 | A |
6144576 | Leddige et al. | Nov 2000 | A |
6148363 | Lofgren et al. | Nov 2000 | A |
6148364 | Srinivasan et al. | Nov 2000 | A |
6178135 | Kang | Jan 2001 | B1 |
6216178 | Stracovsky et al. | Apr 2001 | B1 |
6282505 | Hanawa et al. | Aug 2001 | B1 |
6304921 | Rooke | Oct 2001 | B1 |
6317350 | Pereira et al. | Nov 2001 | B1 |
6317352 | Halbert et al. | Nov 2001 | B1 |
6317812 | Lofgren et al. | Nov 2001 | B1 |
6356487 | Merritt | Mar 2002 | B1 |
6438064 | Ooishi | Aug 2002 | B2 |
6442098 | Kengeri | Aug 2002 | B1 |
6453365 | Habot | Sep 2002 | B1 |
6493347 | Sindhu et al. | Dec 2002 | B2 |
6535948 | Wheeler et al. | Mar 2003 | B1 |
6584303 | Kingswood et al. | Jun 2003 | B1 |
6594183 | Lofgren et al. | Jul 2003 | B1 |
6601199 | Fukuda et al. | Jul 2003 | B1 |
6611466 | Lee et al. | Aug 2003 | B2 |
6658509 | Bonella et al. | Dec 2003 | B1 |
6658582 | Han | Dec 2003 | B1 |
6680904 | Kaplan et al. | Jan 2004 | B1 |
6715044 | Lofgren et al. | Mar 2004 | B2 |
6732221 | Ban | May 2004 | B2 |
6754807 | Parthasarathy et al. | Jun 2004 | B1 |
6757761 | Smith et al. | Jun 2004 | B1 |
6763426 | James et al. | Jul 2004 | B1 |
6807103 | Calvaleri et al. | Oct 2004 | B2 |
6816933 | Andreas | Nov 2004 | B1 |
6850443 | Lofgren et al. | Feb 2005 | B2 |
6853557 | Haba et al. | Feb 2005 | B1 |
6853573 | Kim et al. | Feb 2005 | B2 |
6906978 | Elzur et al. | Jun 2005 | B2 |
6914901 | Hann et al. | Jul 2005 | B1 |
6928501 | Andreas et al. | Aug 2005 | B2 |
6944697 | Andreas | Sep 2005 | B2 |
6950325 | Chen | Sep 2005 | B1 |
6967874 | Hosono | Nov 2005 | B2 |
6996644 | Schoch et al. | Feb 2006 | B2 |
7031221 | Mooney et al. | Apr 2006 | B2 |
7073022 | El-Batal et al. | Jul 2006 | B2 |
7117291 | Mattausch et al. | Oct 2006 | B2 |
7130958 | Chou et al. | Oct 2006 | B2 |
7652922 | Kim et al. | Jan 2010 | B2 |
7747833 | Pyeon et al. | Jun 2010 | B2 |
7945755 | Pyeon et al. | May 2011 | B2 |
8285960 | Pyeon et al. | Oct 2012 | B2 |
20020188781 | Schoch et al. | Dec 2002 | A1 |
20030221061 | El-Batal et al. | Nov 2003 | A1 |
20040001380 | Becca et al. | Jan 2004 | A1 |
20040019736 | Kim et al. | Jan 2004 | A1 |
20040024960 | King et al. | Feb 2004 | A1 |
20040039854 | Estakhri et al. | Feb 2004 | A1 |
20040148482 | Grundy et al. | Jul 2004 | A1 |
20040199721 | Chen | Oct 2004 | A1 |
20040230738 | Lim et al. | Nov 2004 | A1 |
20050160218 | See et al. | Jul 2005 | A1 |
20050166006 | Talbot et al. | Jul 2005 | A1 |
20050213421 | Polizzi et al. | Sep 2005 | A1 |
20050273539 | Yamamoto | Dec 2005 | A1 |
20060050594 | Park | Mar 2006 | A1 |
20060198202 | Erez | Sep 2006 | A1 |
20080049505 | Kim et al. | Feb 2008 | A1 |
20110179245 | Pyeon et al. | Jul 2011 | A1 |
Number | Date | Country |
---|---|---|
1267269 | Dec 2002 | EP |
1457993 | Sep 2004 | EP |
01200447 | Aug 1989 | JP |
02136945 | May 1990 | JP |
07319755 | Dec 1995 | JP |
08221319 | Aug 1996 | JP |
09186584 | Jul 1997 | JP |
1097464 | Apr 1998 | JP |
10116064 | May 1998 | JP |
2000315185 | Nov 2000 | JP |
2001156621 | Jun 2001 | JP |
2002133867 | May 2002 | JP |
2002236611 | Aug 2002 | JP |
2003036681 | Feb 2003 | JP |
2003263363 | Sep 2003 | JP |
20032663363 | Sep 2003 | JP |
2004242332 | Aug 2004 | JP |
2005004895 | Jan 2005 | JP |
2005025473 | Jan 2005 | JP |
2006260124 | Sep 2006 | JP |
2006260127 | Sep 2006 | JP |
0169411 | Sep 2001 | WO |
2005069150 | Jul 2005 | WO |
Entry |
---|
Samsung Electronics Co. Ltd, “256M×8 Bit / 128 M×16 Bit / 512M×8 Bit NAND Flash Memory”, K9K4G08U1M, May 6, 2005, pp. 1-41. |
Toshiba, “2GBIT (256M×8 Bits) CMOS NAND E2PROM”, TH58NVG1S3AFT05, May 19, 2003, pp. 1-32. |
Amtel Corp., “High Speed Small Sectored SPI Flash Memory”, pp. 1-22, 2006. |
64 Megabit CMOS 3.0 Volt Flash Memory with 50MHz SPI. |
Gjessing, S., et al., “RamLink: A High-Bandwidth Point-to-Point Memory Architecture”, Proceedings CompCom 1992, IEEE 0-8186-2655-0/92, pp. 328-331, Feb. 24-28, 1992. |
Gjessing, S., et al., “Performance of the RamLink Memory Architecture”, Proceedings of the Twenty-Seventh Annual Hawaii International Conference on System Sciences, IEEE 1060-3425/94, pp. 154-162, Jan. 1994. |
Gjessing, S., et al., “A RAM Link for High Speed”, Special Report/Memory, IEEE Spectrum, pp. 52-53, Oct. 1992. |
Diamond, S.L., “SyncLink: High: High-speed DRAM for the Future”, Micro Standards, IEEE Micro, pp. 74-75, Dec. 1996. |
Samsung Electronics, “DDR2 Fully Buffered DIMM 240pin FBDIMMS based on 512Mb C-die” Rev. 1.3, Sep. 2006, pp. 1-32, Sep. 2006. |
“HyperTransport TM I/O Link Specification”, Revision 3.00, Document No. HTC20051222-0046-0008, Hypertransport Technology Consortium, pp. 1-428, Apr. 2006. |
“2 Mbit, Low Voltage, Serial Flash Memory With 40 MHz SPI Bus Interface”, Silicon Storage Technology, Aug. 2005, pp. 1-40. |
“The I2C-Bus Specification,” Version 2.1, Philips Semiconductors, Jan. 2000, pp. 1-46. |
Atmel, “8-megabit 2.5-volt Only or 2.7-volt Only DataFlash®,” Technical Specification, Atmel, Rev. 2225H-DFLSH (2004). |
Jung, T. et al., “A 117-mm2 3.3-V Only 128-Mb Multilevel NAND Flash Memory for Mass Storage Applications,” IEEE Journal of Solid-State Circuits, vol. 31, No. 11, Nov. 1996, pp. 1575-1583. |
Kim, et al. “A 120-mm2 64-Mb NAND Flash Memory Archieving 180 ns/Byte Effective Program Speed,” IEEE Journal of Solid-State Circuits, vol. 32, No. 5, May 1977, pp. 670-680. |
Toshiba MOS Digital Integrated Circuit Silicon Gate CMOS, TH58NVG1S3AFT05, Toshiba Corporation, May 19, 2003, pp. 1-32. |
European Patent Application No. 06790770.9 Search Report dated Sep. 16, 2008. |
64 Megabit CMOS 3.0 Volt Flash Memory with 50MHz SPI, Aug. 2006. |
King, et al., “Communicating with Daisy Chained MCP42XXX Digital Potentiometers”, Microchip AN747, pp. 1-8, 2001. |
Intel Corporation, “Intel® Advanced+ Boot Block Flash Memory (C3)”, May 2005, pp. 1-72. |
M-Systems Flash Disk Pioneers Ltd., “DiskOnChip H1 4Gb (512MByte) and 8Gb (1 GByte) High Capacity Flash Disk with NAND and x2 Technology”, Data Sheet, Rev. 0.5 (Preliminary), pp. 1-66, 2005. |
Tal, A., “Guidelines for Integrating DiskOnChip in a Host System”, AP-DOC-1004, Rev. 1.0, M-Systems Flash Pioneers Ltd., pp. 1-15, 2004. |
Samsung Electronics Co. Ltd, OneNAND4G(KFW4G16Q2M-DEB6), OneNAND2G(KFH2G16Q2M-DEB6), OneNAND1G(KFW1G16Q2M-DEB6) Flash Memory, OneNAND™ Specification Ver. 1.2, pp. 1-125, Dec. 23, 2005. |
Kennedy, J., et al., “A 2Gb/s Point-to-Point Heterogeneous Voltage Capable DRAM Interface for Capacity-Scalable Memory Subsystems”, ISSCC 2004/Session 1/DRAM/11.8, IEEE International Solid-State Circuits Conference, Feb. 15-19, 2004, vol. 1, pp. 214-523. |
Kim, Jae-Kwan, et al., “A 3.6Gb/s/pin Simultaneous Bidirectional (SBD) I/O Interface for High-Speed DRAM”, ISSCC 2004/Session 22/DSL and Multi-Gb/s I/O 22.7, IEEE International Solid-State Circuits Conference Feb. 15-19, 2004, vol. 1, pp. 414-415. |
“HyperTransport TM I/O Link Specification”, Revision 2.00, Document No. HTC20031217-0036-00, Hypertransport Technology Consortium, pp. 1-325, 2001. |
“IEEE Standard for High-Bandwidth Memory Interface Based on Scalable Coherent Interface (SCI) Signaling Technology (RamLink)”, IEEE Std. 1596.4-1996, The Institute of Electrical Electronics Engineers, Inc., pp. i-91, (Mar. 1996). |
Oshima, et al., “High-Speed Memory Architectures for Multimedia Applications”, Circuits & Devices, IEEE 8755-3996/97, pp. 8-13, Jan. 1997. |
Number | Date | Country | |
---|---|---|---|
20130003470 A1 | Jan 2013 | US |
Number | Date | Country | |
---|---|---|---|
60722368 | Sep 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13077122 | Mar 2011 | US |
Child | 13608605 | US | |
Parent | 12757406 | Apr 2010 | US |
Child | 13077122 | US | |
Parent | 11643850 | Dec 2006 | US |
Child | 12757406 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11324023 | Dec 2005 | US |
Child | 11643850 | US |