The following disclosure relates to the field of image formation, and in particular, to the supply of a print fluid to printheads.
Image formation is a procedure whereby a digital image is recreated on a medium by propelling droplets of ink or another type of print fluid onto a medium, such as paper, plastic, a substrate for 3D printing, etc. Image formation is commonly employed in apparatuses, such as printers (e.g., inkjet printer), facsimile machines, copying machines, plotting machines, multifunction peripherals, etc. The core of a typical jetting apparatus or image forming apparatus is one or more liquid-droplet ejection heads (referred to generally herein as “printheads”) having nozzles that discharge liquid droplets, a mechanism for moving the printhead and/or the medium in relation to one another, and a controller that controls how liquid is discharged from the individual nozzles of the printhead onto the medium in the form of pixels.
A typical printhead includes a plurality of nozzles aligned in one or more rows along a discharge surface of the printhead. Each nozzle is part of a “jetting channel”, which includes the nozzle, a pressure chamber, and an actuator, such as a piezoelectric actuator. A printhead also includes a drive circuit that controls when each individual jetting channel fires based on image data. To jet from a jetting channel, the drive circuit provides a jetting pulse to the actuator, which causes the actuator to deform a wall of the pressure chamber. The deformation of the pressure chamber creates pressure waves within the pressure chamber that eject a droplet of print fluid (e.g., ink) out of the nozzle.
Shuttle-type printers are a class of printers having a movable shuttle or carriage assembly that reciprocates back and forth across a medium. A printhead is mounted on the carriage assembly, and jetting from the printhead is synchronized with movement of the carriage assembly to print desired images. Movement of the carriage assembly is also synchronized with a medium transfer mechanism that advances the medium through the printer.
It remains an issue for manufacturers to find effective ways to supply ink or another print fluid to printheads in image forming apparatuses, such as shuttle-type printers.
Embodiments described herein include an apparatus having independent reservoirs that supply a print fluid to the printhead. The printhead as described herein is a flow-through type of printhead, where a print fluid is able to flow from a supply manifold through jetting channels to a return manifold, or vice-versa. The print fluid, which is not ejected from nozzles of the jetting channels, circulates through the jetting channels and into the return manifold. In this embodiment, the reservoirs are fluidly coupled through the printhead, which means that the print fluid is able to flow from one reservoir to another through the printhead. There are no additional fluid couplings between the reservoirs, so the reservoirs are fluidly isolated but for the printhead. A differential pressure between the reservoirs creates a flow of print fluid through the printhead, which supplies the jetting channels with the print fluid used for jetting, and also re-circulates the non-jetted print fluid through the jetting channels. The print fluid supplied by one of the reservoirs to the print head is accumulated in the other reservoir when not jetted from the jetting channels. The differential pressure between the reservoirs may also be reversed periodically or in response to a trigger to reverse the flow of print fluid, and balance the fluid level in the reservoirs. Thus, no additional circulating unit is needed between the reservoirs, such as a circulation tube, a pump, a degas module, etc. This advantageously simplifies the mechanism used to supply a print fluid to the printhead.
One embodiment includes an apparatus comprising a flow-through printhead having a row of jetting channels configured to jet droplets of a print fluid, a supply manifold fluidly coupled to the row of jetting channels, and a return manifold fluidly coupled to the row of jetting channels. The apparatus further includes a first reservoir fluidly coupled to the supply manifold, and a second reservoir fluidly coupled to the return manifold. The first reservoir and the second reservoir are fluidly isolated except through the printhead.
Another embodiment includes a carriage assembly configured to reciprocate along scan directions in relation to a medium. The carriage assembly comprises a flow-through printhead having a row of jetting channels configured to eject a print fluid, a supply manifold fluidly coupled to the row of jetting channels, and a return manifold fluidly coupled to the row of jetting channels. The carriage assembly further comprises a first reservoir fluidly coupled to the supply manifold of the printhead, and a second reservoir fluidly coupled to the return manifold of the printhead, and fluidly coupled to the first reservoir solely through the printhead. The first reservoir and the second reservoir are mounted in-line with the row of jetting channels.
Another embodiment comprises a method of supplying a print fluid to a flow-through printhead having a row of jetting channels configured to eject a print fluid, a supply manifold fluidly coupled to the row of jetting channels, and a return manifold fluidly coupled to the row of jetting channels. The method includes fluidly coupling a first reservoir to the supply manifold of the printhead, and fluidly coupling a second reservoir to the return manifold of the printhead. The first reservoir and the second reservoir are fluidly isolated except through the printhead. The method includes creating a first pressure differential between the first reservoir and the second reservoir to produce a flow of the print fluid between the first reservoir and the second reservoir through the printhead. The method further includes determining whether to reverse the flow of the print fluid, and creating a second pressure differential between the first reservoir and the second reservoir to reverse the flow of the print fluid between the first reservoir and the second reservoir through the printhead.
The above summary provides a basic understanding of some aspects of the specification. This summary is not an extensive overview of the specification. It is intended to neither identify key or critical elements of the specification nor delineate any scope particular embodiments of the specification, or any scope of the claims. Its sole purpose is to present some concepts of the specification in a simplified form as a prelude to the more detailed description that is presented later.
Some embodiments of the present disclosure are now described, by way of example only, and with reference to the accompanying drawings. The same reference number represents the same element or the same type of element on all drawings.
The figures and the following description illustrate specific exemplary embodiments. It will thus be appreciated that those skilled in the art will be able to devise various arrangements that, although not explicitly described or shown herein, embody the principles of the embodiments and are included within the scope of the embodiments. Furthermore, any examples described herein are intended to aid in understanding the principles of the embodiments, and are to be construed as being without limitation to such specifically recited examples and conditions. As a result, the inventive concept(s) is not limited to the specific embodiments or examples described below, but by the claims and their equivalents.
The arrow in
Jetting channel 202 as shown in
Printhead 100 also includes fluid ports 320-321. Fluid port 320 provides a fluid pathway to supply manifold 215 of printhead 100. Fluid port 321 provides a fluid pathway to return manifold 222 of printhead 100. Fluid ports 320-321 may be connected (e.g., through a supply hose) to independent reservoirs.
Fluid supply system 402 may further include a pressure source (P) 420-421 at reservoirs 410-411, respectively. A pressure source 420-421 is a mechanism configured to apply or regulate a pressure at a reservoir, such as a pressure valve. For example, a pressure source 420-421 may apply a negative pressure or a positive pressure at a reservoir, at a supply tube between a reservoir and a printhead, etc., to control a pressure at an inlet of printhead 100. Fluid supply system 402 may further include a fluid level sensor 430-431 at reservoirs 410-411, respectively. A fluid level sensor 430-431 is a device configured to determine or measure a fluid level within a reservoir 410-411, and provide output indicating the fluid level, such as in the form of an electronic signal. Fluid supply system 402 may further include a delivery controller 440, which comprises a component, circuit, processing device, etc., configured to control delivery of a print fluid from fluid supply system 402 to a printhead. Delivery controller 440 is communicatively coupled to pressure sources 420-421 and fluid level sensors 430-431. Delivery controller 440 may control one or more of pressure sources 420-421 to create a pressure differential between reservoirs 410-411 to produce a flow of the print fluid through printhead 100 in a first direction. Delivery controller 440 may control one or more of pressure sources 420-421 to reverse the pressure differential between reservoirs 410-411 to produce a flow of the print fluid through printhead 100 in a reverse direction. Delivery controller 440 may receive input from a user, from fluid level sensors 430-431, or from other components when controlling delivery of a print fluid to a printhead.
Due to the flow-through design of printhead 100, a print fluid is able to flow from supply manifold 215 through jetting channels 202 to return manifold 222, or vice-versa. The print fluid, which is not ejected from nozzles of the jetting channels 202, circulates through jetting channels 202 and into return manifold 222. If, in one example, delivery controller 440 controls pressure source 420 to apply a positive pressure at reservoir 410 and controls pressure source 421 to apply a negative pressure at reservoir 411, then the pressure differential will cause the print fluid to flow in one direction out of reservoir 410 through supply tube 414 and into supply manifold 215 of printhead 100. The print fluid that is not ejected from jetting channels 202 will flow through the jetting channels 202 into return manifold 222, and then out of printhead 100 through supply tube 415 and into reservoir 411. If the flow in this direction continues past a point, then the print fluid accumulating in reservoir 411 can flood reservoir 411. Thus, delivery controller 440 is able to reverse the flow of the print fluid. Delivery controller 440 may control pressure source 421 to apply a positive pressure at reservoir 411 and control pressure source 420 to apply a negative pressure at reservoir 410. This pressure differential will reverse the flow and cause the print fluid to flow in an opposite direction out of reservoir 411 through supply tube 415 and into return manifold 222 of printhead 100. The print fluid that is not ejected from jetting channels 202 will flow through the jetting channels 202 into supply manifold 215, and then out of printhead 100 through supply tube 414 and into reservoir 410. Delivery controller 440 may control a pressure differential between reservoirs 410-411 in a number of ways to influence the flow of print fluid. For instance, delivery controller 440 may control pressure sources 420-421 to apply positive pressures at both reservoirs 410-411, or to apply negative pressures at both reservoirs 410-411, as long as the pressure differential creates a flow in the desired direction and the pressure at nozzles 214 is slightly negative.
Delivery controller 440 may reverse the flow of the print fluid periodically within fluid supply system 402 to balance the fluid level in reservoirs 410-411. For example, delivery controller 440 may reverse the flow of the print fluid between reservoir 410 and reservoir 411 through printhead 100 after a time period. As the sizes of reservoirs 410-411 are known and the flow rate between the reservoirs is either known or may be estimated, delivery controller 440 may be programmed with a time interval for reversing flow of the print fluid. Delivery controller 440 may also receive an indicator of the fluid level in one or both of reservoirs 410-411 via fluid level sensors 430-431, and reverse the flow of the print fluid between reservoir 410 and reservoir 411 through printhead 100 based on the fluid level in reservoir 410 and/or reservoir 411.
One technical benefit of fluid supply system 402 is that the print fluid may be distributed between reservoirs 410-411 using the flow-through properties of printhead 100. Thus, no additional circulating unit is needed between reservoirs 410-411, such as a circulation tube, a pump, a degas module, etc. This advantageously simplifies fluid supply system 402, and avoids the need for additional equipment that is costly and takes up valuable space within an image forming apparatus.
For method 500, one reservoir (e.g., reservoir 410) is fluidly coupled to supply manifold 215 of printhead 100 (step 502). For example, reservoir 410 may be coupled to supply port 320 (see
Delivery controller 440 then determines whether to reverse the flow of the print fluid (step 508). When the result of the determination is not to reverse the flow, delivery controller 440 maintains the pressure differential in step 506. When the result of the determination is to reverse the flow, delivery controller 440 controls one or both of pressures sources 420-421 to create a pressure differential between reservoir 410 and reservoir 411 to reverse the flow of the print fluid between reservoir 410 and reservoir 411 through printhead 100 (step 510). For example, delivery controller 440 may control pressure source 421 to apply a positive pressure at reservoir 411, and control pressure source 420 to apply a lower positive pressure or a negative pressure at reservoir 410. This pressure differential will cause the flow of print fluid to reverse direction and flow from reservoir 411 to reservoir 410 through printhead 100. Delivery controller 440 may repeat steps 508 and 510 to distribute the non-jetted print fluid between reservoir 410 and reservoir 411 while printhead 100 is in operation.
Delivery controller 440 may determine whether to reverse the flow of the print fluid based on a number of factors.
The droplets ejected from the nozzles of printhead 100 are directed toward a medium 812. Medium 812 comprises any type of material upon which ink or another print fluid is applied by a printhead, such as paper, card stock, transparent sheets, a substrate for 3D printing, cloth, etc. Ejection of print fluid from the nozzles of printhead 100 causes formation of characters, symbols, images, layers of an object, etc., on medium 812 as printhead 100 and medium 812 are moved relative to one another. Media transport mechanism 814 moves medium 812 relative to printhead 100.
In this embodiment, carriage assembly 802 reciprocates back and forth across a surface of medium 812 (e.g., into and out of the page in
Image forming apparatus 400 also includes a print controller 822 that communicates with carriage assembly 802, media transport mechanism 814, and carriage movement mechanism 820. Print controller 822 may connect to a data source to receive printable data. Print controller 822 then controls carriage assembly 802, media transport mechanism 814, and carriage movement mechanism 820 to print the printable data on medium 812 via printhead 100.
In one embodiment, reservoirs 410-411 may be mounted to carriage assembly 802 along with printhead 100, and in-line with the row 110 of jetting channels 202 on printhead 100.
Reservoirs 410-411 may be mounted higher or lower than printhead 100 depending on printer design. A height difference between reservoirs 410-411 may create a pressure delta that can cause a flow of print fluid through printhead 100 in one direction. In such a case, delivery controller 440 is configured to control pressure sources 420-421 to compensate for the height difference between reservoirs 410-411 and maintain a slightly negative pressure at nozzles 214 while the print fluid flows in one direction. Delivery controller 440 is also configured to control pressure sources 420-421 to overcome the pressure delta due to the height difference between reservoirs 410-411, and reverse the flow of print fluid through printhead 100 while maintaining a slightly negative pressure at nozzles 214.
Any of the various elements or modules shown in the figures or described herein may be implemented as hardware, software, firmware, or some combination of these. For example, an element may be implemented as dedicated hardware. Dedicated hardware elements may be referred to as “processors”, “controllers”, or some similar terminology. When provided by a processor, the functions may be provided by a single dedicated processor, by a single shared processor, or by a plurality of individual processors, some of which may be shared. Moreover, explicit use of the term “processor” or “controller” should not be construed to refer exclusively to hardware capable of executing software, and may implicitly include, without limitation, digital signal processor (DSP) hardware, a network processor, application specific integrated circuit (ASIC) or other circuitry, field programmable gate array (FPGA), read only memory (ROM) for storing software, random access memory (RAM), non-volatile storage, logic, or some other physical hardware component or module.
Also, an element may be implemented as instructions executable by a processor or a computer to perform the functions of the element. Some examples of instructions are software, program code, and firmware. The instructions are operational when executed by the processor to direct the processor to perform the functions of the element. The instructions may be stored on storage devices that are readable by the processor. Some examples of the storage devices are digital or solid-state memories, magnetic storage media such as a magnetic disks and magnetic tapes, hard drives, or optically readable digital data storage media.
Although specific embodiments were described herein, the scope of the invention is not limited to those specific embodiments. The scope of the invention is defined by the following claims and any equivalents thereof
Number | Name | Date | Kind |
---|---|---|---|
9994040 | Karita | Jun 2018 | B2 |
20080273063 | Wouters | Nov 2008 | A1 |
20090102879 | Katada et al. | Apr 2009 | A1 |
20110080456 | Shibata | Apr 2011 | A1 |
20120200619 | Bibl | Aug 2012 | A1 |
20150306875 | Nishimura | Oct 2015 | A1 |
20160207317 | Jimenez et al. | Jul 2016 | A1 |
Number | Date | Country |
---|---|---|
2628599 | Aug 2013 | EP |
2995458 | Mar 2016 | EP |
2008108245 | Sep 2008 | WO |
Entry |
---|
European Search Report; Application EP19153584; dated Aug. 7, 2019. |
Number | Date | Country | |
---|---|---|---|
20190275802 A1 | Sep 2019 | US |