Independent single end servo scroll pattern attachment for tufting machine and computerized design system

Information

  • Patent Grant
  • 6502521
  • Patent Number
    6,502,521
  • Date Filed
    Wednesday, November 28, 2001
    22 years ago
  • Date Issued
    Tuesday, January 7, 2003
    21 years ago
Abstract
The present invention provides a single end scroll-type yarn feed attachment for tufting machines characterized by independent servo-motor control of yarn feed rolls while eliminating tube banks typical of tufting machine feed attachments and produces new tufted carpet designs.
Description




BACKGROUND OF THE INVENTION




This invention relates to a yarn feed mechanism for a tufting machine and more particularly to a scroll-type pattern controlled yarn feed wherein each yarn may be wound on a separate yarn feed roll, and each yarn feed roll is driven by an independently controlled servo motor. A computerized design system is also provided because of the complexities of working with the large numbers of individually controllable design parameters available to the new yarn feed mechanism.




Pattern control yarn feed mechanisms for multiple needle tufting machines are well known in the art and may be generally characterized as either roll-type or scroll-type pattern attachments. Roll type attachments are typified by J. L. Card, U.S. Pat. No. 2,966,866 which disclosed a bank of four pairs of yarn feed rolls, each of which is selectively driven at a high speed or a low speed by the pattern control mechanism. All of the yarn feed rolls extend transversely the entire width of the tufting machine and are journaled at both ends. There are many limitations on roll-type pattern devices. Perhaps the most significant limitations are:




(1) as a practical matter, there is not room on a tufting machine for more than about eight pairs of yarn feed rolls;




(2) the yarn feed rolls can be driven at only one of two, or possibly three speeds, when the usual construction utilizing clutches is used—a wider selection of speeds is possible when using direct servo motor control, but powerful motors and high gear ratios are required and the shear mass involved makes quick stitch by stitch adjustments difficult; and




(3) the threading and unthreading of the respective yarn feed rolls is very time consuming as yarns must be fed between the yarn feed rolls and cannot simply be slipped over the end of the rolls, although the split roll configuration of Watkins, U.S. Pat. No. 4,864,946 addresses this last problem.




The pattern control yarn feed rolls referred to as scroll-type pattern attachments are disclosed in J. L. Card, U.S. Pat. No. 2,862,465, are shown projecting transversely to the row of needles, although subsequent designs have been developed with the yarn feed rolls parallel to the row of needles as in Hammel, U.S. Pat. No. 3,847,098. Typical of scroll type attachments is the use of a tube bank to guide yarns from the yarn feed rolls on which they are threaded to the appropriate needle. In this fashion yarn feed rolls need not extend transversely across the entire width of the tufting machine and it is physically possible to mount many more yarn feed rolls across the machine. Typically, scroll pattern attachments have between 36 and 120 sets of rolls, and by use of electrically operated clutches each set of rolls can select from two, or possibly three, different speeds for each stitch.




The use of yarn feed tubes introduces additional complexity and expense in the manufacture of the tufting machine; however, the greater problem is posed by the differing distances that yarns must travel through yarn feed tubes to their respective needles. Yarns passing through relatively longer tubes to relatively more distant needles suffer increased drag resistance and are not as responsive to changes in the yarn feed rates as yarns passing through relatively shorter tubes. Accordingly, in manufacturing tube banks, compromises have to be made between minimizing overall yarn drag by using the shortest tubes possible, and minimizing yarn feed differentials by utilizing the longest tube required for any single yarn for every yarn. Tube banks, however well designed, introduce significant additional cost in the manufacture of scroll-type pattern attachments.




One solution to the tube bank problems, which also provides the ability to tuft full width patterns is the full repeat scroll invention of Bradsley, U.S. Pat. No. 5,182,997, which utilizes rocker bars to press yarns against or remove yarns from contact with yarn feed rolls that are moving at predetermined speeds. Yarns can be engaged with feed rolls moving at one of two preselected speeds, and while transitioning between rolls, yarns are briefly left disengaged, causing those yarns to be slightly underfed for the next stitch.




Another significant limitation of scroll-type pattern attachments is that each pair of yarn feed rolls is mounted on the same set of drive shafts so that for each stitch, yarns can only be driven at a speed corresponding to one of those shafts depending upon which electromagnetic clutch is activated. Accordingly, it has not proven possible to provide more than two, or possibly three, stitch heights for any given stitch of a needle bar.




As the use of servo motors to power yarn feed pattern devices has evolved, it has become well known that it is desirable to use many different stitch lengths in a single pattern. Prior to the use of servo motors, yarn feed pattern devices were powered by chains or other mechanical linkage with the main drive shaft and only two or three stitch heights, in predetermined ratios to the revolutions of the main drive shaft, could be utilized in an entire pattern. With the advent of servo motors, the drive shafts of yarn feed pattern devices may be driven at almost any selected speed for a particular stitch.




Thus a servo motor driven pattern device might run a high speed drive shaft to feed yarn at 0.9 inches per stitch if the needle bar does not shift, 1.0 inches if the needle bar shifts one gauge unit, and 1.1 inches if the needle bar shifts two gauge units. Other slight variations in yarn feed amounts are also desirable, for instance, when a yarn has been sewing low stitches and it is next to sew a high stitch, the yarn needs to be slightly overfed so that the high stitch will reach the full height of subsequent high stitches. Similarly, when a yarn has been sewing high stitches and it is next to sew a low stitch, the yarn needs to be slightly underfed so that the low stitch will be as low as the subsequent low stitches. Therefore, there is a need to provide a pattern control yarn feed device capable of producing scroll-type patterns and of feeding the yarns from each yarn feed roll at an individualized rate.




Commonly assigned copending application Ser. No. 08/980,045 addressed many of these concerns; however, even that servo scroll pattern attachment did not allow each end of yarn across the entire width of a full size tufting machine to be independently controlled. By providing each end of yarn with an independently driven yarn feed roll, the use of the tube bank can be eliminated, and patterns can be created that do not repeat across the entire width of a broadloom tufting machine.




SUMMARY OF THE INVENTION




It is therefore an object of this invention to provide in a multiple needle tufting machine a pattern controlled yarn feed mechanism incorporating a plurality of individually driven yarn feed rolls across the tufting machine.




The yarn feed mechanism made in accordance with this invention includes a plurality of yarn feed rolls, each being directly driven by a servo motor. About twenty yarn feed rolls with attached servo motors, are mounted upon a plurality of arched mounting arms which are attached to the tufting machine. Each yarn feed roll is driven at the speed dictated by its corresponding servo motor and each servo motor can be individually controlled.




It is a further object of this invention to provide a pattern controlled yarn feed mechanism which does not rely upon electromagnetic clutches, but instead uses only servo motors.




It is another object of this invention to eliminate the need for a tube bank in a scroll type pattern attachment, which further minimizes the differences in yarn feed rates to individual needles.




It is another object of this invention to provide a yarn feed mechanism that operates at high speeds, with great accuracy, in constant engagement with the yarns.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1A

is a side elevation view of the multiple needle tufting machine incorporating the pattern control yarn feed mechanism made in accordance with the invention;





FIG. 1B

is a side elevation view of an alternative embodiment of an arched support for a pattern control yarn feed mechanism according to the invention, shown in isolation;





FIG. 1C

is a side elevation view of a partially assembled embodiment of an arched support for a pattern control yarn feed mechanism according to the invention, showing the motor and wiring positions.





FIG. 1D

is a rear sectional view of the support of FIG.


1


C.





FIG. 2

is a top elevation view of a segment of an arched mounting bar with four single end servo driven yarn feed rolls, two on each side;





FIG. 3A

is a rear elevation view of an arching support holding two yarn feed rolls, two servo motors that control yarn feed roll rotation, and yarn guide plate;





FIG. 3B

is an alternative yarn guide plate;





FIG. 4

is a side elevation view of a yarn drive and the yarn guide plate of

FIG. 3A

;





FIG. 5

is a rear partial sectional view of a servo motor with feed roll;





FIG. 6

is a schematic view of the electrical flow diagram for a multiple needle tufting machine incorporating a yarn feed mechanism made in accordance with the invention;





FIG. 7

is a carpet design with a series of concentric borders made possible by use of the invention.





FIG. 8

is a schematic view of the electrical flow diagram for a single arched support carrying twenty servo motors.











DETAILED DESCRIPTION OF THE INVENTION




Referring to the drawings in more detail,

FIG. 1A

discloses a multiple needle tufting machine


10


upon the front of which is mounted a pattern control yarn feed attachment


11


in accordance with this invention. It will be understood that it is possible to mount pattern control yarn feed attachments


11


on both sides of a tufting machine


10


when desired. The machine


10


includes a housing


12


and a bed frame


13


upon which is mounted a needle plate, not shown, for supporting a base fabric adapted to be moved through the machine


10


from front to rear in the direction of the arrow


14


by front and rear fabric rollers. The bed frame


13


is in turn mounted on the base


15


of the tufting machine


10


.




A main drive motor


16


, schematically shown in

FIG. 6

, drives a rotary main drive shaft


17


mounted in the head


18


of the tufting machine. Drive shaft


17


in turn causes push rods


19


to move reciprocally toward and away from the base fabric. This causes needle bar


20


to move in a similar fashion. Needle bar


20


supports a plurality of preferably uniformly spaced needles


21


aligned transversely to the fabric feed direction


14


. The needle bar


20


may be shiftable by means of well known pattern control mechanisms, not shown, such as Morgante, U.S. Pat. No. 4,829,917, or R. T. Card, U.S. Pat. No. 4,366,761. It is also possible to utilize two needle bars in the tufting machine, or to utilize a single needle bar with two, preferably staggered, rows of needles.




In operation, yarns


22


are fed through tension bars


23


, into the pattern control yarn feed device


11


. Then yarns


22


are guided in a conventional manner through yarn puller rollers


24


, and yarn guides


25


to needles


21


. A looper mechanism, not shown, in the base


15


of the machine


10


acts in synchronized cooperation with the needles


21


to seize loops of yarn


22


and form cut or loop pile tufts, or both, on the bottom surface of the base fabric in well known fashions.




In order to form a variety of yarn pile heights, a pattern controlled yarn feed mechanism


11


incorporating a plurality of yarn feed rolls adapted to be independently driven at different speeds has been designed for attachment between the tensioning bars


23


and the yarn puller rollers


24


.




As best disclosed in

FIGS. 1A and 1B

, a yarn drive array is assembled on an arching support bar


26


extending across the front of the tufting machine


10


and providing opposing vertical mounting surfaces


71


,


72


on each of its sides and an upward facing top surface


73


(shown in FIG.


2


). On the opposing side-facing surfaces


71


,


72


are mounted a total of 20 single end servo driven yarn feed rolls


28


, ten on each side, shown in isolation in

FIGS. 2-5

. It will be understood that the number of rolls on each support bar


26


may be varied for many reasons, especially in proportion to the gauge of the needles


21


on the needle bar


20


. For instance, in the case of 1/8 gauge needle spacing (8 needles per inch) and support bars spaced every three inches, it would be desirable to carry 24 independently driven yarn feed rolls on each support bar


26


. In practice, the support bars


26


should carry at least about 6, and preferably at least about 12, single end servo driven yarn feed rolls


28


.




As shown in FIG.


1


A and in detail in

FIG. 2

, the arching support bar


26


accommodates the wiring bundle


53


from the motors via the wiring path


43


, shown in

FIG. 3A

, built into the arching support bar


26


, which facilitates the wiring of the motors. Wiring plugs


54




a


and


54




b


join the wiring bundle


53


to leads connected to the motors


31


and allow for easy servicing. Wiring bundle


53


is in turn connected to servo motor controller board


65


which may be in a central cabinet or installed on an arching support


26


. This latter wiring configuration minimizes the wire length from the controller board


65


to the motor


31


, thereby reducing tangling, wire damage due to excessive length, and electrical shorting. Troubleshooting electrical problems is also improved by this wiring configuration and shorter overall wire length.




Each single end yarn drive


35


consists of a yarn feed roll


28


and a servo motor


31


, shown in isolation on FIG.


5


. The servo motor


31


directly drives the yarn feed roll


28


, which may be advantageously attached concentrically about the servo motor


31


. A tension roll


32


shown in

FIG. 4

, controls the feed and wrapping of the yarn onto the yarn feed roll


28


to insure there is adequate traction of yarn


22


with roll


28


. The yarn


22


is guided onto the tension roll


32


by the yarn guide plate


27


. The position of the yarn guide plate


27


and the tension roll


32


is fixed with fastening screw


36


. Preferably a yarn


22


is angled so that is wrapped around nearly 180° of the circumference of the yarn feed roll


28


, and at least about 135° of said circumference. Yarn guide posts


34


protrude from the rear of yarn guide plates


27


and help ensure the proper placement of yarn


22


on yarn feed rolls


28


.




It will also be noted in

FIGS. 1A and 3A

that yarns from the yarn supply are fed through upper


29




a


and lower


29




b


apertures on the support yarn guides


27


. Specifically, a yarn


22


for a yarn feed drive


35


on the support distal from the tufting machine is fed through upper apertures


29




a


until it reaches its associated yarn drive, is fed around approximately 180° of the yarn feed roll


28


on its associated yarn drive


35


, and continues through upper apertures


29




a


of the support yarn guides


27


until the midpoint of the support


26


is reached. At this point, the yarns


22


for the distal yarn feed drives


35


are threaded through lower apertures


29




b


in the remaining proximal yarn guides


27


. Conversely, yarns for proximal yarn drives come from the yarn supply through lower apertures


29




b


in the distal yarn guides


27


until about the middle of the yarn drives and the support


26


when those yarns


22


are directed to the upper apertures


29




a


in the proximal yarn guides and cross the yarns from the distal yarn drives. In this fashion, the crossing of yarns occurs substantially at one point


37


, opportunities for yarn friction and breakage minimized, and yarn threading simplified.




In a preferred embodiment depicted in

FIGS. 1B and 3B

, it is not necessary to cross the yarns, the offset position upper apertures


29




a


from lower apertures


29




b


in the yarn guide plate


27


begin sufficient to permit yarns to continue through the same aperture position and around their designated yarn feed rolls


28


without significant friction between yarns


22


.





FIGS. 1C and 1D

feature the preferred wiring of arched supports


26


showing motors


31


or yarn feed drives


35


only on one vertical side


71


of the support


26


. The electrical connections


52


from motors


31


end in plugs


54




b


which mate with plugs


54




a


set in cover plates


40


. Cover plates


40


are removably secured to arched support


26


and conceal individual servo motor controllers


69


.




As shown in

FIG. 8

, the invention is currently wired with four individual servo motor controllers


69


, each controlling five motors


31


. Collectively the four individual servo motor controllers comprise the servo motor controller board


65


. It will be appreciated that the controllers


69


may be dispersed under separate cover plates


40


or collectively mounted on a single board


69


under a single cover plate


40


, or even placed in a central controller cabinet depending upon wiring considerations. The wiring of

FIGS. 1C and 8

is presently preferred. It will also be understood that more powerful controllers


69


might operate more than five motors


31


or in some instances fewer or even a single motor


31


might be operated by a controller


69


. The most desirable wiring for a given application will depend upon the speed and price of available controllers as well as the speed at which the yarn feed attachment is intended to operate.




It will also be seen in

FIGS. 4 and 5

that the servo motors


31


are set on base plates


30


of greater diameter than the yarn feed rolls


28


and are mounted onto the arching support bar


26


using four motor mount bolts


38


through mounting holes


33


in the base plates.




Each feed roll


28


has a yarn feeding surface


39


formed of a sand-paper like or other high friction material upon which the yarns are fed. Each of these yarn feed rolls


28


may be loaded with one yarn, which is a light load providing little resistance compared to the hundred or more yarns that might be carried on a roll-type yarn feed attachment, the hundreds of individual yarns typically driven by a single scroll drive shaft, or even the dozen yarns typically driven in co-pending Ser. No. 08/980,045. Because of the lighter loads used, this design permits the use of small servo motors that can mount inside or outside of the yarn feed rolls


28


. For instance, a typical motor for driving a single end of yarn would be a 24-28 volt motor using 3 amps of power. This motor would be able to generate 5 lb-in of torque at 3 amps, having a maximum no load speed of 650 RPM. A representative motor of this type is the Full Repeat Scroll Motor by Moog, Inc. (C22944), which meets these general specifications. A motor of this type is sufficiently powerful to turn the associated yarn feed roll without the need for any gearing advantage. Thus the preferred ratio of servo motor revolutions to yarn feed roll revolutions is 1:1.




Turning now to

FIG. 6

, a general electrical diagram of the invention is shown in the context of a computerized tufting machine. A personal computer


60


is provided as a user interface, and this computer


60


may also be used to create, modify, display and install patterns in the tufting machine


10


by communication with the tufting machine master controller


42


.




Due to the very complex patterns that can be tufted when individually controlling each end of yarn, many patterns will comprise large data files that are advantageously loaded to the master controller by a network connection


41


; and preferably a high bandwidth network connection. For instance, digital representations of complex scroll patterns for traditional scroll pattern attachments might be stored in about 2 Kb of digital memory. A digital representation of a pattern for the single end servo driver scroll of the present invention might not repeat for 10,000 stitches and could require 20 Gb of disk space before data compression and about 20 Mb even after compression.




Master controller


42


in turn preferably interfaces with machine logic


63


, so that various operational interlocks will be activated if, for instance, the controller


42


is signaled that the tufting machine


10


is turned off, or if the “jog” button is depressed to incrementally move the needle bar, or a housing panel is open, or the like. Master controller


42


may also interface with a bed height controller


62


on the tufting machine to automatically effect changes in the bed height when patterns are changed. Master controller


42


also receives information from encoder


68


relative to the position of the main drive shaft


17


and preferably sends pattern commands to and receives status information from controllers


46


,


47


for backing tension motor


48


and backing feed motor


49


respectively. Said motors


48


,


49


are powered by power supply


50


. Finally, master controller


42


, for the purposes of the present invention, sends ratiometric pattern information to the servo motor controller boards


65


. The master controller


42


will signal a particular servo motor controller board


65


that it needs to spin its particular servo motors


31


at given revolutions for the next revolution of the main drive shaft


17


in order to control the pattern design. The servo motors


31


in turn provide positional control information to their servo motor controller board


65


thus allowing two-way processing of positional information. Power supplies


67


,


66


are associated with each servo motor controller board


65


and motor


31


.




Master controller


42


also receives information relative to the position of the main drive shaft


17


. Servo motor controller boards


65


process the ratiometric information and main drive shaft positional information from master controller


42


to direct servo motors


31


to rotate yarn feed rolls


28


the distance required to feed the appropriate yarn amount for each stitch.




In commercial operation, it is anticipated that a typical broadloom tufting machine will utilize pattern controlled yarn feed devices


11


according to the present invention with


53


support bars


26


, each bearing


20


yarn feed drives


35


thereby providing 1060 independently controlled yarn feed rolls


28


. If any yarn feed roll


28


or associated servo motor


31


should become damaged or malfunction, the arched support bar


26


can be pivoted downward for ease of access. A replacement single end yarn drive


35


already fitted with a yarn feed roll


28


and a servo motor


31


can be quickly installed. This allows the tufting machine to resume operation while repairs to the damaged or malfunctioning yarn feed rolls and motor are completed, thereby minimizing machine down time.




The present feed attachment


11


provides substantially improved results by providing scroll type yarn control while eliminating the need for a tube bank. Historically, tube banks have been designed in three ways: to minimize tube length, to minimize differences in yarn drag through the tubes, and to compromise between these two alternatives. All tube bank designs entail significant expense and introduce undesirable yarn drag into tufting operations.




The present design, unlike the previous art, does not use tube banks to distribute the yarns


22


to the needle bar


20


. Instead the yarns


22


are directly routed to the needle bars


20


through the yarn guides


25


. This is possible because yarns can be individually driven by feed rolls in directional alignment with the respective needles. By eliminating the tube banks, the source of friction variations is removed, eliminating the need for control schemes to correct for this problem.




Another significant advance permitted by the present pattern control attachment


11


is to permit the exact lengths of selected yarns to be fed to the needles. Unlike the previous art, each yarn may be controlled individually to produce the smoothest possible finish. For instance, in a given stitch in a high/low pattern on a tufting machine that is not shifting its needle bar the following situations may exist:




1. Previous stitch was a low stitch, next stitch is a low stitch.




2. Previous stitch was a low stitch, next stitch is a high stitch.




3. Previous stitch was a high stitch, next stitch is a high stitch.




4. Previous stitch was a high stitch, next stitch is a low stitch.




Obviously, with needle bar shifting which requires extra yarn depending upon the length of the shift, or with more than two heights of stitches, many more possibilities may exist. In this limited example, it is preferable to feed the standard low stitch length in the first situation, to slightly overfeed for a high stitch in the second situation, to feed the standard high stitch length in the third situation, and to slightly underfeed the low stitch length in the fourth case. On a traditional scroll type attachment, the electromagnetic clutches can engage either a high speed shaft for a high stitch or a low speed shaft for a low stitch. Accordingly, the traditional scroll type attachment cannot optimally feed yarn amounts for complex patterns which results in a less even finish to the resulting carpet. The independence obtained by the single end servo scroll would allow for these minor changes on a per yarn basis, enabling pattern capabilities that were not possible before.




In a typical configuration, the single end yarn drives would be spaced at about four to seven inch intervals along the support bar. This spacing is necessary to ensure proper yarn travel and minimal yarn resistance and stretching while still allowing for enough space between the yarn feed rolls


28


to allow minor adjustments. The distance between support brackets is typically 3¼ inches but may vary in either direction. This variability is necessary because of variations in the needle gauge that may be used. For instance, a larger needle gauge will require the needles be spread at further intervals allowing more space between the support arms. However, for the smaller needle gauge, the support arms will need to be closer together due to the increased proximity of the needles.




There are several advantages to having independently controlled single end yarn drives, particularly with regards to the patterns that can be created. By having each end of yarn independently controlled by its own dedicated yarn drive, this pattern device can produce designs that are not possible using previous broad loom tufting machines. For instance, a non-continuous repeating pattern may be made across the width of the tufting machine, utilizing three or more yarn heights for each yarn. This pattern could consist of any design such as a word message or non-repeating geometric design across the entire carpet in various colors. Another design type that this type of pattern device may create is a rug with central design surrounded by a border. For example, a rug with a word phrase surrounded in the center by one color, then surrounded by a border of another color could easily be produced with this device without special consideration. A rug


52


with a series of centric borders,


55


,


56


,


57


,


58


,


59


,


61


, as shown in

FIG. 7

may also be tufted. Each yarn in rug


52


is tufted through a backing fabric so that a series of back stitches are on the bottom of finished rug while the tufted bights form cut or loop pile stitches on the top or face of the finished rug. The yarns in each border may be tufted at three or more lengths to precisely control the yarns for color transitions or sculptured effects.




Although the illustrated borders are shown in two colors, the border patterns could also be created in a high/low textured or sculpted manner from a single color of yarn. Typically the borders,


55


,


56


,


57


,


58


,


59


,


61


, will surround a central area


64


. The central area


64


may or may not be textured or contain a design


52


.




A second type of design possible with this pattern attachment is one that involves the creation of color picture designs that are facsimiles of digital images. By loading a front pattern device with A and B yarns fed to a front needle bar and loading a rear pattern device with C and D yarns fed to a rear needle bar, full color pictures may be created from the yarns. Typically, the A, B, C, and D yarns will consist of shades of red, yellow, and green or red, yellow, and blue, combined with another color for aid in light and dark shading. Many other combinations of colored yarns may be used to achieve varied results.




In the preferred embodiment, a color image is digitally input into a computer using a scanner, as typified by Hewlett Packard ScanJet 5100c or other digital device. The digital image is processed by the computer, which calculates the correct yarn color mixes and corresponding yarn heights to produce the desired spectral effect. The yarn height information is translated into rotational instructions for each yarn drive. Using this information, an approximation of the digital image can be recreated within the yarns of a carpet.




The prior art for the creation of carpet of individually tufted yarns is typified by U.S. Pat. No. 4,549,496 where a pneumatic system is used to direct each strand of yarn in the pattern control device. This process has significant limitations involving size of rugs it can produce and the production speed due to the complexity of directing the various colored yarns using pneumatic technology, and the limited number of needles sewing each stitch. With the single end servo scroll pattern attachment described, broad loom carpets with complex color pictures are created with greater efficiency and speed.




While preferred embodiments of the invention have been described above, it is to be understood that any and all equivalent realizations of the present invention are included within the scope and spirit thereof. Thus, the embodiments depicted are presented by way of example only and are not intended as limitations upon the present invention. While particular embodiments of the invention have been described and shown, it will be understood by those skilled in the art that the present invention is not limited thereto since many modifications can be made. Therefore, it is contemplated that any and all such embodiments are included in the present invention as may fall within the scope or equivalent scope of the appended claims.



Claims
  • 1. A tufted carpet comprising:(a) a generally planar backing fabric having a top surface, a bottom surface and an outer perimeter encompassing a center portion; (b) a first border surrounding the center portion comprising a first plurality of bights on the outer perimeter of the top surface of the backing fabric; (c) a second border surrounding the center portion visually distinct from and located interior of said first border, and comprising a second plurality of bights on the outer perimeter of the top surface of the backing fabric; (d) wherein the plurality of bights comprising at least one of said first and second borders is formed by feeding stitches of yarn in at least three distinct increments of length.
  • 2. The tufted carpet of claim 1 further comprising a design comprised of a third plurality of bights on the top surface of the backing fabric located interior of said second border.
  • 3. The tufted carpet of claim 1 wherein the second plurality of bights are cut pile bights.
  • 4. The tufted carpet of claim 1 wherein the first plurality of bights are loop pile bights.
  • 5. The tufted carpet of claim 1 further comprising a third border visually distinct from and located interior of said second border and comprising a third plurality of bights on the top surface of the backing fabric.
  • 6. The tufted carpet of claim 1 wherein the outer perimeter is four sides of the top surface of the backing fabric.
  • 7. A tufting machine comprising:(a) a feed mechanism for transporting a backing fabric having a back side and a face side from front to rear through the machine; (b) a plurality of spaced needles aligned transversely of the machine for reciprocable movement through the back side of backing fabric; (c) a drive mechanism in communication with said spaced needles to reciprocably move the needles through the backing fabric; (d) a single end servo driven yarn feed mechanism for supplying yarns at selected rates to said spaced needles, said yarn feed mechanism having separate yarn feed rolls for at least a majority of the yarns supplied to the spaced needles in the tufting machine and said separate yarn feed rolls being independently operable to supply yarns of more than three different lengths for any particular stitch; (e) a controller in communication with the yarn feed mechanism including a software control program for controlling the operation of the independently operable yarn feed rolls in accordance with a predetermined pattern; and (f) a looper mechanism for seizing yarns off the spaced needles on the face side of the backing fabric.
  • 8. The tufting machine at claim 7 wherein the separate yarn feed rolls are independently operable to supply yarns of no less than eight different lengths.
  • 9. The tufting machine of claim 7 wherein the predetermined pattern is at least 350 stitches in length.
  • 10. The tufting machine of claim 7 wherein the predetermined pattern is at least 1000 stitches in length.
  • 11. The tufting machine of claim 7 wherein said independently operable separate yarn feed rolls are driven by separate servo motors.
  • 12. The tufting machine of claim 11 wherein a servo motor controller board is electrically connected to at least one of said separate servo motors and to the controller.
  • 13. The tufting machine of claim 12 wherein the controller receives positional information corresponding to the reciprocation of the needles through the backing fabric and sends corresponding information concerning the pattern to the servo motor controller board.
  • 14. A tufting machine comprising:(a) a feed mechanism for transporting a backing fabric having a back side and a face side from front to rear through the machine; (b) a plurality of spaced needles aligned transversely of the machine for reciprocable movement through the back side of backing fabric; (c) a drive mechanism in communication with said spaced needles to reciprocably move the needles through the backing fabric; (d) a single end servo driven yarn feed mechanism for supplying yarns at selected rates to said spaced needles, said yarn feed mechanism having separate yarn feed rolls for at least a majority of the yarns supplied to the spaced needles in the tufting machine and said separate yarn feed rolls being in communication with a servo motor to supply yarns of more than three different lengths for any particular stitch; (e) a servo motor controller in communication with the yarn feed mechanism including a software control program for controlling the operation of the independently operable yarn feed rolls in accordance with a predetermined pattern; and (f) a looper mechanism for seizing yarns off the spaced needles on the face side of the backing fabric.
  • 15. The tufting machine of claim 14 wherein the separate yarn feed rolls are independently operable to supply yarns of no less than eight different lengths.
  • 16. The tufting machine of claim 14 wherein the predetermined pattern is at least 350 stitches in length.
  • 17. The tufting machine of claim 14 wherein the predetermined pattern is at least 1000 stitches in length.
  • 18. The tufting machine of claim 14 wherein said servo motors are mounted to the tufting machine along a substantially arcuate path.
  • 19. The tufting machine of claim 14 wherein a servo motor controller board is electrically connected to at least one of said servo motors and to the controller.
  • 20. The tufting machine of claim 19 wherein the controller receives positional information corresponding to the reciprocation of the needles through the backing fabric and sends corresponding information concerning the pattern to the servo motor controller board.
Parent Case Info

This application is a divisional of U.S. patent application Ser. No. 09/882,632 filed Jun. 14, 2001, U.S. Pat. No. 6,439,141 which is a divisional of U.S. patent application Ser. No. 09/467,432 filed Dec. 20, 1999, U.S. Pat. No. 6,283,053 which is a continuation-in-part of U.S. Ser. No. 08/980,045 filed Nov. 26, 1997, U.S. Pat. No. 6,244,203 which claims priority from U.S. Provisional Application Serial No. 60/031,954 filed Nov. 27, 1996 entitled “Independent Single End Servo Scroll Pattern Attachment for Tufting Machine And Computerized Design System” which is incorporated by reference.

US Referenced Citations (6)
Number Name Date Kind
2884881 Oberholtzer May 1959 A
3752094 Short Aug 1973 A
3943865 Short Mar 1976 A
5544605 Frost Aug 1996 A
5549064 Padgett, III Aug 1996 A
6283053 Morgante et al. Sep 2001 B1
Provisional Applications (1)
Number Date Country
60/031954 Nov 1996 US
Continuation in Parts (1)
Number Date Country
Parent 08/980045 Nov 1997 US
Child 09/467432 US